I have a list of people and I want to make all combinations of their teams (of 3) with each other.
list_of_ppl = ['A','B','C','D','E','F']
What i need is:
>>> [['A','B','C'],['D','E','F']]
>>> [['A','B','D'],['C','E','F']]
>>> [['A','B','E'],['C','D','F']]
>>> [['A','B','F'],['C','D','E']]
>>> [['A','C','E'],['B','D','F']]
>>> and so on...
Edit: The len(list_of_ppl) can be greater than 6 and can be a number that is not divisible by 3. I only want teams of 3
For eg:
list_of_ppl = ['A','B','C','D','E','F','G']
>>> [['A','B','C'],['D','E','F'],['G']]
>>> [['A','B','D'],['C','E','G'],['F']]
>>> [['A','B','D'],['C','F','G'],['E']]
>>> [['A','B','F'],['C','E','G'],['D']]
>>> [['A','E','G'],['B','D','F'],['C']]
>>> and so on...
You can use a recursive function to keep getting a combination of 3 from the remaining list of people until the list is exhausted:
from itertools import combinations
def get_teams(list_of_ppl, size=3):
if len(list_of_ppl) > size:
for team in combinations(list_of_ppl, size):
for teams in get_teams(list(set(list_of_ppl) - set(team))):
yield [list(team), *teams]
else:
yield [list_of_ppl]
for team in get_teams(list_of_ppl):
print(team)
so that with list_of_ppl = ['A','B','C','D','E','F'], this outputs:
[['A', 'B', 'C'], ['F', 'E', 'D']]
[['A', 'B', 'D'], ['C', 'F', 'E']]
[['A', 'B', 'E'], ['C', 'F', 'D']]
[['A', 'B', 'F'], ['C', 'E', 'D']]
[['A', 'C', 'D'], ['F', 'B', 'E']]
[['A', 'C', 'E'], ['F', 'B', 'D']]
[['A', 'C', 'F'], ['B', 'E', 'D']]
[['A', 'D', 'E'], ['C', 'B', 'F']]
[['A', 'D', 'F'], ['C', 'B', 'E']]
[['A', 'E', 'F'], ['C', 'B', 'D']]
[['B', 'C', 'D'], ['E', 'F', 'A']]
[['B', 'C', 'E'], ['F', 'A', 'D']]
[['B', 'C', 'F'], ['E', 'A', 'D']]
[['B', 'D', 'E'], ['C', 'F', 'A']]
[['B', 'D', 'F'], ['C', 'A', 'E']]
[['B', 'E', 'F'], ['C', 'A', 'D']]
[['C', 'D', 'E'], ['F', 'B', 'A']]
[['C', 'D', 'F'], ['E', 'B', 'A']]
[['C', 'E', 'F'], ['B', 'A', 'D']]
[['D', 'E', 'F'], ['C', 'B', 'A']]
or with a list_of_ppl whose length is not divisible by 3 such as list_of_ppl = ['A','B','C','D','E','F','G'], this outputs:
[['A', 'B', 'C'], ['E', 'G', 'F'], ['D']]
[['A', 'B', 'C'], ['E', 'G', 'D'], ['F']]
[['A', 'B', 'C'], ['E', 'F', 'D'], ['G']]
[['A', 'B', 'C'], ['G', 'F', 'D'], ['E']]
[['A', 'B', 'D'], ['E', 'C', 'G'], ['F']]
[['A', 'B', 'D'], ['E', 'C', 'F'], ['G']]
[['A', 'B', 'D'], ['E', 'G', 'F'], ['C']]
[['A', 'B', 'D'], ['C', 'G', 'F'], ['E']]
[['A', 'B', 'E'], ['C', 'G', 'F'], ['D']]
[['A', 'B', 'E'], ['C', 'G', 'D'], ['F']]
[['A', 'B', 'E'], ['C', 'F', 'D'], ['G']]
[['A', 'B', 'E'], ['G', 'F', 'D'], ['C']]
[['A', 'B', 'F'], ['E', 'C', 'G'], ['D']]
