InvalidArgumentError training multivariate LSTM autoencoder - python

I tried to do experiments in different datasets using this model, it works fine for univariate time series. However, I get an issue when trying to do it for multivariate time series and I think it's due to Time Distributed layer but I am not sure. I tried to read different posts about the same question with no luck.
trainx shape: (38100, 100, 4) | trainy shape: (38100, 4)
testx shape: (12230, 100, 4) | testy shape: (12230, 4)
(samples, timestamps, features)
The model is as follows:
def build_model(X):
'''
Builds an autoencoder model.
#params: X input array
#return: autoencoder full model, encoder model part
'''
encoder_inputs = keras.layers.Input(shape=(X.shape[1], X.shape[2]), name='Input_Layer')
L1 = keras.layers.LSTM(64, return_sequences=True, name='Encoder_1')(encoder_inputs)
L2 = keras.layers.LSTM(32, return_sequences=True, name='Encoder_2')(L1)
code = keras.layers.LSTM(2, return_sequences=False, name='code_vector')(L2)
L3 = keras.layers.RepeatVector(X.shape[1], name='Repeat_Vector')(code)
L4 = keras.layers.LSTM(32, return_sequences=True, name='Decoder_1')(L3)
L5 = keras.layers.LSTM(64, return_sequences=True, name='Decoder_2')(L4)
decoder_outputs = keras.layers.TimeDistributed(keras.layers.Dense(X.shape[2]), name='Time_Distrubted')(L5)
encoder = keras.Model(inputs=encoder_inputs, outputs=code, name='Encoder')
autoencoder = keras.Model(inputs=encoder_inputs, outputs=decoder_outputs, name='Autoencoder')
return autoencoder, code
Then I build the model and compile and fit it as follows:
model, code = build_model(trainx)
model.compile('adam', loss='mae')
history = model.fit(x=trainx, y=trainy, epochs=100, validation_split=0.1, batch_size=32, callbacks=callbacks, shuffle=False)
I get the following error trace:
<ipython-input-246-e01fa31bc39d> in <module>
----> 1 history = model.fit(x=trainx, y=trainy, epochs=100, validation_split=0.1, batch_size=32, callbacks=callbacks, shuffle=False)
~\Anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1181 _r=1):
1182 callbacks.on_train_batch_begin(step)
-> 1183 tmp_logs = self.train_function(iterator)
1184 if data_handler.should_sync:
1185 context.async_wait()
~\Anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in __call__(self, *args, **kwds)
887
888 with OptionalXlaContext(self._jit_compile):
--> 889 result = self._call(*args, **kwds)
890
891 new_tracing_count = self.experimental_get_tracing_count()
~\Anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds)
948 # Lifting succeeded, so variables are initialized and we can run the
949 # stateless function.
--> 950 return self._stateless_fn(*args, **kwds)
951 else:
952 _, _, _, filtered_flat_args = \
~\Anaconda3\lib\site-packages\tensorflow\python\eager\function.py in __call__(self, *args, **kwargs)
3021 (graph_function,
3022 filtered_flat_args) = self._maybe_define_function(args, kwargs)
-> 3023 return graph_function._call_flat(
3024 filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access
3025
~\Anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _call_flat(self, args, captured_inputs, cancellation_manager)
1958 and executing_eagerly):
1959 # No tape is watching; skip to running the function.
-> 1960 return self._build_call_outputs(self._inference_function.call(
1961 ctx, args, cancellation_manager=cancellation_manager))
1962 forward_backward = self._select_forward_and_backward_functions(
~\Anaconda3\lib\site-packages\tensorflow\python\eager\function.py in call(self, ctx, args, cancellation_manager)
589 with _InterpolateFunctionError(self):
590 if cancellation_manager is None:
--> 591 outputs = execute.execute(
592 str(self.signature.name),
593 num_outputs=self._num_outputs,
~\Anaconda3\lib\site-packages\tensorflow\python\eager\execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
57 try:
58 ctx.ensure_initialized()
---> 59 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
60 inputs, attrs, num_outputs)
61 except core._NotOkStatusException as e:
InvalidArgumentError: Incompatible shapes: [32,100,4] vs. [32,4]
[[node gradient_tape/mean_absolute_error/BroadcastGradientArgs (defined at <ipython-input-246-e01fa31bc39d>:1) ]] [Op:__inference_train_function_110609]
Function call stack:
train_function
As I mentioned I think it is probably related to time distributed layer. However, if it helps, the model can run when batch_size=1. Other than that it does not.

