Tensorflow subclass keras with mulitple output shape - python

class MyModel(tf.keras.Model):
def __init__(self):
super().__init__()
self.dense = tf.keras.layers.Dense(1)
self.build(input_shape=[None, 1])
def call(self, inputs, **kwargs):
return self.dense(inputs)
MyModel().summary()
The model plot does not work as well:
tf.keras.utils.plot_model(model, to_file='model_1.png', show_shapes=True)
I tried this code on several tensorflow versions 2.3.0, 2.3.1, and 2.4.1 and every time the output shape is multiple! Is it a bug? Any fix?

It's not the bug. Generally, we can't assume anything about the structure of a subclassed Model. That's why you can't get output shape in .summary() in model Subclasses API same as Functional or Sequential API like.
But here is a workaround to achieve this. You can achieve this as the following method.
import tensorflow as tf
class MyModel(tf.keras.Model):
def __init__(self):
super().__init__()
self.dense = tf.keras.layers.Dense(1)
self.build(input_shape=[None, 1])
def call(self, inputs, **kwargs):
return self.dense(inputs)
def build_graph(self):
x = tf.keras.layers.Input(shape=(1))
return tf.keras.Model(inputs=[x], outputs=self.call(x))
MyModel().build_graph().summary()
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) [(None, 1)] 0
_________________________________________________________________
dense_3 (Dense) (None, 1) 2
=================================================================
Total params: 2
Trainable params: 2
Non-trainable params: 0
_________________________________________________________________
Same as plotting the model.
tf.keras.utils.plot_model(
MyModel().build_graph()
)

Related

How to get the mean of each image in a batch?

I have a batch of images thus the shape [None, 256, 256, 3] (the batch is set to none for practical purposes on use).
I am trying to implement a layer that calculates the average of each of the of images or frames in the batch to result the shape [None, 1] or [None, 1, 1, 1]. I have checked to use tf.keras.layers.Average, but apparently it calculates across the batch, returning a tensor of the same shape.
In hindsight I tried implementing the following custom layer:
class ElementMean(tf.keras.layers.Layer):
def __init__(self, **kwargs):
super(ElementMean, self).__init__(**kwargs)
def call(self, inputs):
tensors = []
for ii in range(inputs.shape[0] if inputs.shape[0] is not None else 1):
tensors.append(inputs[ii, ...])
return tf.keras.layers.Average()(tensors)
but when it is used:
import tensorflow as tf
x = tf.keras.Input([256, 256, 3], None)
y = ElementMean()(x)
model = tf.keras.Model(inputs=x, outputs=y)
model.compile()
model.summary()
tf.keras.utils.plot_model(
model,
show_shapes=True,
show_dtype=True,
show_layer_activations=True,
show_layer_names=True
)
I get the result:
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 256, 256, 3)] 0
element_mean (ElementMean) (256, 256, 3) 0
=================================================================
Total params: 0
Trainable params: 0
Non-trainable params: 0
_________________________________________________________________
Which makes it entirely wrong.
