so I'm trying to store the data from an accelerometer (https://download.mikroe.com/documents/datasheets/asm330lhh_datasheet.pdf) into a csv file. I wanted to use it in maximum frequency #6667Hz, but it only writes in the csv file at about #3Hz. I don't know if the problem is in the code itself or if it's just impossible to write in csv files at such high frequency. Here is the code im using
def ASM330_start(): #configures accelerometer
# Configure FIFO
fifo3_config_sel = [0b00011010] # FIFO batch data rate #12.5Hz for gyro and #6667Hz for accel
fifo3_indx = 0
bus.write_byte_data(ASM330_ADDR, FIFO_CTRL3, int(fifo3_config_sel[fifo3_indx]))
fifo4_config_sel = [0b00000110] # If the FIFO is full, the new sample overwrites the older one
fifo4_indx = 0
bus.write_byte_data(ASM330_ADDR, FIFO_CTRL4, int(fifo4_config_sel[fifo4_indx]))
#Write to Gyro configuration register
gyro_config_sel = [0b00010000] # byte registers #12.5Hz
gyro_config_vals = [250.0] # degrees/sec
gyro_indx = 0
bus.write_byte_data(ASM330_ADDR, CTRL2_G, int(gyro_config_sel[gyro_indx]))
time.sleep(0.1)
#Write to Accel configuration register
accel_config_sel = [0b10100000] # byte registers #6667Hz
accel_config_vals = [2.0] # g (g = 9.81 m/s^2)
accel_indx = 0
bus.write_byte_data(ASM330_ADDR, CTRL1_XL, int(accel_config_sel[accel_indx]))
time.sleep(0.1)
# interrupt register (related to overflow of data [FIFO])
return gyro_config_vals[gyro_indx],accel_config_vals[accel_indx]
def read_raw_bits(register):
# read accel and gyro values
high = bus.read_byte_data(ASM330_ADDR, register)
low = bus.read_byte_data(ASM330_ADDR, register+1)
# combine high and low for unsigned bit value
value = ((high << 8) | low)
# convert to +- value
if(value > 32768):
value -= 65536
return value
def ASM330_conv(): #returns converted data from accel and gyro
# raw acceleration bits
acc_x = read_raw_bits(OUTX_H_A)
acc_y = read_raw_bits(OUTY_H_A)
acc_z = read_raw_bits(OUTZ_H_A)
# raw gyroscope bits
gyro_x = read_raw_bits(OUTX_H_G)
gyro_y = read_raw_bits(OUTY_H_G)
gyro_z = read_raw_bits(OUTZ_H_G)
#convert to acceleration in g and gyro dps
a_x = (acc_x/32768)*accel_sens
a_y = (acc_y/32768)*accel_sens
a_z = (acc_z/32768)*accel_sens
w_x = (gyro_x/32768)*gyro_sens
w_y = (gyro_y/32768)*gyro_sens
w_z = (gyro_z/32768)*gyro_sens
return a_x,a_y,a_z, w_x, w_y, w_z
def leracc(): #reads acc value
while 1:
global ax,ay,az,wx,wy,wz,acc, restart_script
if restart_script:
return
ax,ay,az,wx,wy,wz = ASM330_conv()
acc = True
t1 = threading.Thread(target=leracc)
t1.start()
while 1:
if(luz):
with open (aquire_folder + "acc.csv", 'a') as csvFileacc:
writeracc = csv.writer(csvFileacc)
while (contador < 1):
writeracc.writerow(headeracc)
contador = contador + 1
if(acc):
acc = False
dataacc = [ax,ay,az,tempo]
writeracc.writerow(dataacc)
csvFileacc.close()
I know there are some variables I don't explain but I don't think they are neccessary to resolve my question.
