matching panda dataframe and list - python

I have a dataframe df as follow
Number PT
5 AA
64 BB
7 CC
Then a another list of objects,
myList = [{'label': 'AA', 'value': 'AA', 'group': 'A'}, {'label': 'BB', 'value': 'BB', 'group': 'B'}]
I want for every PT to have the associated group(when available) from the list, so the result should look like
Number PT group
5 AA A
64 BB B
7 CC NOT_MATCHED

d = {'Number': [5, 64, 7], 'PT': ["AA", "BB", "CC"]}
df = pd.DataFrame(data=d)
myList = [{'label': 'AA', 'value': 'AA', 'group': 'A'}, {'label': 'BB', 'value': 'BB', 'group': 'B'}]
for i, row in df.iterrows():
for item in myList:
if item['value'] == df['PT'][i]:
df.at[i,'Group'] = item['group']
break
else:
df.at[i,'Group'] = "NOT_MATCHED"

TRY:
df['group'] = df.PT.map({tuple(i.values())[0]: tuple(i.values())[
2] for i in myList}).fillna('Not Matched')

Related

pandas way to turn DataFrame of sets into DataFrame of dictionaries with value in corresponding cell in other DataFrame

It's hard to explain what I'm trying to do so I'll give an example. In the example below, I am trying to get df3. I have done it with the code below but it is very "anti-pandas" and I am looking for a better (faster, cleaner, more pandas-esque) way to do it:
import pandas as pd
df1 = pd.DataFrame({"begin": [{"a", "b"}, {"b"}, {"c"}], "end": [{"x"}, {"z", "y"}, {"z"}]})
df2 = pd.DataFrame(
{"a": [10, 10, 15], "b": [15, 20, 30], "c": [8, 12, 10], "x": [1, 2, 3], "y": [1, 3, 4], "z": [1, 3, 1]}
)
df3 = df1.copy()
for i in range(len(df1)):
for j in range(len(df1.loc[i])):
df3.at[i, df1.columns[j]] = []
for v in df1.loc[i][j]:
df3.at[i, df1.columns[j]].append({"letter": v, "value": df2.loc[i][v]})
print(df3)
Here's my goal (which this code does, just probably not in the best way):
begin end
0 [{'letter': 'b', 'value': 15}, {'letter': 'a', 'value': 10} [{'letter': 'x', 'value': 1}]
1 [{'letter': 'b', 'value': 20}] [{'letter': 'y', 'value': 3}, {'letter': 'z', 'value': 3}
2 [{'letter': 'c', 'value': 10}] [{'letter': 'z', 'value': 1}]
Here is one way to approach the problem using pandas
# Reshape and explode the dataframe
s = df1.stack().explode().reset_index(name='letter')
# Map the values corresponding to the letters
s['value'] = s.set_index(['level_0', 'letter']).index.map(df2.stack())
# Assign list of records
s['records'] = s[['letter', 'value']].to_dict('records')
# Pivot with aggfunc as list
s = s.pivot_table('records', 'level_0', 'level_1', aggfunc=list)
print(s)
level_1 begin end
level_0
0 [{'letter': 'a', 'value': 10}, {'letter': 'b', 'value': 15}] [{'letter': 'x', 'value': 1}]
1 [{'letter': 'b', 'value': 20}] [{'letter': 'z', 'value': 3}, {'letter': 'y', 'value': 3}]
2 [{'letter': 'c', 'value': 10}] [{'letter': 'z', 'value': 1}]