I also tried this change on the call:
def call(self, inputs):
tensors = []
for ii in range(inputs.shape[0] if inputs.shape[0] is not None else 1):
tensors.append(tf.reduce_mean(inputs[ii, ...]))
return tf.convert_to_tensor(tensors)
Which in turn results to:
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 256, 256, 3)] 0
element_mean (ElementMean) (1,) 0
=================================================================
Total params: 0
Trainable params: 0
Non-trainable params: 0
_________________________________________________________________
Which is also wrong.
You can play around with the axes like this:
import tensorflow as tf
class ElementMean(tf.keras.layers.Layer):
def __init__(self, **kwargs):
super(ElementMean, self).__init__(**kwargs)
def call(self, inputs):
return tf.reduce_mean(inputs, axis=(1, 2, 3), keepdims=True)
x = tf.keras.layers.Input([256, 256, 3], None)
em = ElementMean()
y = em(x)
model = tf.keras.Model(x, y)
model.summary()
Model: "model_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 256, 256, 3)] 0
element_mean_1 (ElementMean (None, 1, 1, 1) 0
)
=================================================================
Total params: 0
Trainable params: 0
Non-trainable params: 0
_________________________________________________________________
there is another way with segment means that allowed you to segment by heights, widths, and channels by remain its properties.
Sample: Width x Height x Channels, mean of each channel represent its data as mean value and you may summarize them later.
import os
from os.path import exists
import tensorflow as tf
import tensorflow_io as tfio
import matplotlib.pyplot as plt
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Variables
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
PATH = os.path.join('F:\\datasets\\downloads\\Actors\\train\\Pikaploy', '*.tif')
files = tf.data.Dataset.list_files(PATH)
list_file = []
for file in files.take(1):
image = tf.io.read_file( file )
image = tfio.experimental.image.decode_tiff(image, index=0)
image = tf.image.resize(image, [28,32], method='nearest')
list_file.append( image )
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Class / Definitions
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
class MyDenseLayer(tf.keras.layers.Layer):
def __init__(self, num_outputs):
super(MyDenseLayer, self).__init__()
self.num_outputs = num_outputs
def build(self, input_shape):
self.kernel = self.add_weight("kernel",
shape=[int(input_shape[-1]),
self.num_outputs])
def call(self, inputs):
temp = tf.transpose( tf.constant(tf.cast(list_file, dtype=tf.int64), shape=(28, 32, 4), dtype=tf.int64) )
temp = tf.transpose( temp )
mean = tf.constant( tf.math.segment_mean( temp, tf.ones([28], dtype=tf.int64)).numpy() )
temp = tf.image.rot90(temp)
mean = tf.constant( tf.math.segment_mean( tf.constant(mean[1::], shape=(32, 4)), tf.ones([32], dtype=tf.int64)).numpy() )
return mean[1::]
layer = MyDenseLayer(10)
sample = tf.transpose( tf.constant(tf.cast(list_file, dtype=tf.int64), shape=(28, 32, 4), dtype=tf.int64) )
data = layer(sample)
print( data )
Output: Rx Gx Bx Yx
tf.Tensor([[161 166 171 255]], shape=(1, 4), dtype=int64)