[['A', 'B', 'F'], ['E', 'C', 'D'], ['G']]
[['A', 'B', 'F'], ['E', 'G', 'D'], ['C']]
[['A', 'B', 'F'], ['C', 'G', 'D'], ['E']]
[['A', 'B', 'G'], ['E', 'C', 'F'], ['D']]
[['A', 'B', 'G'], ['E', 'C', 'D'], ['F']]
[['A', 'B', 'G'], ['E', 'F', 'D'], ['C']]
[['A', 'B', 'G'], ['C', 'F', 'D'], ['E']]
[['A', 'C', 'D'], ['B', 'E', 'G'], ['F']]
[['A', 'C', 'D'], ['B', 'E', 'F'], ['G']]
[['A', 'C', 'D'], ['B', 'G', 'F'], ['E']]
[['A', 'C', 'D'], ['E', 'G', 'F'], ['B']]
[['A', 'C', 'E'], ['B', 'G', 'F'], ['D']]
[['A', 'C', 'E'], ['B', 'G', 'D'], ['F']]
[['A', 'C', 'E'], ['B', 'F', 'D'], ['G']]
[['A', 'C', 'E'], ['G', 'F', 'D'], ['B']]
[['A', 'C', 'F'], ['B', 'E', 'G'], ['D']]
[['A', 'C', 'F'], ['B', 'E', 'D'], ['G']]
[['A', 'C', 'F'], ['B', 'G', 'D'], ['E']]
[['A', 'C', 'F'], ['E', 'G', 'D'], ['B']]
[['A', 'C', 'G'], ['B', 'E', 'F'], ['D']]
[['A', 'C', 'G'], ['B', 'E', 'D'], ['F']]
[['A', 'C', 'G'], ['B', 'F', 'D'], ['E']]
[['A', 'C', 'G'], ['E', 'F', 'D'], ['B']]
[['A', 'D', 'E'], ['B', 'C', 'G'], ['F']]
[['A', 'D', 'E'], ['B', 'C', 'F'], ['G']]
[['A', 'D', 'E'], ['B', 'G', 'F'], ['C']]
[['A', 'D', 'E'], ['C', 'G', 'F'], ['B']]
[['A', 'D', 'F'], ['B', 'E', 'C'], ['G']]
[['A', 'D', 'F'], ['B', 'E', 'G'], ['C']]
[['A', 'D', 'F'], ['B', 'C', 'G'], ['E']]
[['A', 'D', 'F'], ['E', 'C', 'G'], ['B']]
[['A', 'D', 'G'], ['B', 'E', 'C'], ['F']]
[['A', 'D', 'G'], ['B', 'E', 'F'], ['C']]
[['A', 'D', 'G'], ['B', 'C', 'F'], ['E']]
[['A', 'D', 'G'], ['E', 'C', 'F'], ['B']]
[['A', 'E', 'F'], ['B', 'C', 'G'], ['D']]
[['A', 'E', 'F'], ['B', 'C', 'D'], ['G']]
[['A', 'E', 'F'], ['B', 'G', 'D'], ['C']]
[['A', 'E', 'F'], ['C', 'G', 'D'], ['B']]
[['A', 'E', 'G'], ['B', 'C', 'F'], ['D']]
[['A', 'E', 'G'], ['B', 'C', 'D'], ['F']]
[['A', 'E', 'G'], ['B', 'F', 'D'], ['C']]
[['A', 'E', 'G'], ['C', 'F', 'D'], ['B']]
[['A', 'F', 'G'], ['B', 'E', 'C'], ['D']]
[['A', 'F', 'G'], ['B', 'E', 'D'], ['C']]
[['A', 'F', 'G'], ['B', 'C', 'D'], ['E']]
[['A', 'F', 'G'], ['E', 'C', 'D'], ['B']]
[['B', 'C', 'D'], ['E', 'A', 'G'], ['F']]
[['B', 'C', 'D'], ['E', 'A', 'F'], ['G']]
[['B', 'C', 'D'], ['E', 'G', 'F'], ['A']]
[['B', 'C', 'D'], ['A', 'G', 'F'], ['E']]
[['B', 'C', 'E'], ['A', 'G', 'F'], ['D']]
[['B', 'C', 'E'], ['A', 'G', 'D'], ['F']]
[['B', 'C', 'E'], ['A', 'F', 'D'], ['G']]
[['B', 'C', 'E'], ['G', 'F', 'D'], ['A']]
[['B', 'C', 'F'], ['E', 'A', 'G'], ['D']]
[['B', 'C', 'F'], ['E', 'A', 'D'], ['G']]
[['B', 'C', 'F'], ['E', 'G', 'D'], ['A']]
[['B', 'C', 'F'], ['A', 'G', 'D'], ['E']]
[['B', 'C', 'G'], ['E', 'A', 'F'], ['D']]
[['B', 'C', 'G'], ['E', 'A', 'D'], ['F']]
[['B', 'C', 'G'], ['E', 'F', 'D'], ['A']]
