Convert dataframe with tuples into dataframe with multiindex - python

I want to convert a dataframe which has tuples in cells into a dataframe with MultiIndex.
Here is an example of the table code:
d = {2:[(0,2),(0,4)], 3:[(826.0, 826.0),(4132.0, 4132.0)], 4:[(6019.0, 6019.0),(12037.0, 12037.0)], 6:[(18337.0, 18605.0),(36674.0, 37209.0)]}
test = pd.DataFrame(d)
This is how the dataframe looks like:
2 3 4 6
0 (0, 2) (826.0, 826.0) (6019.0, 6019.0) (18337.0, 18605.0)
1 (0, 4) (4132.0, 4132.0) (12037.0, 12037.0) (36674.0, 37209.0)
This is what I want it to look like
2 3 4 6
0 A 0 826.0 6019.0 18337.0
B 2 826.0 6019.0 18605.0
1 A 0 4132.0 12037.0 36674.0
B 4 4132.0 12037.0 37209.0
Thanks for your help!

Unsure for the efficiency, because this will rely an the apply method, but you could concat the dataframe with itself, adding a 'A' column to the first and a 'B' one to the second. Then you sort the resulting dataframe by its index, and use apply to change even rows to the first value of the tuple and odd ones to the second:
df = pd.concat([test.assign(X='A'), test.assign(X='B')]).set_index(
'X', append=True).sort_index().rename_axis(index=(None, None))
df.iloc[0:len(df):2] = df.iloc[0:len(df):2].apply(lambda x: x.apply(lambda y: y[0]))
df.iloc[1:len(df):2] = df.iloc[1:len(df):2].apply(lambda x: x.apply(lambda y: y[1]))
It gives as expected:
2 3 4 6
0 A 0 826 6019 18337
B 2 826 6019 18605
1 A 0 4132 12037 36674
B 4 4132 12037 37209

Related

how to apply multiplication within pandas dataframe

please advice how to get the following output:
df1 = pd.DataFrame([['1, 2', '2, 2','3, 2','1, 1', '2, 1','3, 1']])
df2 = pd.DataFrame([[1, 2, 100, 'x'], [3, 4, 200, 'y'], [5, 6, 300, 'x']])
import numpy as np
df22 = df2.rename(index = lambda x: x + 1).set_axis(np.arange(1, len(df2.columns) + 1), inplace=False, axis=1)
f = lambda x: df22.loc[tuple(map(int, x.split(',')))]
df = df1.applymap(f)
print (df)
Output:
0 1 2 3 4 5
0 2 4 6 1 3 5
df1 is 'address' of df2 in row, col format (1,2 is first row, second column which is 2, 2,2 is 4 3,2 is 6 etc.)
I need to add values from the 3rd and 4th columns to get something like (2*100x, 4*200y, 6*300x, 1*100x, 3*200y, 5*300x)
the output should be 5000(sum of x's and y's), 0.28 (1400/5000 - % of y's)
It's not clear to me why you need df1 and df... Maybe your question is lacking some details?
You can compute your values directly:
df22['val'] = (df22[1] + df22[2])*df22[3]
Output:
1 2 3 4 val
1 1 2 100 x 300
2 3 4 200 y 1400
3 5 6 300 x 3300
From there it's straightforward to compute the sums (total and grouped by column 4):
total = df22['val'].sum() # 5000
y_sum = df22.groupby(4).sum().loc['y', 'val'] # 1400
print(y_sum/total) # 0.28
Edit: if df1 doesn't necessarily contain all members of columns 1 and 2, you could loop through it (it's not clear in your question why df1 is a Dataframe or if it can have more than one row, therefore I flattened it):
df22['val'] = 0
for c in df1.to_numpy().flatten():
i, j = map(int, c.split(','))
df22.loc[i, 'val'] += df22.loc[i, j]*df22.loc[i, 3]
This gives you the same output as above for your example but will ignore values that are not in df1.