Related
I'm trying to run a python code for an awr1642BOOST board to make a short range radar. since i dont have an dca1000 evm data capture board I'm trying to obtain the detected data points using the detObj dictionary of the provided python code. On running the the code the 2D scatter window appears blank and remains unresponsive. Please can someone point out what i might be doing wrong. I have also attached a screen shot of the error window and the python shell.[enter image description here][1]
import time
import numpy as np
import pyqtgraph as pg
from pyqtgraph.Qt import QtGui
# Change the configuration file name
configFileName = '1642config.cfg'
CLIport = {}
Dataport = {}
byteBuffer = np.zeros(2**15,dtype = 'uint8')
byteBufferLength = 0;
# ------------------------------------------------------------------
# Function to configure the serial ports and send the data from
# the configuration file to the radar
def serialConfig(configFileName):
global CLIport
global Dataport
# Open the serial ports for the configuration and the data ports
# Raspberry pi
#CLIport = serial.Serial('/dev/ttyACM0', 115200)
#Dataport = serial.Serial('/dev/ttyACM1', 921600)
# Windows
CLIport = serial.Serial('COM4', 115200)
Dataport = serial.Serial('COM5', 921600)
# Read the configuration file and send it to the board
config = [line.rstrip('\r\n') for line in open(configFileName)]
for i in config:
CLIport.write((i+'\n').encode())
print(i)
time.sleep(0.01)
return CLIport, Dataport
# ------------------------------------------------------------------
# Function to parse the data inside the configuration file
def parseConfigFile(configFileName):
configParameters = {} # Initialize an empty dictionary to store the configuration parameters
# Read the configuration file and send it to the board
config = [line.rstrip('\r\n') for line in open(configFileName)]
for i in config:
# Split the line
splitWords = i.split(" ")
# Hard code the number of antennas, change if other configuration is used
numRxAnt = 4
numTxAnt = 2
# Get the information about the profile configuration
if "profileCfg" in splitWords[0]:
startFreq = int(float(splitWords[2]))
idleTime = int(splitWords[3])
rampEndTime = float(splitWords[5])
freqSlopeConst = float(splitWords[8])
numAdcSamples = int(splitWords[10])
numAdcSamplesRoundTo2 = 1;
while numAdcSamples > numAdcSamplesRoundTo2:
numAdcSamplesRoundTo2 = numAdcSamplesRoundTo2 * 2;
digOutSampleRate = int(splitWords[11]);
# Get the information about the frame configuration
elif "frameCfg" in splitWords[0]:
chirpStartIdx = int(splitWords[1]);
chirpEndIdx = int(splitWords[2]);
numLoops = int(splitWords[3]);
numFrames = int(splitWords[4]);
framePeriodicity = int(splitWords[5]);
# Combine the read data to obtain the configuration parameters
numChirpsPerFrame = (chirpEndIdx - chirpStartIdx + 1) * numLoops
configParameters["numDopplerBins"] = numChirpsPerFrame / numTxAnt
configParameters["numRangeBins"] = numAdcSamplesRoundTo2
configParameters["rangeResolutionMeters"] = (3e8 * digOutSampleRate * 1e3) / (2 * freqSlopeConst * 1e12 * numAdcSamples)
configParameters["rangeIdxToMeters"] = (3e8 * digOutSampleRate * 1e3) / (2 * freqSlopeConst * 1e12 * configParameters["numRangeBins"])
configParameters["dopplerResolutionMps"] = 3e8 / (2 * startFreq * 1e9 * (idleTime + rampEndTime) * 1e-6 * configParameters["numDopplerBins"] * numTxAnt)
configParameters["maxRange"] = (300 * 0.9 * digOutSampleRate)/(2 * freqSlopeConst * 1e3)
configParameters["maxVelocity"] = 3e8 / (4 * startFreq * 1e9 * (idleTime + rampEndTime) * 1e-6 * numTxAnt)
return configParameters
# ------------------------------------------------------------------
# Funtion to read and parse the incoming data
def readAndParseData16xx(Dataport, configParameters):
global byteBuffer, byteBufferLength
# Constants
OBJ_STRUCT_SIZE_BYTES = 12;
BYTE_VEC_ACC_MAX_SIZE = 2**15;
MMWDEMO_UART_MSG_DETECTED_POINTS = 1;
MMWDEMO_UART_MSG_RANGE_PROFILE = 2;
maxBufferSize = 2**15;
magicWord = [2, 1, 4, 3, 6, 5, 8, 7]