[['B', 'C', 'G'], ['A', 'F', 'D'], ['E']]
[['B', 'D', 'E'], ['C', 'A', 'G'], ['F']]
[['B', 'D', 'E'], ['C', 'A', 'F'], ['G']]
[['B', 'D', 'E'], ['C', 'G', 'F'], ['A']]
[['B', 'D', 'E'], ['A', 'G', 'F'], ['C']]
[['B', 'D', 'F'], ['E', 'C', 'A'], ['G']]
[['B', 'D', 'F'], ['E', 'C', 'G'], ['A']]
[['B', 'D', 'F'], ['E', 'A', 'G'], ['C']]
[['B', 'D', 'F'], ['C', 'A', 'G'], ['E']]
[['B', 'D', 'G'], ['E', 'C', 'A'], ['F']]
[['B', 'D', 'G'], ['E', 'C', 'F'], ['A']]
[['B', 'D', 'G'], ['E', 'A', 'F'], ['C']]
[['B', 'D', 'G'], ['C', 'A', 'F'], ['E']]
[['B', 'E', 'F'], ['C', 'A', 'G'], ['D']]
[['B', 'E', 'F'], ['C', 'A', 'D'], ['G']]
[['B', 'E', 'F'], ['C', 'G', 'D'], ['A']]
[['B', 'E', 'F'], ['A', 'G', 'D'], ['C']]
[['B', 'E', 'G'], ['C', 'A', 'F'], ['D']]
[['B', 'E', 'G'], ['C', 'A', 'D'], ['F']]
[['B', 'E', 'G'], ['C', 'F', 'D'], ['A']]
[['B', 'E', 'G'], ['A', 'F', 'D'], ['C']]
[['B', 'F', 'G'], ['E', 'C', 'A'], ['D']]
[['B', 'F', 'G'], ['E', 'C', 'D'], ['A']]
[['B', 'F', 'G'], ['E', 'A', 'D'], ['C']]
[['B', 'F', 'G'], ['C', 'A', 'D'], ['E']]
[['C', 'D', 'E'], ['B', 'A', 'G'], ['F']]
[['C', 'D', 'E'], ['B', 'A', 'F'], ['G']]
[['C', 'D', 'E'], ['B', 'G', 'F'], ['A']]
[['C', 'D', 'E'], ['A', 'G', 'F'], ['B']]
[['C', 'D', 'F'], ['B', 'E', 'A'], ['G']]
[['C', 'D', 'F'], ['B', 'E', 'G'], ['A']]
[['C', 'D', 'F'], ['B', 'A', 'G'], ['E']]
[['C', 'D', 'F'], ['E', 'A', 'G'], ['B']]
[['C', 'D', 'G'], ['B', 'E', 'A'], ['F']]
[['C', 'D', 'G'], ['B', 'E', 'F'], ['A']]
[['C', 'D', 'G'], ['B', 'A', 'F'], ['E']]
[['C', 'D', 'G'], ['E', 'A', 'F'], ['B']]
[['C', 'E', 'F'], ['B', 'A', 'G'], ['D']]
[['C', 'E', 'F'], ['B', 'A', 'D'], ['G']]
[['C', 'E', 'F'], ['B', 'G', 'D'], ['A']]
[['C', 'E', 'F'], ['A', 'G', 'D'], ['B']]
[['C', 'E', 'G'], ['B', 'A', 'F'], ['D']]
[['C', 'E', 'G'], ['B', 'A', 'D'], ['F']]
[['C', 'E', 'G'], ['B', 'F', 'D'], ['A']]
[['C', 'E', 'G'], ['A', 'F', 'D'], ['B']]
[['C', 'F', 'G'], ['B', 'E', 'A'], ['D']]
[['C', 'F', 'G'], ['B', 'E', 'D'], ['A']]
[['C', 'F', 'G'], ['B', 'A', 'D'], ['E']]
[['C', 'F', 'G'], ['E', 'A', 'D'], ['B']]
[['D', 'E', 'F'], ['B', 'C', 'A'], ['G']]
[['D', 'E', 'F'], ['B', 'C', 'G'], ['A']]
[['D', 'E', 'F'], ['B', 'A', 'G'], ['C']]
[['D', 'E', 'F'], ['C', 'A', 'G'], ['B']]
[['D', 'E', 'G'], ['B', 'C', 'A'], ['F']]
[['D', 'E', 'G'], ['B', 'C', 'F'], ['A']]
[['D', 'E', 'G'], ['B', 'A', 'F'], ['C']]
[['D', 'E', 'G'], ['C', 'A', 'F'], ['B']]
[['D', 'F', 'G'], ['B', 'E', 'C'], ['A']]
[['D', 'F', 'G'], ['B', 'E', 'A'], ['C']]
[['D', 'F', 'G'], ['B', 'C', 'A'], ['E']]
[['D', 'F', 'G'], ['E', 'C', 'A'], ['B']]
[['E', 'F', 'G'], ['B', 'C', 'A'], ['D']]