tensorflow.keras.Model inherit

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
class KerasSupervisedModelWrapper(keras.Model):
def __init__(self, batch_size, **kwargs):
super().__init__()
self.batch_size = batch_size
def summary(self, input_shape): # temporary fix for a bug
x = layers.Input(shape=input_shape)
model = keras.Model(inputs=[x], outputs=self.call(x))
return model.summary()
class ExampleModel(KerasSupervisedModelWrapper):
def __init__(self, batch_size):
super().__init__(batch_size)
self.conv1 = layers.Conv2D(32, kernel_size=(3, 3), activation='relu')
def call(self, x):
x = self.conv1(x)
return x
model = MyModel(15)
model.summary([28, 28, 1])
output:
Model: "model_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) [(None, 28, 28, 1)] 0
conv2d_2 (Conv2D) (None, 26, 26, 32) 320
=================================================================
Total params: 320
Trainable params: 320
Non-trainable params: 0
_________________________________________________________________
I'm writting a wrapper for keras model to pre-define some useful method and variables as above.
And I'd like to modify the wrapper to get some layers to compose model as the keras.Sequential does.
Therefore, I added Sequential method that assigns new call method as below.
class KerasSupervisedModelWrapper(keras.Model):
...(continue)...
#staticmethod
def Sequential(layers, **kwargs):
model = KerasSupervisedModelWrapper(**kwargs)
pipe = keras.Sequential(layers)
def call(self, x):
return pipe(x)
model.call = call
return model
However, it seems not working as I intended. Instead, it shows below error message.
model = KerasSupervisedModelWrapper.Sequential([
layers.Conv2D(32, kernel_size=(3, 3), activation="relu")
], batch_size=15)
model.summary((28, 28, 1))
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
/tmp/ipykernel_91471/2826773946.py in <module>
1 # model.build((None, 28, 28, 1))
2 # model.compile('adam', loss=keras.losses.SparseCategoricalCrossentropy(), metrics=['accuracy'])
----> 3 model.summary((28, 28, 1))
/tmp/ipykernel_91471/3696340317.py in summary(self, input_shape)
10 def summary(self, input_shape): # temporary fix for a bug
11 x = layers.Input(shape=input_shape)
---> 12 model = keras.Model(inputs=[x], outputs=self.call(x))
13 return model.summary()
14
TypeError: call() missing 1 required positional argument: 'x'
What can I do for the wrapper to get keras.Sequential model while usuing other properties?
You could try something like this:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
class KerasSupervisedModelWrapper(keras.Model):
def __init__(self, batch_size, **kwargs):
super().__init__()
self.batch_size = batch_size
def summary(self, input_shape): # temporary fix for a bug
x = layers.Input(shape=input_shape)
model = keras.Model(inputs=[x], outputs=self.call(x))
return model.summary()
#staticmethod
def Sequential(layers, **kwargs):
model = KerasSupervisedModelWrapper(**kwargs)
pipe = keras.Sequential(layers)
model.call = pipe
return model
class ExampleModel(KerasSupervisedModelWrapper):
def __init__(self, batch_size):
super().__init__(batch_size)
self.conv1 = layers.Conv2D(32, kernel_size=(3, 3), activation='relu')
def call(self, x):
x = self.conv1(x)
return x
model = ExampleModel(15)
model.summary([28, 28, 1])
model = KerasSupervisedModelWrapper.Sequential([
layers.Conv2D(32, kernel_size=(3, 3), activation="relu")
], batch_size=15)
model.summary((28, 28, 1))
print(model(tf.random.normal((1, 28, 28, 1))).shape)
Model: "model_9"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_14 (InputLayer) [(None, 28, 28, 1)] 0
conv2d_17 (Conv2D) (None, 26, 26, 32) 320
=================================================================
Total params: 320
Trainable params: 320
Non-trainable params: 0
_________________________________________________________________
Model: "model_10"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_15 (InputLayer) [(None, 28, 28, 1)] 0
sequential_8 (Sequential) (None, 26, 26, 32) 320
=================================================================
Total params: 320
Trainable params: 320
Non-trainable params: 0
_________________________________________________________________
(1, 26, 26, 32)