From comments
The network output must match your target shape. If you have a 2D
target your network must produce 2D and not 3D. simply setting
return_sequences=False produces 2D output.
def build_model(X):
'''
Builds an autoencoder model.
#params: X input array
#return: autoencoder full model, encoder model part
'''
encoder_inputs = keras.layers.Input(shape=(X.shape[1], X.shape[2]), name='Input_Layer')
L1 = keras.layers.LSTM(64, return_sequences=True, name='Encoder_1')(encoder_inputs)
L2 = keras.layers.LSTM(32, return_sequences=True, name='Encoder_2')(L1)
code = keras.layers.LSTM(2, return_sequences=False, name='code_vector')(L2)
L3 = keras.layers.RepeatVector(X.shape[1], name='Repeat_Vector')(code)
L4 = keras.layers.LSTM(32, return_sequences=True, name='Decoder_1')(L3)
L5 = keras.layers.LSTM(64, name='Decoder_2')(L4)
decoder_outputs = keras.layers.Dense(X.shape[2], name='Time_Distrubted')(L5)
encoder = keras.Model(inputs=encoder_inputs, outputs=code, name='Encoder')
autoencoder = keras.Model(inputs=encoder_inputs, outputs=decoder_outputs, name='Autoencoder')
return autoencoder, code
model, code = build_model(trainx)
model.compile('adam', loss='mae')
history = model.fit(x=trainx, y=trainy, epochs=100, validation_split=0.1, batch_size=32, callbacks=callbacks, shuffle=False)
(paraphrased from Marco Cerliani)

Related

Getting error when training the CNN model(tensorflow)