# Initialize variables
magicOK = 0 # Checks if magic number has been read
dataOK = 0 # Checks if the data has been read correctly
frameNumber = 0
detObj = {}
tlv_type = 0
readBuffer = Dataport.read(Dataport.in_waiting)
byteVec = np.frombuffer(readBuffer, dtype = 'uint8')
byteCount = len(byteVec)
# Check that the buffer is not full, and then add the data to the buffer
if (byteBufferLength + byteCount) < maxBufferSize:
byteBuffer[byteBufferLength:byteBufferLength + byteCount] = byteVec[:byteCount]
byteBufferLength = byteBufferLength + byteCount
# Check that the buffer has some data
if byteBufferLength > 16:
# Check for all possible locations of the magic word
possibleLocs = np.where(byteBuffer == magicWord[0])[0]
# Confirm that is the beginning of the magic word and store the index in startIdx
startIdx = []
for loc in possibleLocs:
check = byteBuffer[loc:loc+8]
if np.all(check == magicWord):
startIdx.append(loc)
# Check that startIdx is not empty
if startIdx:
# Remove the data before the first start index
if startIdx[0] > 0 and startIdx[0] < byteBufferLength:
byteBuffer[:byteBufferLength-startIdx[0]] = byteBuffer[startIdx[0]:byteBufferLength]
byteBuffer[byteBufferLength-startIdx[0]:] = np.zeros(len(byteBuffer[byteBufferLength-startIdx[0]:]),dtype = 'uint8')
byteBufferLength = byteBufferLength - startIdx[0]
# Check that there have no errors with the byte buffer length
if byteBufferLength < 0:
byteBufferLength = 0
# word array to convert 4 bytes to a 32 bit number
word = [1, 2**8, 2**16, 2**24]
# Read the total packet length
totalPacketLen = np.matmul(byteBuffer[12:12+4],word)
# Check that all the packet has been read
if (byteBufferLength >= totalPacketLen) and (byteBufferLength != 0):
magicOK = 1
# If magicOK is equal to 1 then process the message
if magicOK:
# word array to convert 4 bytes to a 32 bit number
word = [1, 2**8, 2**16, 2**24]
# Initialize the pointer index
idX = 0
# Read the header
magicNumber = byteBuffer[idX:idX+8]
idX += 8
version = format(np.matmul(byteBuffer[idX:idX+4],word),'x')
idX += 4
totalPacketLen = np.matmul(byteBuffer[idX:idX+4],word)
idX += 4
platform = format(np.matmul(byteBuffer[idX:idX+4],word),'x')
idX += 4
frameNumber = np.matmul(byteBuffer[idX:idX+4],word)
idX += 4
timeCpuCycles = np.matmul(byteBuffer[idX:idX+4],word)
idX += 4
numDetectedObj = np.matmul(byteBuffer[idX:idX+4],word)
idX += 4
numTLVs = np.matmul(byteBuffer[idX:idX+4],word)
idX += 4
subFrameNumber = np.matmul(byteBuffer[idX:idX+4],word)
idX += 4
# Read the TLV messages
for tlvIdx in range(numTLVs):
# word array to convert 4 bytes to a 32 bit number
word = [1, 2**8, 2**16, 2**24]
# Check the header of the TLV message
try:
tlv_type = np.matmul(byteBuffer[idX:idX+4],word)
idX += 4
tlv_length = np.matmul(byteBuffer[idX:idX+4],word)
idX += 4
except:
pass
# Read the data depending on the TLV message
if tlv_type == MMWDEMO_UART_MSG_DETECTED_POINTS:
# word array to convert 4 bytes to a 16 bit number
word = [1, 2**8]
tlv_numObj = np.matmul(byteBuffer[idX:idX+2],word)
idX += 2
tlv_xyzQFormat = 2**np.matmul(byteBuffer[idX:idX+2],word)
idX += 2
# Initialize the arrays
rangeIdx = np.zeros(tlv_numObj,dtype = 'int16')
dopplerIdx = np.zeros(tlv_numObj,dtype = 'int16')
peakVal = np.zeros(tlv_numObj,dtype = 'int16')
x = np.zeros(tlv_numObj,dtype = 'int16')
y = np.zeros(tlv_numObj,dtype = 'int16')
z = np.zeros(tlv_numObj,dtype = 'int16')
for objectNum in range(tlv_numObj):
# Read the data for each object
rangeIdx[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
idX += 2
dopplerIdx[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
idX += 2
peakVal[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
idX += 2
x[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
idX += 2
y[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
idX += 2
z[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
idX += 2
# Make the necessary corrections and calculate the rest of the data
rangeVal = rangeIdx * configParameters["rangeIdxToMeters"]