Reverse the group/items in Python

I have a table like this:
Group
Item
A
a, b, c
B
b, c, d
And I want to convert to like this:
Item
Group
a
A
b
A, B
c
A, B
d
B
What is the best way to achieve this?
Thank you!!
If you are working in pandas, you can use 'explode' to unpack items, and can use 'to_list' lambda for the grouping stage.
Here is some info on 'explode' method https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.explode.html.
import pandas as pd
df = pd.DataFrame(data={'Group': ['A', 'B'], 'Item': [['a','b','c'], ['b','c','d']]})
Exploding
df.explode('Item').reset_index(drop=True).to_dict(orient='records')
[{'Group': 'A', 'Item': 'a'},
{'Group': 'A', 'Item': 'b'},
{'Group': 'A', 'Item': 'c'},
{'Group': 'B', 'Item': 'b'},
{'Group': 'B', 'Item': 'c'},
{'Group': 'B', 'Item': 'd'}]
Exploding and then using 'to_list' lambda
df.explode('Item').groupby('Item')['Group'].apply(lambda x: x.tolist()).reset_index().to_dict(orient='records')
[{'Item': 'a', 'Group': ['A']},
{'Item': 'b', 'Group': ['A', 'B']},
{'Item': 'c', 'Group': ['A', 'B']},
{'Item': 'd', 'Group': ['B']}]
Not the most efficient, but very short:
>>> table = {'A': ['a', 'b', 'c'], 'B': ['b', 'c', 'd']}
>>> reversed_table = {v: [k for k, vs in table.items() if v in vs] for v in set(v for vs in table.values() for v in vs)}
>>> print(reversed_table)
{'b': ['A', 'B'], 'c': ['A', 'B'], 'd': ['B'], 'a': ['A']}
With dictionaries, you wouldtypically approach it like this:
table = {'A': ['a', 'b', 'c'], 'B': ['b', 'c', 'd']}
revtable = dict()
for v,keys in table.items():
for k in keys:
revtable.setdefault(k,[]).append(v)
print(revtable)
# {'a': ['A'], 'b': ['A', 'B'], 'c': ['A', 'B'], 'd': ['B']}
Assuming that your tables are in the form of a pandas dataframe, you could try something like this:
import pandas as pd
import numpy as np
# Create initial dataframe
data = {'Group': ['A', 'B'], 'Item': [['a','b','c'], ['b','c','d']]}
df = pd.DataFrame(data=data)
Group Item
0 A [a, b, c]
1 B [b, c, d]
# Expand number of rows based on list column ("Item") contents
list_col = 'Item'
df = pd.DataFrame({
col:np.repeat(df[col].values, df[list_col].str.len())
for col in df.columns.drop(list_col)}
).assign(**{list_col:np.concatenate(df[list_col].values)})[df.columns]
Group Item
0 A a
1 A b
2 A c
3 B b
4 B c
5 B d
*Above snippet taken from here, which includes a more detailed explanation of the code
# Perform groupby operation
df = df.groupby('Item')['Group'].apply(list).reset_index(name='Group')
Item Group
0 a [A]
1 b [A, B]
2 c [A, B]
3 d [B]

What is the most efficient way to sum a dict with multiple keys by one key?

I have the following dict structure.
product1 = {'product_tmpl_id': product_id,
'qty':product_uom_qty,
'price':price_unit,
'subtotal':price_subtotal,
'total':price_total,
}
And then a list of products, each item in the list is a dict with the above structure
list_ = [product1,product2,product3,.....]
I need to sum the item in the list, group by the key product_tmpl_id ... I'm using dictcollections but it only sum the qty key, I need to sum key except the product_tmpl_id which is the criteria to group by
c = defaultdict(float)
for d in list_:
c[d['product_tmpl_id']] += d['qty']
c = [{'product_id': id, 'qty': qty} for id, qty in c.items()]
I know how to do it with a for iteration but trying to look for a more pythonic way
thanks
EDIT:
What is need is to pass from this:
lst = [
{'Name': 'A', 'qty':100,'price':10},
{'Name': 'A', 'qty':100,'price':10},
{'Name': 'A', 'qty':100,'price':10},
{'Name': 'B', 'qty':100,'price':10},
{'Name': 'C', 'qty':100,'price':10},
{'Name': 'C', 'qty':100,'price':10},
]
to this
group_lst = [
{'Name': 'A', 'qty':300,'price':30},
{'Name': 'B', 'qty':100,'price':10},
{'Name': 'C', 'qty':200,'price':20},
]
Using basic Python, this doesn't get a whole lot better. You could hack something together with itertools.groupby, but it'd be ugly and probably slower, certainly less clear.
As #9769953 suggested, though, Pandas is a good package to handle this sort of structured, tabular data.
In [1]: import pandas as pd
In [2]: df = pd.DataFrame(lst)
Out[2]:
Name price qty
0 A 10 100
1 A 10 100
2 A 10 100
3 B 10 100
4 C 10 100
5 C 10 100
In [3]: df.groupby('Name').agg(sum)
Out[3]:
price qty
Name
A 30 300
B 10 100
C 20 200
You just need a little extra mojo if you don't want to keep the data as a dataframe:
In [4]: grouped = df.groupby('Name', as_index=False).agg(sum)
In [5]: list(grouped.T.to_dict().values())
Out[5]:
[{'Name': 'A', 'price': 30, 'qty': 300},
{'Name': 'B', 'price': 10, 'qty': 100},
{'Name': 'C', 'price': 20, 'qty': 200}]
On the verbose side, but gets the job done:
group_lst = []
lst_of_names = []
for item in lst:
qty_total = 0
price_total = 0
# Get names that have already been totalled
lst_of_names = [item_get_name['Name'] for item_get_name in group_lst]
if item['Name'] in lst_of_names:
continue
for item2 in lst:
if item['Name'] == item2['Name']:
qty_total += item2['qty']
price_total += item2['price']
group_lst.append(
{
'Name':item['Name'],
'qty':qty_total,
'price':price_total
}
)
pprint(group_lst)
Output:
[{'Name': 'A', 'price': 30, 'qty': 300},
{'Name': 'B', 'price': 10, 'qty': 100},
{'Name': 'C', 'price': 20, 'qty': 200}]
You can use defaultdict and Counter
>>> from collections import Counter, defaultdict
>>> cntr = defaultdict(Counter)
>>> for d in lst:
... cntr[d['Name']].update(d)
...
>>> res = [dict(v, **{'Name':k}) for k,v in cntr.items()]
>>> pprint(res)
[{'Name': 'A', 'price': 30, 'qty': 300},
{'Name': 'C', 'price': 20, 'qty': 200},
{'Name': 'B', 'price': 10, 'qty': 100}]