I am getting errors when training my CNN model which is for checking what a person is telling in sign language. I am working with keras, tensorflow.
This is my code:
import tensorflow as tf ;importing libraries
from tensorflow.keras import datasets,layers,models
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.preprocessing.image import ImageDataGenerator
; Data preprocessing
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
training_set = train_datagen.flow_from_directory('split__data/Train',
target_size = (64, 64),
batch_size = 32,
class_mode = 'categorical')
test_datagen = ImageDataGenerator(rescale = 1./255)
test_set = test_datagen.flow_from_directory('split__data/Test',
target_size = (64, 64),
batch_size = 32,
class_mode = 'categorical')
; Building the model
cnn = tf.keras.models.Sequential()
cnn.add(tf.keras.layers.Conv2D(filters = 16,kernel_size = 3,activation = 'relu',input_shape = [64,64,3]))
cnn.add(tf.keras.layers.MaxPool2D(pool_size=2,strides=2))
cnn.add(tf.keras.layers.Conv2D(filters = 32,kernel_size = 3,activation = 'relu',input_shape = [64,64,3]))
cnn.add(tf.keras.layers.MaxPool2D(pool_size=2,strides=2))
cnn.add(tf.keras.layers.Conv2D(filters = 64,kernel_size = 3,activation = 'relu',input_shape = [64,64,3]))
cnn.add(tf.keras.layers.MaxPool2D(pool_size=2,strides=2))
cnn.add(tf.keras.layers.Flatten())
cnn.add(tf.keras.layers.Dense(units=500,activation='relu'))
cnn.add(tf.keras.layers.Dense(units=1,activation='softmax'))
; compiling and training
cnn.compile(optimizer = 'adam' , loss= 'categorical_crossentropy',metrics = ['accuracy'])
;the next line is giving me error
cnn.fit(x = training_set,validation_data = test_set,batch_size = 32,epochs = 10)
This is the error. I am not able to get from where these errors are being generated. I have tried changing batch size, image height and width but nothing happens. I am getting same error.
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-15-b67ba9813850> in <module>
----> 1 cnn.fit(x = training_set,validation_data = test_set,batch_size = 32,epochs = 10)
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1181 _r=1):
1182 callbacks.on_train_batch_begin(step)
-> 1183 tmp_logs = self.train_function(iterator)
1184 if data_handler.should_sync:
1185 context.async_wait()
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in __call__(self, *args, **kwds)
887
888 with OptionalXlaContext(self._jit_compile):
--> 889 result = self._call(*args, **kwds)
890
891 new_tracing_count = self.experimental_get_tracing_count()
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds)
948 # Lifting succeeded, so variables are initialized and we can run the
949 # stateless function.
--> 950 return self._stateless_fn(*args, **kwds)
951 else:
952 _, _, _, filtered_flat_args = \
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\eager\function.py in __call__(self, *args, **kwargs)
3021 (graph_function,
3022 filtered_flat_args) = self._maybe_define_function(args, kwargs)
-> 3023 return graph_function._call_flat(
3024 filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access
3025
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _call_flat(self, args, captured_inputs, cancellation_manager)
1958 and executing_eagerly):
1959 # No tape is watching; skip to running the function.
-> 1960 return self._build_call_outputs(self._inference_function.call(
1961 ctx, args, cancellation_manager=cancellation_manager))
1962 forward_backward = self._select_forward_and_backward_functions(
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\eager\function.py in call(self, ctx, args, cancellation_manager)
589 with _InterpolateFunctionError(self):
590 if cancellation_manager is None:
--> 591 outputs = execute.execute(
592 str(self.signature.name),
593 num_outputs=self._num_outputs,
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\eager\execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
57 try:
58 ctx.ensure_initialized()
---> 59 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
60 inputs, attrs, num_outputs)
61 except core._NotOkStatusException as e:
InvalidArgumentError: In[0] mismatch In[1] shape: 35 vs. 1: [32,35] [500,1] 0 0
[[node gradient_tape/sequential/dense_1/MatMul (defined at <ipython-input-15-b67ba9813850>:1) ]] [Op:__inference_train_function_847]
Function call stack:
train_function
can someone help?
How many classes are in the dataset? You have the code
cnn.add(tf.keras.layers.Dense(units=1,activation='softmax'))
This would indicate you are doing binary classification which I expect is not what you want. Try this after your generator code
classes=list(training_set.class_indices.keys())
class_count=len (classes) # this integer is the number of nodes you need in your models final layer
change the last layer in your model to
cnn.add(tf.keras.layers.Dense(units=class_count,activation='softmax'))
to predict a single image- first read in the image. If you trained your model on RGB images then
import matplotlib.pyplot as plt
import cv2
classes=list(train_gen.class_indices.keys())
img_path = r' full path to the image'
img=plt.imread(img_path)
img=cv2.resize(img, (64.64))
img=img/255
img=np.expand_dims(img, axis=0)
prediction=model.predict( img, verbose=1)
index=argmax(prediction)
predicted_class = classes(index)
I don't bother building my own CNN, instead I use transfer learning with the EfficientNetB3 model. Note EfficientNet expects pixels in the range 0 to 255 so do not scale the pixels. Code below works well for most applications
base_model=tf.keras.applications.EfficientNetB3(include_top=False, weights="imagenet",input_shape=img_shape, pooling='max')
x=base_model.output
x=keras.layers.BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001 )(x)
x = Dense(256, kernel_regularizer = regularizers.l2(l = 0.016),activity_regularizer=regularizers.l1(0.006),
bias_regularizer=regularizers.l1(0.006) ,activation='relu')(x)
x=Dropout(rate=.45, seed=123)(x)
output=Dense(class_count, activation='softmax')(x)
model=Model(inputs=base_model.input, outputs=output)
model.compile(Adamax(learning_rate=.001), loss='categorical_crossentropy', metrics=['accuracy'])

InvalidArgumentError: Conv2DCustomBackpropFilterOp only supports NHWC - pruning neural network

