how to fill the hollow lines opencv - python

I have an image like this:
after I applied some processings e.g. cv2.Canny(), it looks like this now:
As you can see that the black lines become hollow.
I have tried erosion and dilation, but if I do them many times, the 2 entrances will be closed(meaning become connected line or closed contour).
How could I make those lines solid like the below image while keep the 2 entrances not affected?
Update 1
I have tested the following answers with a few of photos, but the code seems customized to only be able to handle this one particular picture. Due to the restriction of SOF, I cannot upload photos larger than 2MB, so I uploaded them into my Microsoft OneDrive folder for your convenience to test.
https://1drv.ms/u/s!Asflam6BEzhjgbIhgkL4rt1NLSjsZg?e=OXXKBK
Update 2
I picked up #fmw42's post as answer as his answer is the most detailed one. It doesn't answer my question but points out the correct way to process maze which is my ultimate goal. I like his approach of answering questions, firstly tells you what each step should do so that you have a clear idea about how to do the task, then provide the full code example from beginning to end. Very helpful.
Due to the limitation of SOF, I can only pick up one answer. If multiple answers are allowed, I would also pick up Shamshirsaz.Navid's answer. His answer not only points to the correct direction to solve the issue, but also the explanation with visualization really works well for me~! I guess it works equally well for all people who are trying to understand why each line of code is needed. Also he follows up my questions in comments, this makes the SOF a bit interactive :)
The Threshold track bar in Ann Zen's answer is also a very useful tip for people to quickly find out a optimal value.

Here is one way to process the maze and rectify it in Python/OpenCV.
Read the input
Convert to gray
Threshold
Use morphology close to remove the thinnest (extraneous) black lines
Invert the threshold
Get the external contours
Keep on those contours that are larger than 1/4 of both the width and height of the input
Draw those contours as white lines on black background
Get the convex hull from the white contour lines image
Draw the convex hull as white lines on black background
Use GoodFeaturesToTrack to get the 4 corners from the white hull lines image
Sort the 4 corners by angle relative to the centroid so that they are ordered clockwise: top-left, top-right, bottom-right, bottom-left
Set these points as the array of conjugate control points for the input
Use 1/2 the dimensions of the input to define the array of conjugate control points for the output
Compute the perspective transformation matrix
Warp the input image using the perspective matrix
Save the results
Input:
import cv2
import numpy as np
import math
# load image
img = cv2.imread('maze.jpg')
hh, ww = img.shape[:2]
# convert to gray
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# threshold
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
# use morphology to remove the thin lines
kernel = cv2.getStructuringElement(cv2.MORPH_RECT , (5,1))
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
# invert so that lines are white so that we can get contours for them
thresh_inv = 255 - thresh
# get external contours
contours = cv2.findContours(thresh_inv, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
# keep contours whose bounding boxes are greater than 1/4 in each dimension
# draw them as white on black background
contour = np.zeros((hh,ww), dtype=np.uint8)
for cntr in contours:
x,y,w,h = cv2.boundingRect(cntr)
if w > ww/4 and h > hh/4:
cv2.drawContours(contour, [cntr], 0, 255, 1)
# get convex hull from contour image white pixels
points = np.column_stack(np.where(contour.transpose() > 0))
hull_pts = cv2.convexHull(points)
# draw hull on copy of input and on black background
hull = img.copy()
cv2.drawContours(hull, [hull_pts], 0, (0,255,0), 2)
hull2 = np.zeros((hh,ww), dtype=np.uint8)
cv2.drawContours(hull2, [hull_pts], 0, 255, 2)
# get 4 corners from white hull points on black background
num = 4
quality = 0.001
mindist = max(ww,hh) // 4
corners = cv2.goodFeaturesToTrack(hull2, num, quality, mindist)
corners = np.int0(corners)
for corner in corners:
px,py = corner.ravel()
cv2.circle(hull, (px,py), 5, (0,0,255), -1)
# get angles to each corner relative to centroid and store with x,y values in list
# angles are clockwise between -180 and +180 with zero along positive X axis (to right)
corner_info = []
center = np.mean(corners, axis=0)
centx = center.ravel()[0]
centy = center.ravel()[1]
for corner in corners:
px,py = corner.ravel()
dx = px - centx
dy = py - centy
angle = (180/math.pi) * math.atan2(dy,dx)
corner_info.append([px,py,angle])
# function to define sort key as element 2 (i.e. angle)
def takeThird(elem):
return elem[2]
# sort corner_info on angle so result will be TL, TR, BR, BL order
corner_info.sort(key=takeThird)
# make conjugate control points
# get input points from corners
corner_list = []
for x, y, angle in corner_info:
corner_list.append([x,y])
print(corner_list)
# define input points from (sorted) corner_list
input = np.float32(corner_list)
# define output points from dimensions of image, say half of input image
width = ww // 2
height = hh // 2
output = np.float32([[0,0], [width-1,0], [width-1,height-1], [0,height-1]])
# compute perspective matrix
matrix = cv2.getPerspectiveTransform(input,output)
# do perspective transformation setting area outside input to black
result = cv2.warpPerspective(img, matrix, (width,height), cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(0,0,0))
# save output
cv2.imwrite('maze_thresh.jpg', thresh)
cv2.imwrite('maze_contour.jpg', contour)
cv2.imwrite('maze_hull.jpg', hull)
cv2.imwrite('maze_rectified.jpg', result)
# Display various images to see the steps
cv2.imshow('thresh', thresh)
cv2.imshow('contour', contour)
cv2.imshow('hull', hull)
cv2.imshow('result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
Thresholded Image after morphology:
Filtered Contours on black background:
Convex hull and 4 corners on input image:
Result from perspective warp:

You can try a simple threshold to detect the lines of the maze, as they are conveniently black:
import cv2
img = cv2.imread("maze.jpg")
gray = cv2.cvtColor(img, cv2.BGR2GRAY)
_, thresh = cv2.threshold(gray, 60, 255, cv2.THRESH_BINARY)
cv2.imshow("Image", thresh)
cv2.waitKey(0)
Output:
You can adjust the threshold yourself with trackbars:
import cv2
cv2.namedWindow("threshold")
cv2.createTrackbar("", "threshold", 0, 255, id)
img = cv2.imread("maze.jpg")
while True:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
t = cv2.getTrackbarPos("", "threshold")
_, thresh = cv2.threshold(gray, t, 255, cv2.THRESH_BINARY)
cv2.imshow("Image", thresh)
if cv2.waitKey(1) & 0xFF == ord("q"): # If you press the q key
break

Canny is an edge detector. It detects the lines along which color changes. A line in your input image has two such transitions, one on each side. Therefore you see two parallel lines on each side of a line in the image. This answer of mine explains the difference between edges and lines.
So, you shouldn’t be using an edge detector to detect lines in an image.
If a simple threshold doesn't properly binarize this image, try using a local threshold ("adaptive threshold" in OpenCV). Another thing that works well for images like these is applying a top hat filter (for this image, it would be a closing(img) - img), where the structuring element is adjusted to the width of the lines you want to find. This will result in an image that is easy to threshold and will preserve all lines thinner than the structuring element.