[['E', 'F', 'G'], ['B', 'C', 'D'], ['A']]
[['E', 'F', 'G'], ['B', 'A', 'D'], ['C']]
[['E', 'F', 'G'], ['C', 'A', 'D'], ['B']]
Use combinations from itertools:
from itertools import combinations
list(map(list,combinations(list_of_ppl,3)))
[['A', 'B', 'C'],
['A', 'B', 'D'],
['A', 'B', 'E'],
['A', 'B', 'F'],
['A', 'C', 'D'],
['A', 'C', 'E'],
['A', 'C', 'F'],
['A', 'D', 'E'],
['A', 'D', 'F'],
['A', 'E', 'F'],
['B', 'C', 'D'],
['B', 'C', 'E'],
['B', 'C', 'F'],
['B', 'D', 'E'],
['B', 'D', 'F'],
['B', 'E', 'F'],
['C', 'D', 'E'],
['C', 'D', 'F'],
['C', 'E', 'F'],
['D', 'E', 'F']]
Or:
l = list(map(list,combinations(list_of_ppl,3)))
list(map(list,zip(l[::2],l[::-1][::2])))
[[['A', 'B', 'C'], ['D', 'E', 'F']],
[['A', 'B', 'E'], ['C', 'D', 'F']],
[['A', 'C', 'D'], ['B', 'E', 'F']],
[['A', 'C', 'F'], ['B', 'D', 'E']],
[['A', 'D', 'F'], ['B', 'C', 'E']],
[['B', 'C', 'D'], ['A', 'E', 'F']],
[['B', 'C', 'F'], ['A', 'D', 'E']],
[['B', 'D', 'F'], ['A', 'C', 'E']],
[['C', 'D', 'E'], ['A', 'B', 'F']],
[['C', 'E', 'F'], ['A', 'B', 'D']]]
Or:
list(map(list,zip(l,l[::-1])))
[[['A', 'B', 'C'], ['D', 'E', 'F']],
[['A', 'B', 'D'], ['C', 'E', 'F']],
[['A', 'B', 'E'], ['C', 'D', 'F']],
[['A', 'B', 'F'], ['C', 'D', 'E']],
[['A', 'C', 'D'], ['B', 'E', 'F']],
[['A', 'C', 'E'], ['B', 'D', 'F']],
[['A', 'C', 'F'], ['B', 'D', 'E']],
[['A', 'D', 'E'], ['B', 'C', 'F']],
[['A', 'D', 'F'], ['B', 'C', 'E']],
[['A', 'E', 'F'], ['B', 'C', 'D']],
[['B', 'C', 'D'], ['A', 'E', 'F']],
[['B', 'C', 'E'], ['A', 'D', 'F']],
[['B', 'C', 'F'], ['A', 'D', 'E']],
[['B', 'D', 'E'], ['A', 'C', 'F']],
[['B', 'D', 'F'], ['A', 'C', 'E']],
[['B', 'E', 'F'], ['A', 'C', 'D']],
[['C', 'D', 'E'], ['A', 'B', 'F']],
[['C', 'D', 'F'], ['A', 'B', 'E']],
[['C', 'E', 'F'], ['A', 'B', 'D']],
[['D', 'E', 'F'], ['A', 'B', 'C']]]
for v in list(map(list,zip(l,l[::-1]))):
print(v)
[['A', 'B', 'C'], ['D', 'E', 'F']]
[['A', 'B', 'D'], ['C', 'E', 'F']]
[['A', 'B', 'E'], ['C', 'D', 'F']]
[['A', 'B', 'F'], ['C', 'D', 'E']]
[['A', 'C', 'D'], ['B', 'E', 'F']]
[['A', 'C', 'E'], ['B', 'D', 'F']]
[['A', 'C', 'F'], ['B', 'D', 'E']]
[['A', 'D', 'E'], ['B', 'C', 'F']]
[['A', 'D', 'F'], ['B', 'C', 'E']]
[['A', 'E', 'F'], ['B', 'C', 'D']]
[['B', 'C', 'D'], ['A', 'E', 'F']]
[['B', 'C', 'E'], ['A', 'D', 'F']]
[['B', 'C', 'F'], ['A', 'D', 'E']]
[['B', 'D', 'E'], ['A', 'C', 'F']]
[['B', 'D', 'F'], ['A', 'C', 'E']]
[['B', 'E', 'F'], ['A', 'C', 'D']]
[['C', 'D', 'E'], ['A', 'B', 'F']]
[['C', 'D', 'F'], ['A', 'B', 'E']]
[['C', 'E', 'F'], ['A', 'B', 'D']]
[['D', 'E', 'F'], ['A', 'B', 'C']]
the built-in itertools has a helper function for doing it.
