How do you aggregate multiple columns from large DataFrame using pandas? - python

I am importing an excel worksheet using pandas and trying to remove any instance where there is a duplicate area measurement for a given Frame. The sheet I'm playing with looks vaguely like the table below wherein there are n number of files, a measured area from each frame of an individual file, and the Frame Number that corresponds to each area measurement.
Filename.0
Area.0
Frame.0
Filename.1
Area.1
Frame.1
...
Filename.n
Area.n
Filename.n
Exp327_Date_File_0
600
1
Exp327_Date_File_1
830
1
...
Exp327_Date_File_n
700
1
Exp327_Date_File_0
270
2
Exp327_Date_File_1
730
1
...
Exp327_Date_File_n
600
2
Exp327_Date_File_0
230
3
Exp327_Date_File_1
630
2
...
Exp327_Date_File_n
500
3
Exp327_Date_File_0
200
4
Exp327_Date_File_1
530
3
...
Exp327_Date_File_n
400
4
NaN
NaN
NaN
Exp327_Date_File1
430
4
...
NaN
NaN
NaN
If I manually go through the excel worksheet and concatenate the filenames into just 3 unique columns containing my entire dataset like so:
Filename
Area
Frame
Exp327_Date_File_0
600
1
Exp327_Date_File_0
270
2
etc...
etc...
etc...
Exp327_Date_File_n
530
4
I have been able to successfully use pandas to remove the duplicates using the following:
df_1 = df.groupby(['Filename', 'Frame Number']).agg('Area': 'sum')
However, manually concatenating everything into this format isn't feasible when I have hundreds of File replicates and I will then have to separate everything back out into multiple column-sets (similar to how the data is presented in Table 1). How do I either (1) use pandas to create a new Dataframe with every 3 columns stacked on top of each other which I can then group and aggregate before breaking back up into individual sets of columns based on Filename or (2) loop through the multiple filenames and aggregate any Frames with multiple Areas? I have tried option 2:
(row, col) = df.shape #shape of the data frame the excel file was read into
for count in range(0,round(col/3)): #iterate through the data
aggregation_functions = {'Area.'+str(count):'sum'} #add Areas together
df_2.groupby(['Filename.'+str(count), 'Frame Number.'+str(count)]).agg(aggregation_functions)
However, this just returns the same DataFrame without any of the Areas summed together. Any help would be appreciated and please let me know if my question is unclear

Here is a way to achieve option (1):
import numpy as np
import pandas as pd
# sample data
df = pd.DataFrame({'Filename.0': ['Exp327_Date_File_0', 'Exp327_Date_File_0',
'Exp327_Date_File_0', 'Exp327_Date_File_0',
np.NaN],
'Area.0': [600, 270, 230, 200, np.NaN],
'Frame.0': [1, 2, 3, 4, np.NaN],
'Filename.1': ['Exp327_Date_File_1', 'Exp327_Date_File_1',
'Exp327_Date_File_1', 'Exp327_Date_File_1',
'Exp327_Date_File_1'],
'Area.1': [830, 730, 630, 530, 430],
'Frame.1': [1, 1, 2, 3, 4],
'Filename.2': ['Exp327_Date_File_2', 'Exp327_Date_File_2',
'Exp327_Date_File_2', 'Exp327_Date_File_2',
'Exp327_Date_File_2'],
'Area.2': [700, 600, 500, 400, np.NaN],
'Frame.2': [1, 2, 3, 4, np.NaN]})
# create list of sub-dataframes, each with 3 columns, partitioning the original dataframe
subframes = [df.iloc[:, j:(j + 3)] for j in np.arange(len(df.columns), step=3)]
# set column names to the same values for each subframe
for subframe in subframes:
subframe.columns = ['Filename', 'Area', 'Frame']
# concatenate the subframes
df_long = pd.concat(subframes)
df_long
Filename Area Frame
0 Exp327_Date_File_0 600.0 1.0
1 Exp327_Date_File_0 270.0 2.0
2 Exp327_Date_File_0 230.0 3.0
3 Exp327_Date_File_0 200.0 4.0
4 NaN NaN NaN
0 Exp327_Date_File_1 830.0 1.0
1 Exp327_Date_File_1 730.0 1.0
2 Exp327_Date_File_1 630.0 2.0
3 Exp327_Date_File_1 530.0 3.0
4 Exp327_Date_File_1 430.0 4.0
0 Exp327_Date_File_2 700.0 1.0
1 Exp327_Date_File_2 600.0 2.0
2 Exp327_Date_File_2 500.0 3.0
3 Exp327_Date_File_2 400.0 4.0
4 Exp327_Date_File_2 NaN NaN