Check this:
import cv2
import numpy as np
im=cv2.imread("test2.jpg",1)
#convert 2 gray
mask=cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
#convert 2 black and white
mask=cv2.threshold(mask,127,255,cv2.THRESH_BINARY)[1]
#remove thin lines and texts and then remake main lines
mask=cv2.dilate(mask,np.ones((5, 5), 'uint8'))
mask=cv2.erode(mask,np.ones((4, 4), 'uint8'))
#smooth lines
mask=cv2.medianBlur(mask,3)
#write output mask
cv2.imwrite("mask2.jpg",mask)
From now on, everything can be done. You can delete extra blobs, you can extract lines from the original image according to the mask, and things like that.
Median:
Median changes are not much for this project. And it can be safely removed. But I prefer it because it rounds the ends of the lines a bit. You have to zoom in a lot to see the pixels. But this technique is usually used to remove salt/pepper noise.
Erode Kernel:
In the case of the kernel, the larger the number, the thicker the lines. Well, this is not always good. Because it causes the path lines to stick to the arrow and later it becomes difficult to separate the paths from the arrow.
Update:
It does not matter if part of the Maze is cleared. The important thing is that from this mask you can draw a rectangle around this shape and create a new mask for this image.
Make a white rectangle around these paths in a new mask. Completely whiten the inside of the mask with FloodFill or any other technique. Now you have a new mask that can take the whole shape out of the original image. Now in the next step you can correct Perspective.

Related

How to find rectangles in a full transparent object?

I have an input image of a fully transparent object:
I need to detect the 42 rectangles in this image. This is an example of the output image I need (I marked 6 rectangles for better understanding):
The problem is that the rectangles look really different. I have to use this input image.
How can I achieve this?
Edit 1: Here is a input image as png:
If you calculate the variance down the rows and across the columns, using:
import cv2
import numpy as np
im = cv2.imread('YOURIMAGE', cv2.IMREAD_GRAYSCALE)
# Calculate horizontal and vertical variance
h = np.var(im, axis=1)
v = np.var(im, axis=0)
You can plot them and hopefully locate the peaks of variance which should be your objects:
Mark Setchell's idea is out-of-the-box. Here is a more traditional approach.
Approach:
The image contains boxes whose intensity fades away in the lower rows. Using global equalization would fail here since the intensity changes of the entire image is taken into account. I opted for a local equalization approach in OpenCV this is available as CLAHE (Contrast Limited Adaptive Histogram Equalization))
Using CLAHE:
Equalization is applied on individual regions of the image whose size can be predefined.
To avoid over amplification, contrast limiting is applied, (hence the name).
Let's see how to use it in our problem:
Code:
# read image and store green channel
green_channel = img[:,:,1]
# grid-size for CLAHE
ts = 8
# initialize CLAHE function with parameters
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(ts, ts))
# apply the function
cl = clahe.apply(green_channel)
Notice the image above, the boxes in the lower regions appear slightly darker as expected. This will help us later on.
# apply Otsu threshold
r,th_cl = cv2.threshold(cl, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# dilation performed using vertical kernels to connect disjoined boxes
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 3))
dilate = cv2.dilate(th_cl, vertical_kernel, iterations=1)
# find contours and draw bounding boxes
contours, hierarchy = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
img2 = img.copy()
for c in contours:
area = cv2.contourArea(c)
if area > 100:
x, y, w, h = cv2.boundingRect(c)
img2 = cv2.rectangle(img2, (x, y), (x + w, y + h), (0,255,255), 1)
(The top-rightmost box isn't covered properly. You would need to tweak the various parameters to get an accurate result)
Other pre-processing approaches you can try:
Global equalization
Contrast stretching
Normalization

How do I find the largest empty space in such images?