Saving Keras models with Custom Layers

I am trying to save a Keras model in a H5 file. The Keras model has a custom layer.
When I try to restore the model, I get the following error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-5-0fbff9b56a9d> in <module>()
1 model.save('model.h5')
2 del model
----> 3 model = tf.keras.models.load_model('model.h5')
8 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/utils/generic_utils.py in class_and_config_for_serialized_keras_object(config, module_objects, custom_objects, printable_module_name)
319 cls = get_registered_object(class_name, custom_objects, module_objects)
320 if cls is None:
--> 321 raise ValueError('Unknown ' + printable_module_name + ': ' + class_name)
322
323 cls_config = config['config']
ValueError: Unknown layer: CustomLayer
Could you please tell me how I am supposed to save and load weights of all the custom Keras layers too? (Also, there was no warning when saving, will it be possible to load models from H5 files which I have already saved but can't load back now?)
Here is the minimal working code sample (MCVE) for this error, as well as the full expanded message: Google Colab Notebook
Just for completeness, this is the code I used to make my custom layer.
get_config and from_config are both working fine.
class CustomLayer(tf.keras.layers.Layer):
def __init__(self, k, name=None):
super(CustomLayer, self).__init__(name=name)
self.k = k
def get_config(self):
return {'k': self.k}
def call(self, input):
return tf.multiply(input, 2)
model = tf.keras.models.Sequential([
tf.keras.Input(name='input_layer', shape=(10,)),
CustomLayer(10, name='custom_layer'),
tf.keras.layers.Dense(1, activation='sigmoid', name='output_layer')
])
model.save('model.h5')
model = tf.keras.models.load_model('model.h5')
Correction number 1 is to use Custom_Objects while loading the Saved Model i.e., replace the code,
new_model = tf.keras.models.load_model('model.h5')
with
new_model = tf.keras.models.load_model('model.h5', custom_objects={'CustomLayer': CustomLayer})
Since we are using Custom Layers to build the Model and before Saving it, we should use Custom Objects while Loading it.
Correction number 2 is to add **kwargs in the __init__ function of the Custom Layer like
def __init__(self, k, name=None, **kwargs):
super(CustomLayer, self).__init__(name=name)
self.k = k
super(CustomLayer, self).__init__(**kwargs)
Complete working code is shown below:
import tensorflow as tf
class CustomLayer(tf.keras.layers.Layer):
def __init__(self, k, name=None, **kwargs):
super(CustomLayer, self).__init__(name=name)
self.k = k
super(CustomLayer, self).__init__(**kwargs)
def get_config(self):
config = super(CustomLayer, self).get_config()
config.update({"k": self.k})
return config
def call(self, input):
return tf.multiply(input, 2)
model = tf.keras.models.Sequential([
tf.keras.Input(name='input_layer', shape=(10,)),
CustomLayer(10, name='custom_layer'),
tf.keras.layers.Dense(1, activation='sigmoid', name='output_layer')
])
tf.keras.models.save_model(model, 'model.h5')
new_model = tf.keras.models.load_model('model.h5', custom_objects={'CustomLayer': CustomLayer})
print(new_model.summary())
Output of the above code is shown below:
WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
custom_layer_1 (CustomLayer) (None, 10) 0
_________________________________________________________________
output_layer (Dense) (None, 1) 11
=================================================================
Total params: 11
Trainable params: 11
Non-trainable params: 0
Hope this helps. Happy Learning!
You can provide manually the mapping custom_objects in the load_model method as mentioned in the answer https://stackoverflow.com/a/62326857/8056572 but it can be tedious when you have a lot of custom layers (or any custom callables defined. e.g. metrics, losses, optimizers, ...).
Tensorflow provides a utils function to do it automatically: tf.keras.utils.register_keras_serializable
You have to update your CustomLayer as follows:
import tensorflow as tf
#tf.keras.utils.register_keras_serializable()
class CustomLayer(tf.keras.layers.Layer):
def __init__(self, k, **kwargs):
self.k = k
super(CustomLayer, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["k"] = self.k
return config
def call(self, input):
return tf.multiply(input, 2)
Here is the complete working code:
import tensorflow as tf
#tf.keras.utils.register_keras_serializable()
class CustomLayer(tf.keras.layers.Layer):
def __init__(self, k, **kwargs):
self.k = k
super(CustomLayer, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["k"] = self.k
return config
def call(self, input):
return tf.multiply(input, 2)
def main():
model = tf.keras.models.Sequential(
[
tf.keras.Input(name='input_layer', shape=(10,)),
CustomLayer(10, name='custom_layer'),
tf.keras.layers.Dense(1, activation='sigmoid', name='output_layer')
]
)
print("SUMMARY OF THE MODEL CREATED")
print("-" * 60)
print(model.summary())
model.save('model.h5')
del model
print()
print()
model = tf.keras.models.load_model('model.h5')
print("SUMMARY OF THE MODEL LOADED")
print("-" * 60)
print(model.summary())
if __name__ == "__main__":
main()
And the corresponding output:
SUMMARY OF THE MODEL CREATED
------------------------------------------------------------
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
custom_layer (CustomLayer) (None, 10) 0
_________________________________________________________________
output_layer (Dense) (None, 1) 11
=================================================================
Total params: 11
Trainable params: 11
Non-trainable params: 0
_________________________________________________________________
None
WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.
SUMMARY OF THE MODEL LOADED
------------------------------------------------------------
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
custom_layer (CustomLayer) (None, 10) 0
_________________________________________________________________
output_layer (Dense) (None, 1) 11
=================================================================
Total params: 11
Trainable params: 11
Non-trainable params: 0
_________________________________________________________________
None