dopplerIdx[dopplerIdx > (configParameters["numDopplerBins"]/2 - 1)] = dopplerIdx[dopplerIdx > (configParameters["numDopplerBins"]/2 - 1)] - 65535
dopplerVal = dopplerIdx * configParameters["dopplerResolutionMps"]
#x[x > 32767] = x[x > 32767] - 65536
#y[y > 32767] = y[y > 32767] - 65536
#z[z > 32767] = z[z > 32767] - 65536
x = x / tlv_xyzQFormat
y = y / tlv_xyzQFormat
z = z / tlv_xyzQFormat
# Store the data in the detObj dictionary
detObj = {"numObj": tlv_numObj, "rangeIdx": rangeIdx, "range": rangeVal, "dopplerIdx": dopplerIdx, \
"doppler": dopplerVal, "peakVal": peakVal, "x": x, "y": y, "z": z}
dataOK = 1
# Remove already processed data
if idX > 0 and byteBufferLength > idX:
shiftSize = totalPacketLen
byteBuffer[:byteBufferLength - shiftSize] = byteBuffer[shiftSize:byteBufferLength]
byteBuffer[byteBufferLength - shiftSize:] = np.zeros(len(byteBuffer[byteBufferLength - shiftSize:]),dtype = 'uint8')
byteBufferLength = byteBufferLength - shiftSize
# Check that there are no errors with the buffer length
if byteBufferLength < 0:
byteBufferLength = 0
return dataOK, frameNumber, detObj
# ------------------------------------------------------------------
# Funtion to update the data and display in the plot
def update():
dataOk = 0
global detObj
x = []
y = []
# Read and parse the received data
dataOk, frameNumber, detObj = readAndParseData16xx(Dataport, configParameters)
if dataOk and len(detObj["x"])>0:
#print(detObj)
x = -detObj["x"]
y = detObj["y"]
s.setData(x,y)
QtGui.QApplication.processEvents()
return dataOk
# ------------------------- MAIN -----------------------------------------
# Configurate the serial port
CLIport, Dataport = serialConfig(configFileName)
# Get the configuration parameters from the configuration file
configParameters = parseConfigFile(configFileName)
# START QtAPPfor the plot
app = QtGui.QApplication([])
# Set the plot
pg.setConfigOption('background','w')
win = pg.GraphicsLayoutWidget(title="2D scatter plot")
p = win.addPlot()
p.setXRange(-0.5,0.5)
p.setYRange(0,1.5)
p.setLabel('left',text = 'Y position (m)')
p.setLabel('bottom', text= 'X position (m)')
s = p.plot([],[],pen=None,symbol='o')
win.show()
# Main loop
detObj = {}
frameData = {}
currentIndex = 0
while True:
try:
# Update the data and check if the data is okay
dataOk = update()
if dataOk:
# Store the current frame into frameData
frameData[currentIndex] = detObj
currentIndex += 1
time.sleep(0.03) # Sampling frequency of 30 Hz
# Stop the program and close everything if Ctrl + c is pressed
except KeyboardInterrupt:
CLIport.write(('sensorStop\n').encode())
CLIport.close()
Dataport.close()
win.close()
break```
[1]: https://i.stack.imgur.com/BYLnW.png
I'm currently working on a steagnographic application,
and i'm taking each pixel value and embedding data into it one by one
this sequencial processing is taking a long time to process,
the code:
import config_loader
import numpy as np
from PIL import Image
import encryption
import time
def byte2bin(bytestring):
# print("\n from byte 2 bin\n")
# print(bytestring)
bitstring = bin(int.from_bytes(bytestring, byteorder="big"))
return bitstring[2:]
def insert_data_in_pixel(raw_data, string, ptr, bits=1): # this function takes a pixel's data and then converts it to
# binary and then change the last bit to the secret
color = bin(int(raw_data))[2:]
# old = color # troubleshooting lines
color = color[:len(color) - bits]
color = color + string[ptr: ptr + bits]
# print("original-> ", old,"| |added bits ",string[ptr: ptr+bits],"| |Modified-> ", color) # troubleshooting lines
return np.uint8(int(color, 2))
def insert_length(length, new_img): # inserts length of our secret and the length itself is obfuscated
secret_string_len = '<l>' + str(int(length / 4) + 16) + '<l>' # Added ambiguity
secret_string_len = ''.join(format(_, '08b') for _ in bytearray(str(secret_string_len), encoding='utf-8'))
length = len(secret_string_len)
str_len_ptr = 0
for y in range(length):
x = 0