I would like to find the empty spaces (black regions) in images similar to the one I've posted below, where I have randomly sized blocks scattered in it.
By empty spaces, I refer to such possible open fields ( i have no particular lower bound on the area, but I would like to extract the top 3-4 largest ones present in the image.) There is also no restriction on the geometric shape they can take, but these empty spaces must not contain any of the blue blocks.
What is the best way to go about this?
What I've done till now:
My original image actually looks like this. I identified all the points, grouped them based on a certain distance threshold and applied a convex hull around them. I'm unsure how to proceed further. Any help would be greatly appreciated. Thank you!
Here is one way in Python/OpenCV using the distance transform to find the largest Euclidean distance between the Xs.
Input:
import cv2
import numpy as np
import skimage.exposure
# read image
img = cv2.imread('xxx.png')
# convert to gray
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# threshold to binary and invert so background is white and xxx are black
thresh = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY)[1]
thresh = 255 - thresh
# add black border around threshold image to avoid corner being largest distance
thresh2 = cv2.copyMakeBorder(thresh, 1,1,1,1, cv2.BORDER_CONSTANT, (0))
h, w = thresh2.shape
# create zeros mask 2 pixels larger in each dimension
mask = np.zeros([h + 2, w + 2], np.uint8)
# apply distance transform
distimg = thresh2.copy()
distimg = cv2.distanceTransform(distimg, cv2.DIST_L2, 5)
# remove excess border
distimg = distimg[1:h-1, 1:w-1]
# get max value and location in distance image
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(distimg)
# scale distance image for viewing
distimg = skimage.exposure.rescale_intensity(distimg, in_range='image', out_range=(0,255))
distimg = distimg.astype(np.uint8)
# draw circle on input
result = img.copy()
centx = max_loc[0]
centy = max_loc[1]
radius = int(max_val)
cv2.circle(result, (centx, centy), radius, (0,0,255), 1)
print('center x,y:', max_loc,'center radius:', max_val)
# save image
cv2.imwrite('xxx_distance.png',distimg)
cv2.imwrite('xxx_radius.png',result)
# show the images
cv2.imshow("thresh", thresh)
cv2.imshow("thresh2", thresh2)
cv2.imshow("distance", distimg)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
Distance Transform Image:
Region of Largest Distance to Xs:
Textual Information:
center x,y: (179, 352) radius: 92.5286865234375

Locate the coordinate based on change in pixel color

I am trying to locate specific coordinates in an image. I have an image that contains only 2 colours, pink and black as shown in the image. If I know an (x,y) coordinate in the pink region (marked in yellow dot at the centre) how can I find the coordinates that are in the boundary of the pink region(as shown in yellow dots at the boundary).
NB: The yellow dots are not part of the image and I'm using this just to represent the region of interest.
I just want to know whether there is any fast and better approach for doing this other than nested for loops which may really slow down the process because I've to find the boundary coordinates in multiple regions of the image.
Thank you!
Here is one way using Python/OpenCV and Numpy.
Read the input
Convert to gray
Otsu threshold
Crop the row containing the center
Get all the coordinates in the row that are white
Print the first and last coordinate
Draw line on input
Save results
Input:
import cv2
import numpy as np
# load image
img = cv2.imread("pink_blob.png")
hh, ww = img.shape[:2]
# convert to gray
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# threshold
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
# center coords
center = (115,82)
cy = center[1]
# crop row at y center
row = thresh[cy:cy+1, 0:ww]
# get coordinates along row where it is white
# swap x and y between numpy and opencv coords
coords = np.argwhere(row==255)
num_coords = len(coords)
start = coords[0]
end = coords[num_coords-1]
start_pt = (start[1],cy)
end_pt = (end[1],cy)
print(start_pt)
print(end_pt)
# draw line from start to end coordinates on input
result = img.copy()
cv2.line(result, start_pt, end_pt, (255,255,255), 1)
# save result
cv2.imwrite('pink_blob_line.png', result)
# show result
cv2.imshow('result', result)
cv2.waitKey(0)
Start and End Coordinates:
(67, 82)
(160, 82)
Line on input image:
First of all, find contour of the pink region in the image. You can do this by first applying Otsu's thresholding on the image and then find contours using cv2.findContours().
Then in the contour boundary points, find the points having the same y-coordinate as that of the center pixel.
Among these points, point with the maximum x-coordinate will be the point on the right and point with minimum x-coordinate will be the point on the left.

How can I select all black pixels that are contiguous with an edge of the image in PIL?