Get batch size in Keras custom layer and use tensorflow operations (tf.Variable)

I would like to write a Keras custom layer with tensorflow operations, that require the batch size as input. Apparently I'm struggling in every nook and cranny.
Suppose a very simple layer:
(1) get batch size
(2) create a tf.Variable (let's call it my_var) based on the batch size, then some tf.random ops to alter my_var
(3) finally, return input multiplied with my_var
What I tried so far:
class TestLayer(Layer):
def __init__(self, **kwargs):
self.num_batch = None
self.my_var = None
super(TestLayer, self).__init__(**kwargs)
def build(self, input_shape):
self.batch_size = input_shape[0]
var_init = tf.ones(self.batch_size, dtype = x.dtype)
self.my_var = tf.Variable(var_init, trainable=False, validate_shape=False)
# some tensorflow random operations to alter self.my_var
super(TestLayer, self).build(input_shape) # Be sure to call this at the end
def call(self, x):
return self.my_var * x
def compute_output_shape(self, input_shape):
return input_shape
Now creating a very simple model:
# define model
input_layer = Input(shape = (2, 2, 3), name = 'input_layer')
x = TestLayer()(input_layer)
# connect model
my_mod = Model(inputs = input_layer, outputs = x)
my_mod.summary()
Unfortunately, what ever I try/change in the code, I get multiple errors, most of them with very cryptical tracebacks (ValueError: Cannot convert a partially known TensorShape to a Tensor: or ValueError: None values not supported.).
Any general suggestions? Thanks in advance.
You need to specify batch size if you want to create a variable of size batch_size. Additionally, if you want to print a summary the tf.Variable must have a fixed shape (validatate_shape=True) and it must be broadcastable to be successfully multiplied by the input:
import tensorflow as tf
from tensorflow.keras.layers import Layer, Input
from tensorflow.keras.models import Model
class TestLayer(Layer):
def __init__(self, **kwargs):
self.num_batch = None
self.my_var = None
super(TestLayer, self).__init__(**kwargs)
def build(self, input_shape):
self.batch_size = input_shape[0]
var_init = tf.ones(self.batch_size, dtype=tf.float32)[..., None, None, None]
self.my_var = tf.Variable(var_init, trainable=False, validate_shape=True)
super(TestLayer, self).build(input_shape) # Be sure to call this at the end
def call(self, x):
res = self.my_var * x
return res
def compute_output_shape(self, input_shape):
return input_shape
# define model
input_layer = Input(shape=(2, 2, 3), name='input_layer', batch_size=10)
x = TestLayer()(input_layer)
# connect model
my_mod = Model(inputs=input_layer, outputs=x)
my_mod.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_layer (InputLayer) (10, 2, 2, 3) 0
_________________________________________________________________
test_layer (TestLayer) (10, 2, 2, 3) 0
=================================================================
Total params: 0
Trainable params: 0
Non-trainable params: 0

Adversarial Discriminative Domain Adaptation (ADDA)