if str_len_ptr < length:
new_img[x][y][0] = insert_data_in_pixel(new_img[x][y][0], secret_string_len, str_len_ptr, bits=3)
str_len_ptr += 3
if str_len_ptr == length:
break
new_img[x][y][1] = insert_data_in_pixel(new_img[x][y][1], secret_string_len, str_len_ptr, bits=3)
str_len_ptr += 3
if str_len_ptr == length:
break
new_img[x][y][2] = insert_data_in_pixel(new_img[x][y][2], secret_string_len, str_len_ptr, bits=2)
str_len_ptr += 2
if str_len_ptr == length:
break
def secret_Loader(): # loads secret from a file
with open('Message.txt', 'r', encoding='utf-8', errors='ignore') as file:
lines = file.readlines()
message = ''.join(lines)
key = config_loader.read('''data['key']''')
# print(key)
enc_message = encryption.encrypt(message, key)
return enc_message
def insert():
start = time.time()
image_path = config_loader.read('''data['environment']['cover_image']''')
photo = Image.open(image_path).convert('RGB') # just insert the image name here
data = np.asarray(photo).copy()
width, height = photo.size
secret = byte2bin(secret_Loader())
secret_pointer = 0
lensecret = len(secret)
insert_length(lensecret, data)
insertion = time.time()
for x in range(1, height):
for y in range(width):
if lensecret > secret_pointer:
# RED
data[x][y][0] = insert_data_in_pixel(data[x][y][0], secret, secret_pointer, bits=2)
secret_pointer += 2
if lensecret == secret_pointer:
break
# Green
data[x][y][1] = insert_data_in_pixel(data[x][y][1], secret, secret_pointer, bits=2)
secret_pointer += 2
if lensecret == secret_pointer:
break
# Blue
data[x][y][2] = insert_data_in_pixel(data[x][y][2], secret, secret_pointer, bits=1)
secret_pointer += 1
if lensecret == secret_pointer:
break
print("data insertion",time.time()-insertion)
generation = time.time()
# print(data)
data = Image.fromarray(data)
print("image generation in ", time.time()-generation)
# data.show()
_ = time.time()
data = data.save(r'stg.PNG')
print("saving time ", time.time()-_)
print('Exectuted in->', time.time() - start)
if __name__ == '__main__':
insert()
the timings
encryption in 1.0841524600982666
data insertion 9.439783811569214
image generation in 0.039893388748168945
saving time 6.283206939697266
Exectuted in-> 17.11327576637268
I thought about multithreading but that is unreliable as every bit in the data is important and it's position in the sequence is also important.
P.S the data insertion time is for 10000
lines of this
this is a message to test the limit of the program let's check when it breaks and how, also i'm running out of words0
so this isn't bad but if it can be improved how can i achieve it?
First post here and I'm jumping in to python with both feet.
My project is to attempt to calculate the position of a underwater robot using only IMU sensors and a speed table.
I am very new to programming and I'm sure I'll get a lot of great feedback on the attached code, but the step I'm currently stuck on is creating a feedback loop between:
UTC[2] (status of the GPS A=available V=not available),
LATD/LOND (GPS position in decimal degrees), and
IMU_LAT/IMU_LON (IMU position in decimal degrees)
The idea would be that if UTC[2] was "A" the logic would equally average IMU_LAT/IMU_LON and LATD/LOND but if UTC[2] was "V" it would only calculate the position based on the last position recorded and IMU_north/IMU_east (offsets based on heading and acceleration values.
import time, inspect
import IMU
import serial
import datetime
import os
import math
import logging
log = open(time.strftime("%Y%m%d-%H%M%S")+'_GSPData.csv','w')
#f.write("UTC TIME,NAVSTATUS,LAT,LON,HDG,SPD,X,Y,Z")
RAD_TO_DEG = 57.29578
M_PI = 3.14159265358979323846
G_GAIN = 0.070 # [deg/s/LSB] If you change the dps for gyro, you need to update this value accordingly
AA = 0.40 # Complementary filter constant
magXmin = 0
magYmin = 0
magZmin = 0
magXmax = 0
magYmax = 0
magZmax = 0
gyroXangle = 0.0
gyroYangle = 0.0
gyroZangle = 0.0
CFangleX = 0.0
CFangleY = 0.0
IMU.detectIMU() #Detect if BerryIMUv1 or BerryIMUv2 is connected.