I have a set of images petri dishes which unfortunately are not the highest quality (example below, axes aren't part of the images).
I'm trying to select the background and calculate its area in pixels with the following:
image = Image.open(path)
black_image = 1 * (np.asarray(image.convert('L')) < 12)
black_region = black_image.sum()
This yields the below:
If I am more stringent with my selection of black pixels, I miss pixels in other images, and if I am looser I end up selecting too much of the petri dish itself. Is there a way I can only select the pixels have a luma value less than 12 AND are contiguous with an edge? I'm open to openCV solutions too.
Hopefully, I'm not oversimplifying the problem, but from my point of view, using OpenCV with simple thresholding, morphological operations, and findContours should do the job.
Please, see the following code:
import cv2
import numpy as np
# Input
input = cv2.imread('images/x0ziO.png', cv2.IMREAD_COLOR)
# Input to grayscale
gray = cv2.cvtColor(input, cv2.COLOR_BGR2GRAY)
# Binary threshold
_, gray = cv2.threshold(gray, 20, 255, cv2.THRESH_BINARY)
# Morphological improvements of the mask
gray = cv2.morphologyEx(gray, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)))
gray = cv2.morphologyEx(gray, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (11, 11)))
# Find contours
cnts, _ = cv2.findContours(gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# Filter large size contours; at the end, there should only be one left
largeCnts = []
for cnt in cnts:
if (cv2.contourArea(cnt) > 10000):
largeCnts.append(cnt)
# Draw (filled) contour(s)
gray = np.uint8(np.zeros(gray.shape))
gray = cv2.drawContours(gray, largeCnts, -1, 255, cv2.FILLED)
# Calculate background pixel area
bgArea = input.shape[0] * input.shape[1] - cv2.countNonZero(gray)
# Put result on input image
input = cv2.putText(input, 'Background area: ' + str(bgArea), (20, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.0, (255, 255, 255))
cv2.imwrite('images/output.png', input)
The intermediate "mask" image looks like this:
And, the final output looks like this:
Since you are open to OpenCV approaches you could use a
SimpleBlobDetector
Obviously the result I got is also not perfect, since there are a lot of hyperparameters to set. The hyperparameters make it pretty flexible, so it is a decent place to start from.
This is what the Detector does (see details here):
Thresholding: Convert the source images to several binary images by thresholding the source image with thresholds starting at minThreshold. These thresholds are incremented by thresholdStep until maxThreshold. So the first threshold is minThreshold, the second is minThreshold + thresholdStep, the third is minThreshold + 2 x thresholdStep, and so on.
Grouping: In each binary image, connected white pixels are grouped together. Let’s call these binary blobs.
Merging: The centers of the binary blobs in the binary images are computed, and blobs located closer than minDistBetweenBlobs are merged.
Center & Radius Calculation: The centers and radii of the new merged blobs are computed and returned.
Find the code bellow the image.
# Standard imports
import cv2
import numpy as np
# Read image
im = cv2.imread("petri.png", cv2.IMREAD_COLOR)
# Setup SimpleBlobDetector parameters.
params = cv2.SimpleBlobDetector_Params()
# Change thresholds
params.minThreshold = 0
params.maxThreshold = 255
# Set edge gradient
params.thresholdStep = 5
# Filter by Area.
params.filterByArea = True
params.minArea = 10
# Set up the detector with default parameters.
detector = cv2.SimpleBlobDetector_create(params)
# Detect blobs.
keypoints = detector.detect(im)
# Draw detected blobs as red circles.
# cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures the size of the circle corresponds to the size of blob
im_with_keypoints = cv2.drawKeypoints(im, keypoints, np.array([]), (0, 0, 255),
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
# Show keypoints
cv2.imshow("Keypoints", im_with_keypoints)
cv2.waitKey(0)
If you take the very top line/row of your image and the very bottom line/row and threshold them you will get this diagram where I have placed the top row at the top and the bottom row at the bottom just outside the limits of the original image - there is no need for you to do that, I am just illustrating the technique.
Now look where the lines change from black to white and then white to black (circled in red at the top). Unfortunately, your images have annotations and axes which I had to trim off so your number will not be identically the same. On the top line/row, my image changes from black to white at column 319 and back to black at column 648. If I add those together I get 966 and divide by 2, the image centre on the x-axis is at column 483.
Looking at the bottom line/row the transitions (circled in red) are at columns 234 and 736 which add up to 970 which makes 485 when averaged, so we know the circle centre is on vertical image column 483-485 or say 484.
Then you should now be able to work out the image centre and radius and mask the image to accurately calculate the background.
Try the experimental floodfill() method. https://pillow.readthedocs.io/en/5.1.x/reference/ImageDraw.html?highlight=floodfill#PIL.ImageDraw.PIL.ImageDraw.floodfill
If all your images are like the example, just pick two or four corners of your image to fill with, say, hot pink and count that.
See also Image Segmentation with Watershed Algorithm which is much like flood fill but without relying on a single unique color.