Multiplying values from a string column in Pandas

I have a column with land dimensions in Pandas. It looks like this:
df.LotSizeDimensions.value_counts(dropna=False)
40.00X150.00 2
57.00X130.00 2
27.00X117.00 2
63.00X135.00 2
37.00X108.00 2
65.00X134.00 2
57.00X116.00 2
33x124x67x31x20x118 1
55.00X160.00 1
63.00X126.00 1
36.00X105.50 1
In rows where there is only one X, I would like to create a separate column that would multiply the values. In columns where there is more than one X, I would like to return a zero. This is the code I came up with
def dimensions_split(df: pd.DataFrame):
df.LotSizeDimensions = df.LotSizeDimensions.str.strip()
df.LotSizeDimensions = df.LotSizeDimensions.str.upper()
df.LotSizeDimensions = df.LotSizeDimensions.str.strip('`"M')
if df.LotSizeDimensions.count('X') > 1
return 0
df['LotSize'] = map(int(df.LotSizeDimensions.str.split("X", 1).str[0])*int(df.LotSizeDimensions.str.split("X", 1).str[1]))
This is coming back with the following error:
TypeError: cannot convert the series to <class 'int'>
I would also like to add a line where if there are any non-numeric characters other than X, return a zero.
Idea is first stripping and convert to upper column LotSizeDimensions to Series and then use Series.str.split for DataFrame and then multiple columns if there is only one X else is returned 0:
s = df.LotSizeDimensions.str.strip('`"M ').str.upper()
df1 = s.str.split('X', expand=True).astype(float)
#general data
#df1 = s.str.split('X', expand=True).apply(lambda x: pd.to_numeric(x, errors='coerce'))
df['LotSize'] = np.where(s.str.count('X').eq(1), df1[0] * df1[1], 0)
print (df)
LotSizeDimensions LotSize
0 40.00X150.00 6000.0
1 57.00X130.00 7410.0
2 27.00X117.00 3159.0
3 37.00X108.00 3996.0
4 63.00X135.00 8505.0
5 65.00X134.00 8710.0
6 57.00X116.00 6612.0
7 33x124x67x31x20x118 0.0
8 55.00X160.00 8800.0
9 63.00X126.00 7938.0
10 36.00X105.50 3798.0
I get this using list comprehension:
import pandas as pd
df = pd.DataFrame(['40.00X150.00','57.00X130.00',
'27.00X117.00',
'37.00X108.00',
'63.00X135.00' ,
'65.00X134.00' ,
'57.00X116.00' ,
'33x124x67x31x20x118',
'55.00X160.00',
'63.00X126.00',
'36.00X105.50'])
df[1] = [float(str_data.strip().split("X")[0])*float(str_data.strip().split("X")[1]) if len(str_data.strip().split("X"))==2 else None for str_data in df[0]]

Count how many characters from a column appear in another column (pandas)

I am trying to count how many characters from the first column appear in second one. They may appear in different order and they should not be counted twice.
For example, in this df
df = pd.DataFrame(data=[["AL0","CP1","NM3","PK9","RM2"],["AL0X24",
"CXP44",
"MLN",
"KKRR9",
"22MMRRS"]]).T
the result should be:
result = [3,2,2,2,3]
Looks like set.intersection after zipping the 2 columns:
[len(set(a).intersection(set(b))) for a,b in zip(df[0],df[1])]
#[3, 2, 2, 2, 3]
The other solutions will fail in the case that you compare names that both have the same multiple character, eg. AAL0 and AAL0X24. The result here should be 4.
from collections import Counter
df = pd.DataFrame(data=[["AL0","CP1","NM3","PK9","RM2", "AAL0"],
["AL0X24", "CXP44", "MLN", "KKRR9", "22MMRRS", "AAL0X24"]]).T
def num_shared_chars(char_counter1, char_counter2):
shared_chars = set(char_counter1.keys()).intersection(char_counter2.keys())
return sum([min(char_counter1[k], char_counter2[k]) for k in shared_chars])
df_counter = df.applymap(Counter)
df['shared_chars'] = df_counter.apply(lambda row: num_shared_chars(row[0], row[1]), axis = 'columns')
Result:
0 1 shared_chars
0 AL0 AL0X24 3
1 CP1 CXP44 2
2 NM3 MLN 2
3 PK9 KKRR9 2
4 RM2 22MMRRS 3
5 AAL0 AAL0X24 4
Sticking to the dataframe data structure, you could do:
>>> def count_common(s1, s2):
... return len(set(s1) & set(s2))
...
>>> df["result"] = df.apply(lambda x: count_common(x[0], x[1]), axis=1)
>>> df
0 1 result
0 AL0 AL0X24 3
1 CP1 CXP44 2
2 NM3 MLN 2
3 PK9 KKRR9 2
4 RM2 22MMRRS 3

pandas multiple column replace

I have df as given below which I am splitting column wise.
>>> df
ID Started
0 NaN 20.06.2017 13:19:04
1 NaN 10.04.2018 04:48:32
2 WBTS-1509 06.11.2017 10:28:14
3 WBTS-1509 03.03.2018 10:12:29
4 WBTS-1117 07.03.2018 17:04:28
df['Started'].apply(lambda x: x.split(':')[0])
df['ID'].apply(lambda x: x.split('-')[1])
I would like to set 3 list variables
col_names = ['ID' , 'Started']
splitby = ['-' , ':']
index_after_split = [1 , 0]
do splitting using one line (avoiding loop) using inplace = True.
Please help me do same.
Thanks
I think loop is necessary here with str.split and indexing by str[]:
for a,b,c, in zip(col_names, splitby, index_after_split):
df[a] = df[a].str.split(b).str[c]
print (df)
ID Started
0 NaN 20.06.2017 13
1 NaN 10.04.2018 04
2 1509 06.11.2017 10
3 1509 03.03.2018 10
4 1117 07.03.2018 17