IMU.initIMU() #Initialise the accelerometer, gyroscope and compass
a = datetime.datetime.now()
ser = serial.Serial('/dev/serial0', 9600)
def truncate(n, decimals=0):
multiplier = 10 ** decimals
return int(n * multiplier) / multiplier
log.write("UTC,NAVSTAT,LAT,LON,HDG,SPD,xm/s,ym/s,zm/s")
log.write("\n")
try:
while True:
#Read the GPS, accelerometer, gyroscope and magnetometer values
NMEA = ser.readline()
NMEA_str_data = NMEA.decode('utf-8')
NMEA_data_arr=NMEA_str_data.split()
UTC = NMEA_str_data.split(',')
GYRx = IMU.readGYRx()
GYRy = IMU.readGYRy()
GYRz = IMU.readGYRz()
ACCx = IMU.readACCx()
ACCy = IMU.readACCy()
ACCz = IMU.readACCz()
#output the values of the accelerometer in m/s
yG = ((ACCx * 0.244)/1000)*9.80665
xG = ((ACCy * 0.244)/1000)*9.80665
zG = ((ACCz * 0.244)/1000)*9.80665
MAGx = IMU.readMAGx()
MAGy = IMU.readMAGy()
MAGz = IMU.readMAGz()
#Apply compass calibration
MAGx -= (magXmin + magXmax) /2
MAGy -= (magYmin + magYmax) /2
MAGz -= (magZmin + magZmax) /2
##Calculate loop Period(LP). How long between Gyro Reads
b = datetime.datetime.now() - a
a = datetime.datetime.now()
LP = b.microseconds/(1000000*1.0)
outputString = "Loop Time %5.2f " % ( LP )
#Convert Gyro raw to degrees per second
rate_gyr_x = GYRx * G_GAIN
rate_gyr_y = GYRy * G_GAIN
rate_gyr_z = GYRz * G_GAIN
#Calculate the angles from the gyro.
gyroXangle+=rate_gyr_x*LP
gyroYangle+=rate_gyr_y*LP
gyroZangle+=rate_gyr_z*LP
#Convert Accelerometer values to degrees
AccXangle = (math.atan2(ACCy,ACCz)*RAD_TO_DEG)
AccYangle = (math.atan2(ACCz,ACCx)+M_PI)*RAD_TO_DEG
#convert the values to -180 and +180
if AccYangle > 90:
AccYangle -= 270.0
else:
AccYangle += 90.0
#Complementary filter used to combine the accelerometer and gyro values.
CFangleX=AA*(CFangleX+rate_gyr_x*LP) +(1 - AA) * AccXangle
CFangleY=AA*(CFangleY+rate_gyr_y*LP) +(1 - AA) * AccYangle
#Calculate heading
heading = 180 * math.atan2(MAGy,MAGx)/M_PI
#Only have our heading between 0 and 360
if heading < 0:
heading += 360
####################################################################
###################Tilt compensated heading#########################
####################################################################
#Normalize accelerometer raw values.
accXnorm = ACCx/math.sqrt(ACCx * ACCx + ACCy * ACCy + ACCz * ACCz)
accYnorm = ACCy/math.sqrt(ACCx * ACCx + ACCy * ACCy + ACCz * ACCz)
accZnorm = ACCz/math.sqrt(ACCx * ACCx + ACCy * ACCy + ACCz * ACCz)
Zms_norm = zG-9.80665
Yms_norm = yG
Xms_norm = xG
#Calculate course
Course = (180*math.atan2(Xms_norm,Yms_norm)/M_PI)
#Only have our course between 0 and 360
if Course < 0:
Course +=360
#Calculate pitch and roll
pitch = math.asin(accXnorm)
roll = -math.asin(accYnorm/math.cos(pitch))
#Calculate the new tilt compensated values
magXcomp = MAGx*math.cos(pitch)+MAGz*math.sin(pitch)
#The compass and accelerometer are orientated differently on the LSM9DS0 and LSM9DS1 and the Z axis on the compass
#is also reversed. This needs to be taken into consideration when performing the calculations
if(IMU.LSM9DS0):
magYcomp = MAGx*math.sin(roll)*math.sin(pitch)+MAGy*math.cos(roll)-MAGz*math.sin(roll)*math.cos(pitch) #LSM9DS0
else:
magYcomp = MAGx*math.sin(roll)*math.sin(pitch)+MAGy*math.cos(roll)+MAGz*math.sin(roll)*math.cos(pitch) #LSM9DS1
#Calculate tilt compensated heading