Related

Python Map function deletes all data in column

I have a Pandas DataFrame with several columns.
One of these ('Code') is object-type but has missing data (NaN). Other data can be numbers or letters.
For the missing data, I want to do a map / set_index function in order to fill in the data.
Here is my code:
for row in df['Code']:
if pd.isnull(row) == True:
df['Code']= df['account'].map(df_2.set_index('AccountID')['AccountCode'])
else:
None
However, this code deletes all data from the entire columns.
This is the original (I mean to do the map function on the NaN values only!) :
0 23050178040
1 23050178040
2 23050178040
3 23050178106
4 23050178040
...
288 23050942326
289 23050942326
290 NaN
291 23050942858
292 NaN
Name: Code BU, Length: 293, dtype: object
And the result:
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
...
288 NaN
289 NaN
290 NaN
291 NaN
292 NaN
Name: Code BU, Length: 293, dtype: object
What is the issue here?
Instead all your code loop use Series.fillna:
df['Code']= df['Code'].fillna(df['account'].map(df_2.set_index('AccountID')['AccountCode']))

Using pandas to create rate of change in a variable

I have a pandas dataset that looks at the number of n cases of an instance over time.
I have sorted the dataset in ascending order from the first recorded date and have created a new column called 'change'.
I am unsure however how to take the data from column n and map it onto the 'change' column such that each cell in the 'change' column represents the difference from the previous day.
For example, if on day 334 there were n = 14000 and on day 335 there were n = 14500 cases, in that corresponding 'change' cell I would want it to say '500'.
I have been trying things out for the past couple of hours but to no avail so have come here for some help.
I know this is wordier than I would like, but if you need any clarification let me know.
import pandas as pd
df = pd.DataFrame({
'date': [1,2,3,4,5,6,7,8,9,10],
'cases': [100, 120, 129, 231, 243, 212, 375, 412, 440, 1]
})
df['change'] = df.cases.diff()
OUTPUT
date cases change
0 1 100 NaN
1 2 120 20.0
2 3 129 9.0
3 4 231 102.0
4 5 243 12.0
5 6 212 -31.0
6 7 375 163.0
7 8 412 37.0
8 9 440 28.0
9 10 1 -439.0

How to aggregate stats in one dataframe based on filtering values in another dataframe?