Im having problems when I use the library tensorflow_model_optimization.
I am developing a code to prune an already trained neural network.
I imported the weights from an h5 file and so I use tensorflor_model_optimization to prune my neural network.
I have this error when I call the fit method:
InvalidArgumentError Traceback (most recent call last)
<ipython-input-26-ce9759e4dd53> in <module>
----> 1 model_for_pruning.fit_generator(base_treinamento, steps_per_epoch = 6000 /64, epochs = 5, validation_data = base_teste, validation_steps = 30, callbacks=callbacks)
~\anaconda3\envs\supernova\lib\site-packages\tensorflow\python\keras\engine\training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, validation_freq, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
1859 use_multiprocessing=use_multiprocessing,
1860 shuffle=shuffle,
-> 1861 initial_epoch=initial_epoch)
1862
1863 def evaluate_generator(self,
~\anaconda3\envs\supernova\lib\site-packages\tensorflow\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1098 _r=1):
1099 callbacks.on_train_batch_begin(step)
-> 1100 tmp_logs = self.train_function(iterator)
1101 if data_handler.should_sync:
1102 context.async_wait()
~\anaconda3\envs\supernova\lib\site-packages\tensorflow\python\eager\def_function.py in __call__(self, *args, **kwds)
826 tracing_count = self.experimental_get_tracing_count()
827 with trace.Trace(self._name) as tm:
--> 828 result = self._call(*args, **kwds)
829 compiler = "xla" if self._experimental_compile else "nonXla"
830 new_tracing_count = self.experimental_get_tracing_count()
~\anaconda3\envs\supernova\lib\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds)
853 # In this case we have created variables on the first call, so we run the
854 # defunned version which is guaranteed to never create variables.
--> 855 return self._stateless_fn(*args, **kwds) # pylint: disable=not-callable
856 elif self._stateful_fn is not None:
857 # Release the lock early so that multiple threads can perform the call
~\anaconda3\envs\supernova\lib\site-packages\tensorflow\python\eager\function.py in __call__(self, *args, **kwargs)
2941 filtered_flat_args) = self._maybe_define_function(args, kwargs)
2942 return graph_function._call_flat(
-> 2943 filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access
2944
2945 #property
~\anaconda3\envs\supernova\lib\site-packages\tensorflow\python\eager\function.py in _call_flat(self, args, captured_inputs, cancellation_manager)
1917 # No tape is watching; skip to running the function.
1918 return self._build_call_outputs(self._inference_function.call(
-> 1919 ctx, args, cancellation_manager=cancellation_manager))
1920 forward_backward = self._select_forward_and_backward_functions(
1921 args,
~\anaconda3\envs\supernova\lib\site-packages\tensorflow\python\eager\function.py in call(self, ctx, args, cancellation_manager)
558 inputs=args,
559 attrs=attrs,
--> 560 ctx=ctx)
561 else:
562 outputs = execute.execute_with_cancellation(
~\anaconda3\envs\supernova\lib\site-packages\tensorflow\python\eager\execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
58 ctx.ensure_initialized()
59 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 60 inputs, attrs, num_outputs)
61 except core._NotOkStatusException as e:
62 if name is not None:
InvalidArgumentError: Conv2DCustomBackpropFilterOp only supports NHWC.
[[node gradient_tape/sequential_3/prune_low_magnitude_conv2d_18/Conv2D/Conv2DBackpropFilter (defined at <ipython-input-24-fc85f8818d30>:1) ]] [Op:__inference_train_function_10084]
Errors may have originated from an input operation.
Input Source operations connected to node gradient_tape/sequential_3/prune_low_magnitude_conv2d_18/Conv2D/Conv2DBackpropFilter:
sequential_3/prune_low_magnitude_activation_18/Relu (defined at C:\Users\Pichau\anaconda3\envs\supernova\lib\site-packages\tensorflow_model_optimization\python\core\sparsity\keras\pruning_wrapper.py:270)
Function call stack:
train_function
enter code here
My code:
from keras.models import model_from_json
from keras.preprocessing.image import ImageDataGenerator
import numpy as np
arquivo = open('model.json', 'r')
estrutura_rede = arquivo.read()
arquivo.close()
model = model_from_json(estrutura_rede)
model.load_weights('model.h5')
gerador_treinamento = ImageDataGenerator(rescale=None)
base_treinamento = gerador_treinamento.flow_from_directory('data/train', target_size = (51,51), batch_size = 64, class_mode = 'binary')
gerador_teste = ImageDataGenerator(rescale=None)
base_teste = gerador_teste.flow_from_directory('data/test', target_size = (51,51), batch_size = 64, class_mode = 'binary')
import tempfile
import tensorflow as tf
import tensorflow_model_optimization as tfmot
prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude
batch_size = 128
epochs = 2
validation_split = 0.1
num_images = int(len(base_treinamento) * (1 - validation_split))
end_step = np.ceil(num_images / batch_size).astype(np.int32) * epochs
model_for_pruning.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
model_for_pruning.summary()
logdir = tempfile.mkdtemp()
callbacks = [
tfmot.sparsity.keras.UpdatePruningStep(),
tfmot.sparsity.keras.PruningSummaries(log_dir=logdir),
]
model_for_pruning.fit_generator(base_treinamento, steps_per_epoch = 6000 /64, epochs = 5, validation_data = base_teste, validation_steps = 30, callbacks=callbacks)
python: 3.6.12
tensorflow: 2.2.0
tensorflow-model-optimization: 0.5.0
Can someone help me?
Changing the runtime from CPU to GPU worked for me.
If you are running it on CPU consider changing it to GPU.
This does not seem like a pruning issue, but instead a problem with the data format of the model. It looks like one Conv2D layer should be using NHWC format (data_format="channels_last").
Could you share the code for the model?