Pandas Split Dataframe into two Dataframes at a specific row

I have pandas DataFrame which I have composed from concat. One row consists of 96 values, I would like to split the DataFrame from the value 72.
So that the first 72 values of a row are stored in Dataframe1, and the next 24 values of a row in Dataframe2.
I create my DF as follows:
temps = DataFrame(myData)
datasX = concat(
[temps.shift(72), temps.shift(71), temps.shift(70), temps.shift(69), temps.shift(68), temps.shift(67),
temps.shift(66), temps.shift(65), temps.shift(64), temps.shift(63), temps.shift(62), temps.shift(61),
temps.shift(60), temps.shift(59), temps.shift(58), temps.shift(57), temps.shift(56), temps.shift(55),
temps.shift(54), temps.shift(53), temps.shift(52), temps.shift(51), temps.shift(50), temps.shift(49),
temps.shift(48), temps.shift(47), temps.shift(46), temps.shift(45), temps.shift(44), temps.shift(43),
temps.shift(42), temps.shift(41), temps.shift(40), temps.shift(39), temps.shift(38), temps.shift(37),
temps.shift(36), temps.shift(35), temps.shift(34), temps.shift(33), temps.shift(32), temps.shift(31),
temps.shift(30), temps.shift(29), temps.shift(28), temps.shift(27), temps.shift(26), temps.shift(25),
temps.shift(24), temps.shift(23), temps.shift(22), temps.shift(21), temps.shift(20), temps.shift(19),
temps.shift(18), temps.shift(17), temps.shift(16), temps.shift(15), temps.shift(14), temps.shift(13),
temps.shift(12), temps.shift(11), temps.shift(10), temps.shift(9), temps.shift(8), temps.shift(7),
temps.shift(6), temps.shift(5), temps.shift(4), temps.shift(3), temps.shift(2), temps.shift(1), temps,
temps.shift(-1), temps.shift(-2), temps.shift(-3), temps.shift(-4), temps.shift(-5), temps.shift(-6),
temps.shift(-7), temps.shift(-8), temps.shift(-9), temps.shift(-10), temps.shift(-11), temps.shift(-12),
temps.shift(-13), temps.shift(-14), temps.shift(-15), temps.shift(-16), temps.shift(-17), temps.shift(-18),
temps.shift(-19), temps.shift(-20), temps.shift(-21), temps.shift(-22), temps.shift(-23)], axis=1)
Question is: How can split them? :)
iloc
df1 = datasX.iloc[:, :72]
df2 = datasX.iloc[:, 72:]
(iloc docs)
use np.split(..., axis=1):
Demo:
In [255]: df = pd.DataFrame(np.random.rand(5, 6), columns=list('abcdef'))
In [256]: df
Out[256]:
a b c d e f
0 0.823638 0.767999 0.460358 0.034578 0.592420 0.776803
1 0.344320 0.754412 0.274944 0.545039 0.031752 0.784564
2 0.238826 0.610893 0.861127 0.189441 0.294646 0.557034
3 0.478562 0.571750 0.116209 0.534039 0.869545 0.855520
4 0.130601 0.678583 0.157052 0.899672 0.093976 0.268974
In [257]: dfs = np.split(df, [4], axis=1)
In [258]: dfs[0]
Out[258]:
a b c d
0 0.823638 0.767999 0.460358 0.034578
1 0.344320 0.754412 0.274944 0.545039
2 0.238826 0.610893 0.861127 0.189441
3 0.478562 0.571750 0.116209 0.534039
4 0.130601 0.678583 0.157052 0.899672
In [259]: dfs[1]
Out[259]:
e f
0 0.592420 0.776803
1 0.031752 0.784564
2 0.294646 0.557034
3 0.869545 0.855520
4 0.093976 0.268974
np.split() is pretty flexible - let's split an original DF into 3 DFs at columns with indexes [2,3]:
In [260]: dfs = np.split(df, [2,3], axis=1)
In [261]: dfs[0]
Out[261]:
a b
0 0.823638 0.767999
1 0.344320 0.754412
2 0.238826 0.610893
3 0.478562 0.571750
4 0.130601 0.678583
In [262]: dfs[1]
Out[262]:
c
0 0.460358
1 0.274944
2 0.861127
3 0.116209
4 0.157052
In [263]: dfs[2]
Out[263]:
d e f
0 0.034578 0.592420 0.776803
1 0.545039 0.031752 0.784564
2 0.189441 0.294646 0.557034
3 0.534039 0.869545 0.855520
4 0.899672 0.093976 0.268974
I generally use array split because it's easier simple syntax and scales better with more than 2 partitions.
import numpy as np
partitions = 2
dfs = np.array_split(df, partitions)
np.split(df, [100,200,300], axis=0] wants explicit index numbers which may or may not be desirable.

Categories

Resources