Broadcast an array by N dimensions - python

I have two arrays,
import numpy as np
a = np.ones(100)
b = np.ones(1000).reshape(100, 1, 10)
dims_difference = b.ndim - a.ndim
Assume that b has more dimensions than a, but not necessarily two. I want to extend a to make sure the operation a + b works as intended (over the first axis). When I know that it is two, I can do that by hard-coding:
a = a[:, None, None]
How can I do this in a general way when the number of dimensions that need to be added at the and are contained in dims_difference?

One - not so elegant - solution based on #hpaulj's comment is the following:
for i in np.arange(dims_difference)+1:
a = np.expand_dims(a, i)

Related

Python - matrix multiplication

i have an array y with shape (n,), I want to compute the inner product matrix, which is a n * n matrix
However, when I tried to do it in Python
np.dot(y , y)
I got the answer n, this is not what I am looking for
I have also tried:
np.dot(np.transpose(y),y)
np.dot(y, np.transpose(y))
I always get the same answer n
I think you are looking for:
np.multiply.outer(y,y)
or equally:
y = y[None,:]
y.T#y
example:
y = np.array([1,2,3])[None,:]
output:
#[[1 2 3]
# [2 4 6]
# [3 6 9]]
You can try to reshape y from shape (70,) to (70,1) before multiplying the 2 matrices.
# Reshape
y = y.reshape(70,1)
# Either below code would work
y*y.T
np.matmul(y,y.T)
One-liner?
np.dot(a[:, None], a[None, :])
transpose doesn't work on 1-D arrays, because you need atleast two axes to 'swap' them. This solution adds a new axis to the array; in the first argument, it looks like a column vector and has two axes; in the second argument it still looks like a row vector but has two axes.
Looks like what you need is the # matrix multiplication operator. dot method is only to compute dot product between vectors, what you want is matrix multiplication.
>>> a = np.random.rand(70, 1)
>>> (a # a.T).shape
(70, 70)
UPDATE:
Above answer is incorrect. dot does the same things if the array is 2D. See the docs here.
np.dot computes the dot product of two arrays. Specifically,
If both a and b are 1-D arrays, it is inner product of vectors (without complex conjugation).
If both a and b are 2-D arrays, it is matrix multiplication, but using matmul or a # b is preferred.
Simplest way to do what you want is to convert the vector to a matrix first using np.matrix and then using the #. Although, dot can also be used # is better because conventionally dot is used for vectors and # for matrices.
>>> a = np.random.rand(70)
(70,)
>>> a.shape
>>> a = np.matrix(a).T
>>> a.shape
(70, 1)
>>> (a # a.T).shape
(70, 70)

Selecting last column of a Numpy array while maintaining then umber of dimensions? [duplicate]

I'm using numpy and want to index a row without losing the dimension information.
import numpy as np
X = np.zeros((100,10))
X.shape # >> (100, 10)
xslice = X[10,:]
xslice.shape # >> (10,)
In this example xslice is now 1 dimension, but I want it to be (1,10).
In R, I would use X[10,:,drop=F]. Is there something similar in numpy. I couldn't find it in the documentation and didn't see a similar question asked.
Thanks!
Another solution is to do
X[[10],:]
or
I = array([10])
X[I,:]
The dimensionality of an array is preserved when indexing is performed by a list (or an array) of indexes. This is nice because it leaves you with the choice between keeping the dimension and squeezing.
It's probably easiest to do x[None, 10, :] or equivalently (but more readable) x[np.newaxis, 10, :]. None or np.newaxis increases the dimension of the array by 1, so that you're back to the original after the slicing eliminates a dimension.
As far as why it's not the default, personally, I find that constantly having arrays with singleton dimensions gets annoying very quickly. I'd guess the numpy devs felt the same way.
Also, numpy handle broadcasting arrays very well, so there's usually little reason to retain the dimension of the array the slice came from. If you did, then things like:
a = np.zeros((100,100,10))
b = np.zeros(100,10)
a[0,:,:] = b
either wouldn't work or would be much more difficult to implement.
(Or at least that's my guess at the numpy dev's reasoning behind dropping dimension info when slicing)
I found a few reasonable solutions.
1) use numpy.take(X,[10],0)
2) use this strange indexing X[10:11:, :]
Ideally, this should be the default. I never understood why dimensions are ever dropped. But that's a discussion for numpy...
Here's an alternative I like better. Instead of indexing with a single number, index with a range. That is, use X[10:11,:]. (Note that 10:11 does not include 11).
import numpy as np
X = np.zeros((100,10))
X.shape # >> (100, 10)
xslice = X[10:11,:]
xslice.shape # >> (1,10)
This makes it easy to understand with more dimensions too, no None juggling and figuring out which axis to use which index. Also no need to do extra bookkeeping regarding array size, just i:i+1 for any i that you would have used in regular indexing.
b = np.ones((2, 3, 4))
b.shape # >> (2, 3, 4)
b[1:2,:,:].shape # >> (1, 3, 4)
b[:, 2:3, :].shape . # >> (2, 1, 4)
To add to the solution involving indexing by lists or arrays by gnebehay, it is also possible to use tuples:
X[(10,),:]
This is especially annoying if you're indexing by an array that might be length 1 at runtime. For that case, there's np.ix_:
some_array[np.ix_(row_index,column_index)]
I've been using np.reshape to achieve the same as shown below
import numpy as np
X = np.zeros((100,10))
X.shape # >> (100, 10)
xslice = X[10,:].reshape(1, -1)
xslice.shape # >> (1, 10)