UnimplementedError with Neural Network Using Linear Regression and Tensorflow2

I'm just working through my own sandbox project wanting to try and implement NLP but with a linear regression as an outcome. As reference, the dataset I am working with comes Kaggle wine-reviews which has the wine reviews and a corresponding score of 1 through 100 hence why I'm using linear regression instead of classification.
But I am getting an error message and I'm not sure if it's a result of a data type or dimensionality problem, and I'm not sue why or how to resolve it.
I'll provide the code bellow, and some intermediate outcomes displaying the dimensions of some of the objects as I'm assuming that that might be useful in solving this.
df = pd.read_csv('winemag-data_first150k.csv', encoding='ISO-8859-1')
y = df['points'].astype(int)
X = df['description'].astype(str)
# split up the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
MAX_VOCAB_SIZE = 35000
tokenizer = Tokenizer(num_words=MAX_VOCAB_SIZE)
tokenizer.fit_on_texts(X_train)
sequences_train = tokenizer.texts_to_sequences(X_train)
sequences_test = tokenizer.texts_to_sequences(X_test)
word2idx = tokenizer.word_index
V = len(word2idx)
print('Found %s unique tokens.' % V)
Found 33012 unique tokens.
data_train = pad_sequences(sequences_train)
print('Shape of data train tensor:', data_train.shape)
# get sequence length
T = data_train.shape[1]
Shape of data train tensor: (101123, 136)
data_test = pad_sequences(sequences_test, maxlen=T)
print('Shape of data test tensor:', data_test.shape)
Shape of data test tensor: (49807, 136)
# Create the model
# We get to choose embedding dimensionality
D = 20
# Hidden state dimensionality
M = 15
i = Input(shape=(T,))
x = Embedding(V + 1, D)(i)
x = LSTM(M, return_sequences=True)(x)
x = GlobalMaxPooling1D()(x)
x = Dense(1)(x)
model = Model(i, x)
model.compile(optimizer='adam', loss='mse')
# learning rate scheduler
def schedule(epoch, lr):
if epoch >= 50:
return 0.0001
return 0.001
scheduler = tf.keras.callbacks.LearningRateScheduler(schedule)
# Train the model
r = model.fit(X, y, epochs=200, callbacks=[scheduler])
And then I get the error message along with a warning about dimensionality:
Epoch 1/200
WARNING:tensorflow:Model was constructed with shape (None, 136) for input Tensor("input_10:0", shape=(None, 136), dtype=float32), but it was called on an input with incompatible shape (None, 1).
WARNING:tensorflow:Model was constructed with shape (None, 136) for input Tensor("input_10:0", shape=(None, 136), dtype=float32), but it was called on an input with incompatible shape (None, 1).
---------------------------------------------------------------------------
UnimplementedError Traceback (most recent call last)
<ipython-input-121-0f68916ec23b> in <module>
13
14 # Train the model
---> 15 r = model.fit(X, y, epochs=200, callbacks=[scheduler])
~\anaconda3\envs\newenvt\lib\site-packages\tensorflow\python\keras\engine\training.py in _method_wrapper(self, *args, **kwargs)
106 def _method_wrapper(self, *args, **kwargs):