how to write a list of dictionaries into a CSV with multiple values

I have a list of dictionaries in "my_list" as follows:
my_list=[{'Id': '100', 'A': [val1, val2], 'B': [val3, val4], 'C': [val5,val6]},
{'Id': '200', 'A': [val7, val8], 'B': [val9, val10], 'C':
[val11,val12],
{'Id': '300', 'A': [val13, val14], 'B': [val15, val16], 'C':
[val17,val18]}]
I want to write this list into a CSV file as follows:
ID, A, AA, B, BB, C, CC
100, val1, val2, val3, val4, val5, val6
200, val7, val8, val9, val10, val11, val12
300, val13, val14, val15, val16, val17, val18
Does anyone know how can I handle it?
Tablib should do the trick
I leave here the example on their front page (which you can adapt to the .csv format) :
>>> data = tablib.Dataset(headers=['First Name', 'Last Name', 'Age'])
>>> for i in [('Kenneth', 'Reitz', 22), ('Bessie', 'Monke', 21)]:
... data.append(i)
>>> print(data.export('json'))
[{"Last Name": "Reitz", "First Name": "Kenneth", "Age": 22}, {"Last Name": "Monke", "First Name": "Bessie", "Age": 21}]
>>> print(data.export('yaml'))
- {Age: 22, First Name: Kenneth, Last Name: Reitz}
- {Age: 21, First Name: Bessie, Last Name: Monke}
>>> data.export('xlsx')
<censored binary data>
>>> data.export('df')
First Name Last Name Age
0 Kenneth Reitz 22
1 Bessie Monke 21
You could do this... (replacing print with a csv writerow as appropriate)
print(['ID', 'A', 'AA', 'B', 'BB', 'C', 'CC'])
for row in my_list:
out_row = []
out_row.append(row['Id'])
for v in row['A']:
out_row.append(v)
for v in row['B']:
out_row.append(v)
for v in row['C']:
out_row.append(v)
print(out_row)
You can use pandas to do the trick:
my_list = [{'Id': '100', 'A': [val1, val2], 'B': [val3, val4], 'C': [val5, val6]},
{'Id': '200', 'A': [val7, val8], 'B': [val9, val10], 'C': [val11, val12]},
{'Id': '300', 'A': [val13, val14], 'B': [val15, val16], 'C': [val17, val18]}]
index = ['Id', 'A', 'AA', 'B', 'BB', 'C', 'CC']
df = pd.DataFrame(data=my_list)
for letter in ['A', 'B', 'C']:
first = []
second = []
for a in df[letter].values.tolist():
first.append(a[0])
second.append(a[1])
df[letter] = first
df[letter * 2] = second
df = df.reindex_axis(index, axis=1)
df.to_csv('out.csv')
This produces the following output as dataframe:
Id A AA B BB C CC
0 100 1 2 3 4 5 6
1 200 7 8 9 10 11 12
2 300 13 14 15 16 17 18
and this is the out.csv-file:
,Id,A,AA,B,BB,C,CC
0,100,1,2,3,4,5,6
1,200,7,8,9,10,11,12
2,300,13,14,15,16,17,18
See pandas documentation about the csv-feature (csv).
Write DataFrame to a comma-separated values (csv) file

pandas dataframe convert values in array of objects

I want to convert the below pandas data frame
data = pd.DataFrame([[1,2], [5,6]], columns=['10+', '20+'], index=['A', 'B'])
data.index.name = 'City'
data.columns.name= 'Age Group'
print data
Age Group 10+ 20+
City
A 1 2
B 5 6
in to an array of dictionaries, like
[
{'Age Group': '10+', 'City': 'A', 'count': 1},
{'Age Group': '20+', 'City': 'A', 'count': 2},
{'Age Group': '10+', 'City': 'B', 'count': 5},
{'Age Group': '20+', 'City': 'B', 'count': 6}
]
I am able to get the above expected result using the following loops
result = []
cols_name = data.columns.name
index_names = data.index.name
for index in data.index:
for col in data.columns:
result.append({cols_name: col, index_names: index, 'count': data.loc[index, col]})
Is there any better ways of doing this? Since my original data will be having large number of records, using for loops will take more time.
I think you can use stack with reset_index for reshape and last to_dict:
print (data.stack().reset_index(name='count'))
City Age Group count
0 A 10+ 1
1 A 20+ 2
2 B 10+ 5
3 B 20+ 6
print (data.stack().reset_index(name='count').to_dict(orient='records'))
[
{'Age Group': '10+', 'City': 'A', 'count': 1},
{'Age Group': '20+', 'City': 'A', 'count': 2},
{'Age Group': '10+', 'City': 'B', 'count': 5},
{'Age Group': '20+', 'City': 'B', 'count': 6}
]

Categories

Resources