I am trying to implement ADDA in Keras. Here is my code :
class ADDA_Images(object):
def __init__(self,modelInput):
self.img_rows = 28
self.img_cols = 28
self.channels = 3
self.img_shape = (self.img_rows, self.img_cols, self.channels)
optimizer = opt.Adam(0.001)
self.source_generator = self.build_generator(modelInput)
self.target_generator = self.build_generator(modelInput)
outputFeatureExtraction = layers.Input(shape = self.target_generator.output_shape[1:])
self.source_classificator = self.build_classifier(outputFeatureExtraction)
self.discriminator_model = self.build_discriminator(outputFeatureExtraction)
self.discriminator_model.compile(optimizer, loss='binary_crossentropy', metrics=['acc'])
self.discriminator_model.name='disk'
input = layers.Input(shape=self.img_shape)
fe_rep = self.source_generator(input)
cl = self.source_classificator(fe_rep)
self.source_model = Model(input,cl)
self.source_model.compile(optimizer, loss='categorical_crossentropy', metrics=['acc'])
input = layers.Input(shape=self.img_shape)
fe_rep = self.target_generator(input)
cl = self.source_classificator(fe_rep)
self.target_model = Model(input, cl)
self.target_model.compile(optimizer, loss='categorical_crossentropy', metrics=['acc'])
self.combined_model = Sequential()
self.combined_model.add(self.target_generator)
self.combined_model.add(self.discriminator_model)
self.combined_model.get_layer('disk').trainable = False
self.combined_model.compile(optimizer, loss='binary_crossentropy', metrics=['acc'])
print('Source model')
self.source_model.summary()
print('Target model')
self.target_model.summary()
print('Discriminator')
self.discriminator_model.summary()
print('Combined model')
self.combined_model.summary()
def build_generator(self,modelInput):
gen = layers.Conv2D(filters=20, kernel_size=5, padding='valid')(modelInput)
gen = layers.MaxPooling2D(pool_size=2, strides=2)(gen)
gen = layers.Conv2D(filters=50, kernel_size=5, padding='valid')(gen)
gen = layers.MaxPooling2D(pool_size=2, strides=2)(gen)
gen = layers.Flatten()(gen)
model = Model(modelInput,gen)
print('Generator summary')
model.summary()
return model
def build_classifier(self,modelInput):
cl = layers.Dense(3072, activation='relu')(modelInput)
cl = layers.Dense(2048, activation='relu')(cl)
cl = layers.Dense(10, activation='softmax')(cl)
model = Model(modelInput,cl)
print('Classificatior summary')
model.summary()
return model
def build_discriminator(self,modelInput):
disc = layers.Dense(500, activation='relu')(modelInput)
disc = layers.Dense(500, activation='relu')(disc)
disc = layers.Dense(2, activation='softmax')(disc)
model = Model(modelInput,disc)
print('Discriminator summary')
model.summary()
return model
But, it seems that target_generator is not connected to target model. I loaded target model from pretrained source model and then train discriminator and combined model in ADDA way. But, target model is not changed. It has same predictions (accs and losses) as source model all the time.
Here is summary of models :
Source model
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) (None, 28, 28, 3) 0
_________________________________________________________________
model_1 (Model) (None, 800) 26570
_________________________________________________________________
model_3 (Model) (None, 10) 8774666
=================================================================
Total params: 8,801,236
Trainable params: 8,801,236
Non-trainable params: 0
_________________________________________________________________
Target model
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_3 (InputLayer) (None, 28, 28, 3) 0
_________________________________________________________________
model_2 (Model) (None, 800) 26570
_________________________________________________________________
model_3 (Model) (None, 10) 8774666
=================================================================
Total params: 8,801,236
Trainable params: 8,801,236
Non-trainable params: 0
_________________________________________________________________
Discriminator
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 800) 0
_________________________________________________________________
dense_4 (Dense) (None, 500) 400500
_________________________________________________________________
dense_5 (Dense) (None, 500) 250500
_________________________________________________________________
dense_6 (Dense) (None, 2) 1002
=================================================================
Total params: 1,304,004
Trainable params: 652,002
Non-trainable params: 652,002
_________________________________________________________________
Combined model
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
model_2 (Model) (None, 800) 26570
_________________________________________________________________
disk (Model) (None, 2) 652002
=================================================================
Total params: 678,572
Trainable params: 26,570
Non-trainable params: 652,002
I validated outputs from target_model's second layer (it should be target_generator by specification) and it is not same as output of target_generator (on same input). So, it seems that those two models are not connected as reported in summaries.
Can someone help me to figure out what is wrong?
I am using Keras 2, Tensorflow backend.
Problem was in the training part - I loaded into the target model pretrained source model (load_model) and that made problems because it changed reference to generator model. Instead of load_model, I should use load_weights
So, loading pretrained model which works and not make problems with references is :
source_model = load_model(modelName)
target_model.set_weights(source_model.get_weights())

Categories

Resources