107 if not self._in_multi_worker_mode(): # pylint: disable=protected-access
--> 108 return method(self, *args, **kwargs)
109
110 # Running inside `run_distribute_coordinator` already.
~\anaconda3\envs\newenvt\lib\site-packages\tensorflow\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1096 batch_size=batch_size):
1097 callbacks.on_train_batch_begin(step)
-> 1098 tmp_logs = train_function(iterator)
1099 if data_handler.should_sync:
1100 context.async_wait()
~\anaconda3\envs\newenvt\lib\site-packages\tensorflow\python\eager\def_function.py in __call__(self, *args, **kwds)
778 else:
779 compiler = "nonXla"
--> 780 result = self._call(*args, **kwds)
781
782 new_tracing_count = self._get_tracing_count()
~\anaconda3\envs\newenvt\lib\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds)
838 # Lifting succeeded, so variables are initialized and we can run the
839 # stateless function.
--> 840 return self._stateless_fn(*args, **kwds)
841 else:
842 canon_args, canon_kwds = \
~\anaconda3\envs\newenvt\lib\site-packages\tensorflow\python\eager\function.py in __call__(self, *args, **kwargs)
2827 with self._lock:
2828 graph_function, args, kwargs = self._maybe_define_function(args, kwargs)
-> 2829 return graph_function._filtered_call(args, kwargs) # pylint: disable=protected-access
2830
2831 #property
~\anaconda3\envs\newenvt\lib\site-packages\tensorflow\python\eager\function.py in _filtered_call(self, args, kwargs, cancellation_manager)
1841 `args` and `kwargs`.
1842 """
-> 1843 return self._call_flat(
1844 [t for t in nest.flatten((args, kwargs), expand_composites=True)
1845 if isinstance(t, (ops.Tensor,
~\anaconda3\envs\newenvt\lib\site-packages\tensorflow\python\eager\function.py in _call_flat(self, args, captured_inputs, cancellation_manager)
1921 and executing_eagerly):
1922 # No tape is watching; skip to running the function.
-> 1923 return self._build_call_outputs(self._inference_function.call(
1924 ctx, args, cancellation_manager=cancellation_manager))
1925 forward_backward = self._select_forward_and_backward_functions(
~\anaconda3\envs\newenvt\lib\site-packages\tensorflow\python\eager\function.py in call(self, ctx, args, cancellation_manager)
543 with _InterpolateFunctionError(self):
544 if cancellation_manager is None:
--> 545 outputs = execute.execute(
546 str(self.signature.name),
547 num_outputs=self._num_outputs,
~\anaconda3\envs\newenvt\lib\site-packages\tensorflow\python\eager\execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
57 try:
58 ctx.ensure_initialized()
---> 59 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
60 inputs, attrs, num_outputs)
61 except core._NotOkStatusException as e:
UnimplementedError: Cast string to float is not supported
[[node functional_11/Cast (defined at <ipython-input-121-0f68916ec23b>:15) ]] [Op:__inference_train_function_17206]
Function call stack:
train_function
I'm not entirely sure what needs to be changed, but any suggestions would be appreciated.
From comments
Passing X to model.fit, which literally has string values, a neural
network cannot be input string values (paraphrased from Dr. Snoopy)