I have 2 dataframes. rdf is the reference dataframe I am trying to use to define the interval (top and bottom) to calculate an average between (all of the depths between this interval), but use ldf to actually run that calculation since it contains the values. rdf defines the top and bottom for each id number an average should be run for. There are multiple intervals for each id.
rdf is formatted as such:
ID Top Bottom
1 2010 3000
1 4300 4500
1 4550 5000
1 7100 7700
2 3200 4100
2 4120 4180
2 4300 5300
2 5500 5520
3 2300 2380
3 3200 4500
ldf is fromated as such:
ID Depth(ft) Value1 Value2 Value3
1 2000 45 .32 423
1 2000.5 43 .33 500
1 2001 40 .12 643
1 2001.5 28 .10 20
1 2002 40 .10 34
1 2002.5 23 .11 60
1 2003 34 .08 900
1 2003.5 54 .04 1002
2 2000 40 .28 560
2 2000 38 .25 654
...
3 2000 43 .30 343
I want to use rdf to define the top and bottom of the interval to calculate the average for Value1, Value2, and Value3. I would also like to have a count documented as well (not all of the values between the intervals necessarily exist, so it could be less than the difference of Bottom - Top). This will then modify rdf to make a new file:
new_rdf is formatted as such:
ID Top Bottom avgValue1 avgValue2 avgValue3 ThicknessCount(ft)
1 2010 3000 54 .14 456 74
1 4300 4500 23 .18 632 124
1 4550 5000 34 .24 780 111
1 7100 7700 54 .19 932 322
2 3200 4100 52 .32 134 532
2 4120 4180 16 .11 111 32
2 4300 5300 63 .29 872 873
2 5500 5520 33 .27 1111 9
3 2300 2380 63 .13 1442 32
3 3200 4500 37 .14 1839 87
I've been going back and forth on the best way to do this. I tried mimicking this time series example: Sum set of values from pandas dataframe within certain time frame
but it doesn't seem translatable:
import pandas as pd
Top = rdf['Top']
Bottom = rdf['Bottom']
Depths = ldf['DEPTH']
def get_depths(x):
n = ldf[(ldf['DEPTH']>x['top']) & (ldf['DEPTH']<x['bottom'])]
return n['ID'].values[0],n['DEPTH'].sum()
test = pd.DataFrame({'top':Top, 'bottom':Bottom})
test[['ID','Value1']] = test.apply(lambda x : get_depths(x),1).apply(pd.Series)
I get "TypeError: Invalid comparison between dtype=float64 and str"
And it works if I use the samples they made in the post, but it doesn't work with my data. I'm also hoping there's a more, simple way to do this.
Edit # 2A:
Note:
Sample DataFrame below is not exactly the same as posted in question
Posting a new code here that does uses Top and Bottom from rdf to check for DEPTH in ldf to calculate .mean() for each group using for-loop. A range_key is created in rdf that is unique to each row, assuming that the DataFrame rdf does not have any duplicates.
# Import libraries
import pandas as pd
# Create DataFrame
rdf = pd.DataFrame({
'ID': [1,1,1,1,2,2,2,2,3,3],
'Top': [2000,4300,4500,7100,3200,4120,4300,5500,2300,3200],
'Bottom':[2500,4500,5000,7700,4100,4180,5300,5520,2380,4500]
})
ldf = pd.DataFrame({
'ID': [1,1,1,1,1,1,1,1,2,2,3],
'DEPTH': [2000,2000.5,2001,2001.5,4002,4002.5,5003,5003.5,2000,2000,2000],
'Value1':[45,43,40,28,40,23,34,54,40,38,43],
'Value2':[.32,.33,.12,.10,.10,.11,.08,.04,.28,.25,.30],
'Value3':[423,500,643,20,34,60,900,1002,560,654,343]
})
# Create a key for merge later
ldf['range_key'] = np.nan
rdf['range_key'] = np.linspace(1,rdf.shape[0],rdf.shape[0]).astype(int).astype(str)
# Flag each row for a range
for i in range(ldf.shape[0]):
for j in range(rdf.shape[0]):
d = ldf['DEPTH'][i]
if (d>= rdf['Top'][j]) & (d<=rdf['Bottom'][j]):
rkey = rdf['range_key'][j]
ldf['range_key'][i]=rkey
break;
ldf['range_key'] = ldf['range_key'].astype(int).astype(str) # Convert to string
# Calculate mean for groups
ldf_mean = ldf.groupby(['ID','range_key']).mean().reset_index()
ldf_mean = ldf_mean.drop(['DEPTH'], axis=1)
# Merge into 'rdf'
new_rdf = rdf.merge(ldf_mean, on=['ID','range_key'], how='left')
new_rdf = new_rdf.drop(['range_key'], axis=1)
new_rdf
Output:
ID Top Bottom Value1 Value2 Value3
0 1 2000 2500 39.0 0.2175 396.5
1 1 4300 4500 NaN NaN NaN
2 1 4500 5000 NaN NaN NaN
3 1 7100 7700 NaN NaN NaN
4 2 3200 4100 NaN NaN NaN
5 2 4120 4180 NaN NaN NaN
6 2 4300 5300 NaN NaN NaN
7 2 5500 5520 NaN NaN NaN
8 3 2300 2380 NaN NaN NaN
9 3 3200 4500 NaN NaN NaN
Edit # 1:
Code below seems to work. Added an if-statement to the return from the code posted in question above. Not sure if this is what you were looking to get. It calculates the .sum(). The first value in rdf is changed to a lower the range to match the data in ldf.
# Import libraries
import pandas as pd
# Create DataFrame
rdf = pd.DataFrame({
'ID': [1,1,1,1,2,2,2,2,3,3],
'Top': [2000,4300,4500,7100,3200,4120,4300,5500,2300,3200],
'Bottom':[2500,4500,5000,7700,4100,4180,5300,5520,2380,4500]
})
ldf = pd.DataFrame({
'ID': [1,1,1,1,1,1,1,1,2,2,3],
'DEPTH': [2000,2000.5,2001,2001.5,2002,2002.5,2003,2003.5,2000,2000,2000],
'Value1':[45,43,40,28,40,23,34,54,40,38,43],
'Value2':[.32,.33,.12,.10,.10,.11,.08,.04,.28,.25,.30],
'Value3':[423,500,643,20,34,60,900,1002,560,654,343]
})
##### Code from the question (copy-pasted here)
Top = rdf['Top']
Bottom = rdf['Bottom']
Depths = ldf['DEPTH']
def get_depths(x):
n = ldf[(ldf['DEPTH']>x['top']) & (ldf['DEPTH']<x['bottom'])]
if (n.shape[0]>0):
return n['ID'].values[0],n['DEPTH'].sum()
test = pd.DataFrame({'top':Top, 'bottom':Bottom})
test[['ID','Value1']] = test.apply(lambda x : get_depths(x),1).apply(pd.Series)
Output:
test
top bottom ID Value1
0 2000 2500 1.0 14014.0
1 4300 4500 NaN NaN
2 4500 5000 NaN NaN
3 7100 7700 NaN NaN
4 3200 4100 NaN NaN
5 4120 4180 NaN NaN
6 4300 5300 NaN NaN
7 5500 5520 NaN NaN
8 2300 2380 NaN NaN
9 3200 4500 NaN NaN
Sample data and imports
import pandas
import numpy
import random
# dfr
rdata = {'ID': [1, 1, 1, 1, 2, 2, 2, 2, 3, 3],
'Top': [2010, 4300, 4550, 7100, 3200, 4120, 4300, 5500, 2300, 3200],
'Bottom': [3000, 4500, 5000, 7700, 4100, 4180, 5300, 5520, 2380, 4500]}
dfr = pd.DataFrame(rdata)
# display(dfr.head())
ID Top Bottom
0 1 2010 3000
1 1 4300 4500
2 1 4550 5000
3 1 7100 7700
4 2 3200 4100
# df
np.random.seed(365)
random.seed(365)
rows = 10000
data = {'id': [random.choice([1, 2, 3]) for _ in range(rows)],
'depth': [np.random.randint(2000, 8000) for _ in range(rows)],
'v1': [np.random.randint(40, 50) for _ in range(rows)],
'v2': np.random.rand(rows),
'v3': [np.random.randint(20, 1000) for _ in range(rows)]}
df = pd.DataFrame(data)
df.sort_values(['id', 'depth'], inplace=True)
df.reset_index(drop=True, inplace=True)
# display(df.head())
id depth v1 v2 v3
0 1 2004 48 0.517014 292
1 1 2004 41 0.997347 859
2 1 2006 42 0.278217 851
3 1 2006 49 0.570363 32
4 1 2009 43 0.462985 409
Use each row of dfr to filter and extract stats from df
There are plenty of answers on SO dealing with "TypeError: Invalid comparison between dtype=float64 and str". The numeric columns need to be cleaned of any value that can't be converted to a numeric type.
This code deals with using one dataframe to filter and return metrics for another dataframe.
For each row in dfr:
Filter df
Aggregate the mean and count for v1, v2 and v3
.T to transpose the mean and count rows to columns
Convert to a numpy array
Slice the array for the 3 means and append the array to the v_mean
Slice the array for the max count and append the value to count
They could be all the same, if there are no NaNs in the data
Convert the list of arrays, v_mean to a dataframe, and join it to dfr_new
Add counts a column in dfr_new
v_mean = list()
counts = list()
for idx, (i, t, b) in dfr.iterrows(): # iterate through each row of dfr
data = df[['v1', 'v2', 'v3']][(df.id == i) & (df.depth >= t) & (df.depth <= b)].agg(['mean', 'count']).T.to_numpy() # apply filters and get stats
v_mean.append(data[:, 0]) # get the 3 means
counts.append(data[:, 1].max()) # get the max of the 3 counts; each column has a count, the count cound be different if there are NaNs in data
# copy dfr to dfr_new
dfr_new = dfr.copy()
# add stats values
dfr_new = dfr_new.join(pd.DataFrame(v_mean, columns=['v1_m', 'v2_m', 'v3_m']))
dfr_new['counts'] = counts
# display(dfr_new)
ID Top Bottom v1_mean v2_mean v3_mean count
0 1 2010 3000 44.577491 0.496768 502.068266 542.0
1 1 4300 4500 44.555556 0.518066 530.968254 126.0
2 1 4550 5000 44.446281 0.538855 482.818182 242.0
3 1 7100 7700 44.348083 0.489983 506.681416 339.0
4 2 3200 4100 44.804040 0.487011 528.707071 495.0
5 2 4120 4180 45.096774 0.526687 520.967742 31.0
6 2 4300 5300 44.476980 0.529476 523.095764 543.0
7 2 5500 5520 46.000000 0.608876 430.500000 12.0
8 3 2300 2380 44.512195 0.456632 443.195122 41.0
9 3 3200 4500 44.554755 0.516616 501.841499 694.0