Want to define an ndarray in numpy elementwise

I have 2 2d numpy arrays, A with shape (i,j) and B (i, k) where j >> k. I want to define a new 3d array C such that each element in C is the broadcasted element wise product of each column in A with the whole matrix B. In other words as a normal python loop I would do it like this
for x in range(j):
C[x] = A[:,x]*B
However j is very large in this case and it would benefit me a lot if I am able to use Numpy's functionality to maybe define an ndarray C elementwise like in my loop above.
Thank you for your help
You can use broadcasting like this:
a.T[:, :, None] * b
Example:
import numpy as np
np.random.seed(444)
i, j, k = 2, 10, 3
a = np.random.randn(i, j)
b = np.random.randn(i, k)
c = a.T[:, :, None] * b
print(c.shape)
# (10, 2, 3)
Transposing stems from the fact that you want to internally operate for each column in a, and [:, :, None] expands the dimensionality to enable broadcasting, as explained in NumPy's broadcasting rules.

Normalize 2d arrays

Consider a square matrix containing positive numbers, given as a 2d numpy array A of shape ((m,m)). I would like to build a new array B that has the same shape with entries
B[i,j] = A[i,j] / (np.sqrt(A[i,i]) * np.sqrt(A[j,j]))
An obvious solution is to loop over all (i,j) but I'm wondering if there is a faster way.
Two approaches leveraging broadcasting could be suggested.
Approach #1 :
d = np.sqrt(np.diag(A))
B = A/d[:,None]
B /= d
Approach #2 :
B = A/(d[:,None]*d) # d same as used in Approach #1
Approach #1 has lesser memory overhead and as such I think would be faster.
You can normalize each row of your array by the main diagonal leveraging broadcasting using
b = np.sqrt(np.diag(a))
a / b[:, None]
Also, you can normalize each column using
a / b[None, :]
To do both, as your question seems to ask, using
a / (b[:, None] * b[None, :])
If you want to prevent the creation of intermediate arrays and do the operation in place, you can use
a /= b[:, None]
a /= b[None, :]

numpy broadcast from first dimension

In NumPy, is there an easy way to broadcast two arrays of dimensions e.g. (x,y) and (x,y,z)? NumPy broadcasting typically matches dimensions from the last dimension, so usual broadcasting will not work (it would require the first array to have dimension (y,z)).
Background: I'm working with images, some of which are RGB (shape (h,w,3)) and some of which are grayscale (shape (h,w)). I generate alpha masks of shape (h,w), and I want to apply the mask to the image via mask * im. This doesn't work because of the above-mentioned problem, so I end up having to do e.g.
mask = mask.reshape(mask.shape + (1,) * (len(im.shape) - len(mask.shape)))
which is ugly. Other parts of the code do operations with vectors and matrices, which also run into the same issue: it fails trying to execute m + v where m has shape (x,y) and v has shape (x,). It's possible to use e.g. atleast_3d, but then I have to remember how many dimensions I actually wanted.
how about use transpose:
(a.T + c.T).T
numpy functions often have blocks of code that check dimensions, reshape arrays into compatible shapes, all before getting down to the core business of adding or multiplying. They may reshape the output to match the inputs. So there is nothing wrong with rolling your own that do similar manipulations.
Don't offhand dismiss the idea of rotating the variable 3 dimension to the start of the dimensions. Doing so takes advantage of the fact that numpy automatically adds dimensions at the start.
For element by element multiplication, einsum is quite powerful.
np.einsum('ij...,ij...->ij...',im,mask)
will handle cases where im and mask are any mix of 2 or 3 dimensions (assuming the 1st 2 are always compatible. Unfortunately this does not generalize to addition or other operations.
A while back I simulated einsum with a pure Python version. For that I used np.lib.stride_tricks.as_strided and np.nditer. Look into those functions if you want more power in mixing and matching dimensions.
as another angle: if you encounter this pattern frequently, it may be useful to create a utility function to enforce right-broadcasting:
def right_broadcasting(arr, target):
return arr.reshape(arr.shape + (1,) * (target.ndim - arr.ndim))
Although if there are only two types of input (already having 3 dims or having only 2), id say the single if statement is preferable.
Indexing with np.newaxis creates a new axis in that place. Ie
xyz = #some 3d array
xy = #some 2d array
xyz_sum = xyz + xy[:,:,np.newaxis]
or
xyz_sum = xyz + xy[:,:,None]
Indexing in this way creates an axis with shape 1 and stride 0 in this location.
Why not just decorate-process-undecorate:
def flipflop(func):
def wrapper(a, mask):
if len(a.shape) == 3:
mask = mask[..., None]
b = func(a, mask)
return np.squeeze(b)
return wrapper
#flipflop
def f(x, mask):
return x * mask
Then
>>> N = 12
>>> gs = np.random.random((N, N))
>>> rgb = np.random.random((N, N, 3))
>>>
>>> mask = np.ones((N, N))
>>>
>>> f(gs, mask).shape
(12, 12)
>>> f(rgb, mask).shape
(12, 12, 3)
Easy, you just add a singleton dimension at the end of the smaller array. For example, if xyz_array has shape (x,y,z) and xy_array has shape (x,y), you can do
xyz_array + np.expand_dims(xy_array, xy_array.ndim)

Categories

Resources