remove background of any image using opencv [duplicate]

This question already has answers here:
How to remove the background from an image
(3 answers)
Closed 9 months ago.
I have been searching for a technique to remove the background of a any given image. The idea is to detect a face and remove the background of the detected face. I have finished the face part. Now removing the background part still exists.
I used this code.
import cv2
import numpy as np
#== Parameters
BLUR = 21
CANNY_THRESH_1 = 10
CANNY_THRESH_2 = 200
MASK_DILATE_ITER = 10
MASK_ERODE_ITER = 10
MASK_COLOR = (0.0,0.0,1.0) # In BGR format
#-- Read image
img = cv2.imread('SYxmp.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#-- Edge detection
edges = cv2.Canny(gray, CANNY_THRESH_1, CANNY_THRESH_2)
edges = cv2.dilate(edges, None)
edges = cv2.erode(edges, None)
#-- Find contours in edges, sort by area
contour_info = []
contours, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
for c in contours:
contour_info.append((
c,
cv2.isContourConvex(c),
cv2.contourArea(c),
))
contour_info = sorted(contour_info, key=lambda c: c[2], reverse=True)
max_contour = contour_info[0]
#-- Create empty mask, draw filled polygon on it corresponding to largest contour ----
# Mask is black, polygon is white
mask = np.zeros(edges.shape)
cv2.fillConvexPoly(mask, max_contour[0], (255))
#-- Smooth mask, then blur it
mask = cv2.dilate(mask, None, iterations=MASK_DILATE_ITER)
mask = cv2.erode(mask, None, iterations=MASK_ERODE_ITER)
mask = cv2.GaussianBlur(mask, (BLUR, BLUR), 0)
mask_stack = np.dstack([mask]*3) # Create 3-channel alpha mask
#-- Blend masked img into MASK_COLOR background
mask_stack = mask_stack.astype('float32') / 255.0
img = img.astype('float32') / 255.0
masked = (mask_stack * img) + ((1-mask_stack) * MASK_COLOR)
masked = (masked * 255).astype('uint8')
cv2.imshow('img', masked) # Display
cv2.waitKey()
cv2.imwrite("WTF.jpg",masked)
But this code only works for only this image
What should be changed in the code to make it to work for different images
Local Optimal Solution
# Original Code
CANNY_THRESH_2 = 200
# Change to
CANNY_THRESH_2 = 100
####### Change below worth to try but not necessary
# Original Code
mask = np.zeros(edges.shape)
cv2.fillConvexPoly(mask, max_contour[0], (255))
# Change to
for c in contour_info:
cv2.fillConvexPoly(mask, c[0], (255))
Effects
Test Image
Similar color of background, hair and skin
Original Output
original output
original edges
Apply all contour rather than max contour with same edge threshold
slightly better
Canny Thresh 2 set as 100, apply all contour
much better
stronger edges
Canny Thresh 2 set as 40, apply all contour
edges starts to become not so sharp
Reasoning
Program Behavior
The program searches edges and builds contours. Get the max contour and recognize as human face. Then apply mask.
Problem
Not easy to deal with similar color between background and human face. Blond hair and skin color makes it's hard to find correct edges with the original threshold.
Max contour means when images have strong and big vertex like the scarf in test image, it's easy to lose track of some area. But it really depends on what kind of image it is after your human face recognition process.

Categories

Resources