LabelEncoder cannot inverse_transform (unseen labels) after imputing missing values

I'm at a beginner to intermediate data science level. I want to impute missing values from a dataframe using knn.
As the dataframe contains strings and floats, I need to encode / decode values using LabelEncoder.
My method is as follows:
Replace NaN to be able to encode
Encode the text values and put them in a dictionary
Retrieve the NaN (previously converted) to be imputed with knn
Assign values with knn
Decode values from the dictionary
Unfortunately, in the last step, imputing values adds new values that cannot be decoded (unseen labels error message).
Could you please explain to me what I am doing wrong? Ideally help me to correct it please. Before concluding, I wanted to say that I know that there are other tools like OneHotEncoder, but I don't know them well enough and I found LabelEncoder much more intuitive because you can see it directly in the dataframe (where LabelEncoder provides an array).
Please find below an example of my method, thank you very much for your help :
[1]
# Import libraries.
import pandas as pd
import numpy as np
# intialise data of lists.
data = {'Name':['Jack', np.nan, 'Victoria', 'Nicolas', 'Victor', 'Brad'], 'Age':[59, np.nan, 29, np.nan, 65, 50], 'Car color':['Blue', 'Black', np.nan, 'Black', 'Grey', np.nan], 'Height ':[177, 150, np.nan, 180, 175, 190]}
# Make a DataFrame
df = pd.DataFrame(data)
# Print the output.
df
Output :
Name Age Car color Height
0 Jack 59.0 Blue 177.0
1 NaN NaN Black 150.0
2 Victoria 29.0 NaN NaN
3 Nicolas NaN Black 180.0
4 Victor 65.0 Grey 175.0
5 Brad 50.0 NaN 190.0
[2]
# LabelEncoder does not work with NaN values, so I replace them with value '1000' :
df = df.replace(np.nan, 1000)
# And to avoid errors, str columns must be set as strings (even '1000' value) :
df[['Name','Car color']] = df[['Name','Car color']].astype(str)
df
Output
Name Age Car color Height
0 Jack 59.0 Blue 177.0
1 1000 1000.0 Black 150.0
2 Victoria 29.0 1000 1000.0
3 Nicolas 1000.0 Black 180.0
4 Victor 65.0 Grey 175.0
5 Brad 50.0 1000 190.0
[3]
# Import LabelEncoder library :
from sklearn.preprocessing import LabelEncoder
# define labelencoder :
le = LabelEncoder()
# Import defaultdict library to make a dict of labelencoder :
from collections import defaultdict
# Initiate a dict of LabelEncoder values :
encoder_dict = defaultdict(LabelEncoder)
# Make a new dataframe of LabelEncoder values :
df[['Name','Car color']] = df[['Name','Car color']].apply(lambda x: encoder_dict[x.name].fit_transform(x))
# Show output :
df
Output
Name Age Car color Height
0 2 59.0 2 177.0
1 0 1000.0 1 150.0
2 5 29.0 0 1000.0
3 3 1000.0 1 180.0
4 4 65.0 3 175.0
5 1 50.0 0 190.0
[4]
#Reverse back 1000 to missing values in order to impute them :
df = df.replace(1000, np.nan)
df
Output
Name Age Car color Height
0 2 59.0 2 177.0
1 0 NaN 1 150.0
2 5 29.0 0 NaN
3 3 NaN 1 180.0
4 4 65.0 3 175.0
5 1 50.0 0 190.0
[5]
# Import knn imputer library to replace impute missing values :
from sklearn.impute import KNNImputer
# Define imputer :
imputer = KNNImputer(n_neighbors=2)
# impute and reassign index/colonnes :
df = pd.DataFrame(np.round(imputer.fit_transform(df)),columns = df.columns)
df
Output
Name Age Car color Height
0 2.0 59.0 2.0 177.0
1 0.0 47.0 1.0 150.0
2 5.0 29.0 0.0 165.0
3 3.0 44.0 1.0 180.0
4 4.0 65.0 3.0 175.0
5 1.0 50.0 0.0 190.0
[6]
# Decode data :
inverse_transform_lambda = lambda x: encoder_dict[x.name].inverse_transform(x)
# Apply it to df -> THIS IS WHERE ERROR OCCURS :
df[['Name','Car color']].apply(inverse_transform_lambda)
Error message :
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-55-8a5e369215f6> in <module>()
----> 1 df[['Name','Car color']].apply(inverse_transform_lambda)
5 frames
/usr/local/lib/python3.6/dist-packages/pandas/core/frame.py in apply(self, func, axis, broadcast, raw, reduce, result_type, args, **kwds)
6926 kwds=kwds,
6927 )
-> 6928 return op.get_result()
6929
6930 def applymap(self, func):
/usr/local/lib/python3.6/dist-packages/pandas/core/apply.py in get_result(self)
184 return self.apply_raw()
185
--> 186 return self.apply_standard()
187
188 def apply_empty_result(self):
/usr/local/lib/python3.6/dist-packages/pandas/core/apply.py in apply_standard(self)
290
291 # compute the result using the series generator
--> 292 self.apply_series_generator()
293
294 # wrap results
/usr/local/lib/python3.6/dist-packages/pandas/core/apply.py in apply_series_generator(self)
319 try:
320 for i, v in enumerate(series_gen):
--> 321 results[i] = self.f(v)
322 keys.append(v.name)
323 except Exception as e:
<ipython-input-54-f16f4965b2c4> in <lambda>(x)
----> 1 inverse_transform_lambda = lambda x: encoder_dict[x.name].inverse_transform(x)
/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/_label.py in inverse_transform(self, y)
297 "y contains previously unseen labels: %s" % str(diff))
298 y = np.asarray(y)
--> 299 return self.classes_[y]
300
301 def _more_tags(self):
IndexError: ('arrays used as indices must be of integer (or boolean) type', 'occurred at index Name')
Based on my comment you should do
# Decode data :
inverse_transform_lambda = lambda x: encoder_dict[x.name].inverse_transform(x.astype(int)) # or x[].astype(int)