Tensorflow image_dataset_from_directory function label shape

I am a tad new to Tensorflow and I am having trouble running this simple CNN.
I have my images separated into separate directories for each class, which I load into train_dataset using image_dataset_from_directory.
from the documentation, this should yield a tuple (images, labels), where images has shape (batch_size, image_size[0], image_size[1], num_channels), and labels are a float32 tensor of shape (batch_size, num_classes). num_channels is 3 as the images are rgb
However when I try to fit using my model, I get an error saying that the predictions are [32,5] and labels shape [160]. It seems to me the batches in the labels have 'collapsed'.
Here's some snippets:
BATCH_SIZE = 32
EPOCHS = 1
IMG_SIZE=(300, 300)
SEED = 1
train_dataset = tf.keras.preprocessing.image_dataset_from_directory(
directory='train/train_images/', label_mode='categorical', class_names=class_names, color_mode='rgb', batch_size=BATCH_SIZE, image_size=IMG_SIZE)
IMG_SHAPE = IMG_SIZE + (3,)
n_classes = len(train_dataset.class_names)
def build_model():
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(input_shape=IMG_SHAPE, kernel_size=(5, 5), filters=32, activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=(3, 3)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Dense(units=n_classes, activation='softmax')
])
return model
model = build_model()
model.compile(optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.sparse_categorical_crossentropy,
metrics=['accuracy'])
model.fit(train_dataset, epochs = EPOCHS, batch_size = BATCH_SIZE)
Error Message:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-19-86d96e744ef0> in <module>
----> 1 model.fit(train_dataset, epochs = EPOCHS, batch_size = BATCH_SIZE)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)
106 def _method_wrapper(self, *args, **kwargs):
107 if not self._in_multi_worker_mode(): # pylint: disable=protected-access
--> 108 return method(self, *args, **kwargs)
109
110 # Running inside `run_distribute_coordinator` already.
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1096 batch_size=batch_size):
1097 callbacks.on_train_batch_begin(step)
-> 1098 tmp_logs = train_function(iterator)
1099 if data_handler.should_sync:
1100 context.async_wait()
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
778 else:
779 compiler = "nonXla"
--> 780 result = self._call(*args, **kwds)
781
782 new_tracing_count = self._get_tracing_count()
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
805 # In this case we have created variables on the first call, so we run the
806 # defunned version which is guaranteed to never create variables.
--> 807 return self._stateless_fn(*args, **kwds) # pylint: disable=not-callable
808 elif self._stateful_fn is not None:
809 # Release the lock early so that multiple threads can perform the call
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in __call__(self, *args, **kwargs)
2827 with self._lock:
2828 graph_function, args, kwargs = self._maybe_define_function(args, kwargs)
-> 2829 return graph_function._filtered_call(args, kwargs) # pylint: disable=protected-access
2830
2831 #property
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _filtered_call(self, args, kwargs, cancellation_manager)
1846 resource_variable_ops.BaseResourceVariable))],
1847 captured_inputs=self.captured_inputs,
-> 1848 cancellation_manager=cancellation_manager)
1849
1850 def _call_flat(self, args, captured_inputs, cancellation_manager=None):
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _call_flat(self, args, captured_inputs, cancellation_manager)
1922 # No tape is watching; skip to running the function.
1923 return self._build_call_outputs(self._inference_function.call(
-> 1924 ctx, args, cancellation_manager=cancellation_manager))
1925 forward_backward = self._select_forward_and_backward_functions(
1926 args,
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in call(self, ctx, args, cancellation_manager)
548 inputs=args,
549 attrs=attrs,
--> 550 ctx=ctx)
551 else:
552 outputs = execute.execute_with_cancellation(
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
58 ctx.ensure_initialized()
59 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 60 inputs, attrs, num_outputs)
61 except core._NotOkStatusException as e:
62 if name is not None:
InvalidArgumentError: logits and labels must have the same first dimension, got logits shape [32,5] and labels shape [160]
[[node sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits (defined at <ipython-input-18-1904262c6a7b>:1) ]] [Op:__inference_train_function_928]
Function call stack:
train_function
I think you should explicitly compile your model before executing. For that, you may omit 'input_shape' parameter in first layer. See model.compile in keras documentation. make sure that you keep loss as "categorical_crossentropy" or tf.keras.losses.CategoricalCrossentroy() . Then try again. I hope this helps.
Also it would help if you share your file structure.