itertools.combinations
see doc
itertools.combinations(iterable, r)
Return r length subsequences of elements from the input iterable.
Combinations are emitted in lexicographic sort order. So, if the input >iterable is sorted, the combination tuples will be produced in sorted order.
Elements are treated as unique based on their position, not on their value. So if the input elements are unique, there will be no repeat values in each combination.
Imagine a 3x3 grid:
[A, B, %]
[C, %, D]
[E, F, G]
The percentages % stand for empty spaces/positions.
The rows can be moved like beads on a string, such that the permutations for the configurations for the first row could be any one of:
[A, B, %] or [A, %, B] or [%, A, B]
Similarly for the second row. The third row contains no empty slots and so cannot change.
I am trying to produce all possible grids, given the possible permutations of each row.
The output should produce the following grids:
[A, B, %] [A, B, %] [A, B, %]
[C, D, %] [C, %, D] [%, C, D]
[E, F, G] [E, F, G] [E, F, G]
[A, %, B] [A, %, B] [A, %, B]
[C, D, %] [C, %, D] [%, C, D]
[E, F, G] [E, F, G] [E, F, G]
[%, A, B] [%, A, B] [%, A, B]
[C, D, %] [C, %, D] [%, C, D]
[E, F, G] [E, F, G] [E, F, G]
I have tried a method of looking through each row and shifting the space left and right, then generating new grids off that and recursing. I keep all grids in a set and ensure I only produce positions which haven't already been examined to prevent infinite recursion.
However, my algorithm seems to be horrendously inefficient (~1s per permutation!!) and doesn't look very nice either. I was wondering if there was an eloquent way of doing this? In python in particular.
I have some vague ideas but I'm sure there is a way of doing this which is short and simple which I'm overlooking.
EDIT: 3x3 is just an example. Grid could be of any size and it's really the row combinations which matter. For example:
[A, %, C]
[D, E, %, G]
[H, I]
is also a valid grid.
EDIT 2: The letters must maintain their order. For example [A, %, B] != [B, %, A] and [B, A, %] isn't valid
First you have to get all desired permutations for each line. Then you calculate the cross product of all lines.
The permutations of a line can be simple calculated by having the letters [A,B,%] and varying the starting index:
import itertools
# Example: line = ['A','B','%']
def line_permutations(line):
if '%' not in line:
return [line]
line.remove('%') # use copy.copy if you don't want to modify your matrix here
return (line[:i] + ['%'] + line[i:] for i in range(len(line) + 1))
The cross product is easiest to achieve using itertools.product
matrix = [['A','B','%'], ['C', '%', 'D'], ['E', 'F', 'G']]
permutations = itertools.product(*[line_permutations(line) for line in matrix])
for p in permutations:
print(p)
This solution is optimal in memory and CPU requirements, because permutations are never recomputed.
Example output:
(['%', 'A', 'B'], ['%', 'C', 'D'], ['E', 'F', 'G'])
(['%', 'A', 'B'], ['C', '%', 'D'], ['E', 'F', 'G'])
(['%', 'A', 'B'], ['C', 'D', '%'], ['E', 'F', 'G'])
(['A', '%', 'B'], ['%', 'C', 'D'], ['E', 'F', 'G'])
(['A', '%', 'B'], ['C', '%', 'D'], ['E', 'F', 'G'])
(['A', '%', 'B'], ['C', 'D', '%'], ['E', 'F', 'G'])
(['A', 'B', '%'], ['%', 'C', 'D'], ['E', 'F', 'G'])
(['A', 'B', '%'], ['C', '%', 'D'], ['E', 'F', 'G'])
(['A', 'B', '%'], ['C', 'D', '%'], ['E', 'F', 'G'])
Define a function called cycle
>>> def cycle(lst):
while True:
lst=lst[1:]+lst[0:1] if '%' in lst else lst
yield lst
Given an iterator, this will generate and return a cyclic left shift.