Append records to bottom of dataframe

I have two dataframes like the ones sampled below. I'm trying to append the records from one of the dataframes to the bottom of the first. So the final data frame should only have two columns. Instead I seem to be appending the columns from one dataframe on to the right side of the first. Does anyone see what I'm doing wrong?
Code:
appendDf=df1.append(df2)
df1
28343 \
0 42267
1 157180
2 186320
https://s.m.com/is/ime/M/ts/mized/5_fpx.tif
0 https://sl.com/is/i/M/...
1 https://sl.com/is/i/M/…
2 https://sl.com/is/im/M/...
df2
454 \
0 223
1 155
2 334
https://s.m.com/is/ime/M/ts/mized/5.tif
0 https://slret.com/is/i/M/...
1 https://slfdsd.com/is/i/M/…
2 https://slfd.com/is/im/M/...
appendDf.head()
28343 https://s.m.com/is/ime/M/ts/mized/5_fpx.tif 454 https://s.m.com/is/ime/M/ts/mized/5.tif
Your DataFrames do not seem to have column headers (I imagine the first row of your data is being used as the column headers), which is likely the root of your issue. When you append the second DataFrame, the program doesn't know which columns the data correspond to, so it adds them as new columns. See the following example:
import pandas as pd
df1 = pd.DataFrame([[28343, 'http://link1'], [42267, 'http://link2'],
[157180, 'http://link3'], [186320, 'http://link4']], columns=['ID','Link'])
df2 = pd.DataFrame([[454, 'http://link5'], [223, 'http://link6'],
[155, 'http://link7'], [334, 'http://link8']])
appendedDF = df1.append(df2)
Yields:
ID Link 0 1
0 28343.0 http://link1 NaN NaN
1 42267.0 http://link2 NaN NaN
2 157180.0 http://link3 NaN NaN
3 186320.0 http://link4 NaN NaN
0 NaN NaN 454.0 http://link5
1 NaN NaN 223.0 http://link6
2 NaN NaN 155.0 http://link7
3 NaN NaN 334.0 http://link8
Correct implementation:
import pandas as pd
df1 = pd.DataFrame([[28343, 'http://link1'], [42267, 'http://link2'],
[157180, 'http://link3'], [186320, 'http://link4']], columns=['ID','Link'])
df2 = pd.DataFrame([[454, 'http://link5'], [223, 'http://link6'],
[155, 'http://link7'], [334, 'http://link8']], columns=['ID','Link'])
appendedDF = df1.append(df2).reset_index(drop=True)
Yields:
ID Link
0 28343 http://link1
1 42267 http://link2
2 157180 http://link3
3 186320 http://link4
4 454 http://link5
5 223 http://link6
6 155 http://link7
7 334 http://link8

Categories

Resources