Incompatible shapes error while training variational autoencoder

I am trying to train variational encoder. But I am getting
InvalidArgumentError: Incompatible shapes: [32,784] vs. [32,2352]
[[{{node custom_variational_layer_21/logistic_loss/mul}}]].
I read the images using opencv and append it to the list and then I converted it into numpy array.
Copied code from : http://www.stokastik.in/understanding-variational-autoencoders/
I am using convolutional variational autoencoder.
images = []
files = glob.glob('../dataset/maggi/*.*')
i=0
for file in files:
try:
img = cv2.imread(file)
img = cv2.resize(img, (28,28))
images.append(img)
except:
print('error')
x_train = np.asarray(images)
x_train = x_train.astype('float32') / 255.
print('Input size : ',x_train.shape)
conv_variational_autoencoder(x_train)
Output :
Input size : (1446, 28, 28, 3)
Epoch 1/50
----------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-166-2e8711de7bdc> in <module>()
72 print('Input size : ',x_train.shape)
73
---> 74 conv_variational_autoencoder(x_train)
<ipython-input-166-2e8711de7bdc> in conv_variational_autoencoder(X_train)
50 adam = Adam(lr=0.0005)
51 autoencoder.compile(optimizer=adam, loss=None)
---> 52 autoencoder.fit(X_train, shuffle=True, epochs=50, batch_size=32)
53
54
/usr/local/lib/python3.6/dist-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
1037 initial_epoch=initial_epoch,
1038 steps_per_epoch=steps_per_epoch,
-> 1039 validation_steps=validation_steps)
1040
1041 def evaluate(self, x=None, y=None,
/usr/local/lib/python3.6/dist-packages/keras/engine/training_arrays.py in fit_loop(model, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)
197 ins_batch[i] = ins_batch[i].toarray()
198
--> 199 outs = f(ins_batch)
200 outs = to_list(outs)
201 for l, o in zip(out_labels, outs):
/usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py in __call__(self, inputs)
2713 return self._legacy_call(inputs)
2714
-> 2715 return self._call(inputs)
2716 else:
2717 if py_any(is_tensor(x) for x in inputs):
/usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py in _call(self, inputs)
2673 fetched = self._callable_fn(*array_vals, run_metadata=self.run_metadata)
2674 else:
-> 2675 fetched = self._callable_fn(*array_vals)
2676 return fetched[:len(self.outputs)]
2677
/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py in __call__(self, *args, **kwargs)
1437 ret = tf_session.TF_SessionRunCallable(
1438 self._session._session, self._handle, args, status,
-> 1439 run_metadata_ptr)
1440 if run_metadata:
1441 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/errors_impl.py in __exit__(self, type_arg, value_arg, traceback_arg)
526 None, None,
527 compat.as_text(c_api.TF_Message(self.status.status)),
--> 528 c_api.TF_GetCode(self.status.status))
529 # Delete the underlying status object from memory otherwise it stays alive
530 # as there is a reference to status from this from the traceback due to
InvalidArgumentError: Incompatible shapes: [32,784] vs. [32,2352]
[[{{node custom_variational_layer_21/logistic_loss/mul}}]]
Thanks for the link to the article! It's a really interesting and good writeup.
Now for the problem:
As a rule: ALWAYS check your models' inputs and ouputs by using the model.summaray() function. In your case your model looks like this:
Now watch closely. Your input images are of the shape 28x28x3 like you defined yourself. But the output is 28x28x1 because the article you used trains the model on mnist, which is greyscale and thus only has 1 channel for colors, you have three.
This yields an error in the loss function, because it tries to compare how well a greyscale image looks like a color image, which of course doesn't work.
To fix this, all you have to do is go to the decoder part of the conv_variational_autoencoder(x_train) function and change the output size of the last Conv2DTranspose to be 28x28x3 instead of 28x28x1:
#Decoder
decoder_input = Input(shape=(196,))
p = Reshape((14, 14, 1))(decoder_input)
x = Conv2DTranspose(32, (3, 3), activation='relu', padding='same')(p)
x = UpSampling2D((2, 2))(x)
# dec_out = Conv2DTranspose(1, (3, 3), activation='sigmoid', padding='same')(x)
# Change the above line to:
dec_out = Conv2DTranspose(3, (3, 3), activation='sigmoid', padding='same')(x)
decoder = Model(decoder_input, dec_out)
And it should train straight away. Good luck!

Categories

Resources