Now you have to pass each of the rows in the grid to the cycle
generator for the total iteration matching the length of the row
Now use itertools.product to find all combinations of the generated
row cyclic combinations.
In case there is no empty slot, no cycle permutation is generated
The final result is as follows
>>> for g in list(itertools.product(*[[x for (x,y) in zip(cycle(row),
range(0,len(row) if '%' in row else 1))] for row in grid])):
for r in g:
print r
print "="*10
For your Grid, this will generate
['B', '%', 'A']
['%', 'D', 'C']
['E', 'F', 'G']
===============
['B', '%', 'A']
['D', 'C', '%']
['E', 'F', 'G']
===============
['B', '%', 'A']
['C', '%', 'D']
['E', 'F', 'G']
===============
['%', 'A', 'B']
['%', 'D', 'C']
['E', 'F', 'G']
===============
['%', 'A', 'B']
['D', 'C', '%']
['E', 'F', 'G']
===============
['%', 'A', 'B']
['C', '%', 'D']
['E', 'F', 'G']
===============
['A', 'B', '%']
['%', 'D', 'C']
['E', 'F', 'G']
===============
['A', 'B', '%']
['D', 'C', '%']
['E', 'F', 'G']
===============
['A', 'B', '%']
['C', '%', 'D']
['E', 'F', 'G']
===============
A naive implementation:
g=[['A', 'B', '%'],
['C', '%', 'D'],
['E', 'F', 'G']]
from collections import deque
from itertools import product
def rotations(it):
d = deque(it,len(it))
for i in xrange(len(it)):
d.rotate(1)
yield list(d)
for i in product(*[rotations(x) if '%' in x else [x] for x in g]):
print i
gives:
(['%', 'A', 'B'], ['D', 'C', '%'], ['E', 'F', 'G'])
(['%', 'A', 'B'], ['%', 'D', 'C'], ['E', 'F', 'G'])
(['%', 'A', 'B'], ['C', '%', 'D'], ['E', 'F', 'G'])
(['B', '%', 'A'], ['D', 'C', '%'], ['E', 'F', 'G'])
(['B', '%', 'A'], ['%', 'D', 'C'], ['E', 'F', 'G'])
(['B', '%', 'A'], ['C', '%', 'D'], ['E', 'F', 'G'])
(['A', 'B', '%'], ['D', 'C', '%'], ['E', 'F', 'G'])
(['A', 'B', '%'], ['%', 'D', 'C'], ['E', 'F', 'G'])
(['A', 'B', '%'], ['C', '%', 'D'], ['E', 'F', 'G'])
Here it is. Note that on one side this approach is less clean, but it allows you to compute the permutations of # len(matrix[0])-1 only once and use them as templates for the output.
from itertools import permutations,product
def charPermutation(matrix):
permutation_list=list(permutations(["%%"]+["%s"]*(len(matrix[0])-1))) #Compute once, use infinitely
perms={i:[] for i in range(len(matrix))}
for it,line in enumerate(matrix):
chars=list(set(line)-set(["%"]))
if sorted(line)==sorted(chars):
perms[it]+=["".join([str(i) for i in line])]
else:
for p in permutation_list:
perms[it]+=["".join(["".join(p) % tuple(chars)])]
perms[it]=list(set(perms[it]))
return product(*[[list(k) for k in i] for i in perms.values()])
g=[
["A", "B", "%"],
["C", "%", "D"],
["E", "F", "G"]]
for x in charPermutation(g):
print [i for i in x]
[['A', '%', 'B'], ['C', 'D', '%'], ['E', 'F', 'G']]
[['A', '%', 'B'], ['%', 'C', 'D'], ['E', 'F', 'G']]
[['A', '%', 'B'], ['C', '%', 'D'], ['E', 'F', 'G']]
[['%', 'A', 'B'], ['C', 'D', '%'], ['E', 'F', 'G']]
[['%', 'A', 'B'], ['%', 'C', 'D'], ['E', 'F', 'G']]
[['%', 'A', 'B'], ['C', '%', 'D'], ['E', 'F', 'G']]
[['A', 'B', '%'], ['C', 'D', '%'], ['E', 'F', 'G']]
[['A', 'B', '%'], ['%', 'C', 'D'], ['E', 'F', 'G']]
[['A', 'B', '%'], ['C', '%', 'D'], ['E', 'F', 'G']]