tiltCompensatedHeading = 180 * math.atan2(magYcomp,magXcomp)/M_PI
if tiltCompensatedHeading < 0:
tiltCompensatedHeading += 360
#convert IMU readings to northings and eastings
IMU_north= (math.cos(tiltCompensatedHeading))*(Yms_norm+Xms_norm)
IMU_east= (math.sin(tiltCompensatedHeading))*(Yms_norm+Xms_norm)
#convert IMU_north to D.D
IMU_north_D= IMU_north/110723.41272
#Convert IMU_east to d.d
IMU_east_D= IMU_east/103616.02936
############################ END ##################################
#"%am/s": no rounding "%bm/s": unsupported "%cm/s": unsupported
#"%dm/s": whole numbers "%em/s": scientific notation "%fm/s": six digits
#"%gm/s": five digits
if NMEA_str_data.startswith('$GNRMC'):
if UTC[2] =="V":
#print("GPS unavaliable","heading",round(tiltCompensatedHeading,2),",course",round(Course,2),xG,yG,zG,"IMU_LAT","IMU_LON")
print("UTC",truncate(float(UTC[1]),0),",IMU",",LAT",",LON",",heading",round(tiltCompensatedHeading,2),",course",round(Course,2),truncate(IMU_north,4),truncate(IMU_east,4))
#log the output GPS invalid
log.write(UTC[1]+','+UTC[2]+','+""+','""+','+str(round(tiltCompensatedHeading,2))+','+UTC[7]+','+str(IMU_north)+','+str(IMU_east))
else:
#convert UTC from DDMM.MMM to DD.DDDD
if UTC[4] =="N":
LATD= (truncate(float(UTC[3]),-2)/100)+((float(UTC[3])-(truncate(float(UTC[3]),-2)))/60)
else:
LATD= -(truncate(float(UTC[3]),-2)/100)+((float(UTC[3])-(truncate(float(UTC[3]),-2)))/60)
if UTC[6] =="E":
LOND= (truncate(float(UTC[5]),-2)/100)+((float(UTC[5])-(truncate(float(UTC[5]),-2)))/60)
else:
LOND= -(truncate(float(UTC[5]),-2)/100)+((float(UTC[5])-(truncate(float(UTC[5]),-2)))/60)
#calculate IMU_LAT
IMU_LAT= LATD+IMU_north_D
#Calculate IMU_LON
IMU_LON= LOND+IMU_east_D
#write the output
print("UTC",truncate(float(UTC[1]),0),",GPS",",LAT",truncate(LATD,5),truncate(IMU_LAT,5),",LON",truncate(LOND,5),truncate(IMU_LON,5),",heading",round(tiltCompensatedHeading,2),",course",round(Course,2),UTC[8],",speed",truncate(float(UTC[7]),2))
#log the output GPS valid
log.write(UTC[1]+','+UTC[2]+','+str(LATD)+','+str(LOND)+','+str(round(tiltCompensatedHeading,2))+','+UTC[7]+','+str(IMU_north)+','+str(IMU_east))
log.write("\n")
#slow program down a bit, makes the output more readable
time.sleep(0.5)
#print(" aX = %fG aY =%fG aZ =%fG " % ( ACCx, ACCy, ACCz))
#slow program down a bit, makes the output more readable
#time.sleep(0.5)
except (KeyboardInterrupt, SystemExit): #when you press ctrl+c
print ("Done.\nExiting.")
log.close()
Like I said I'm new and I'm sure you pros are going to tell me its really sloppy but I will gladly accept any constructive criticism.
Thanks, Troy
I am using my arduino to analyze analog inputs and I am accessing the arduino using the pyfirmata library and I ambasically measuring voltages using the 6 analog inputs on my arduino Uno. I need to find a way to live time feed this data into a CSV efficiently... I am not sure on the best way to do that
Any suggestion would help but please write out the code you suggest. I would prefer to use Pandas if possible because it's easier
voltage0 through voltage5 are my variables and I am trying to report those in a nice format that will later have to be analyzed
import time
from datetime import datetime
import pyfirmata
import pandas as pd
board = pyfirmata.Arduino('/dev/ttyACM1')
analog_pin0 = board.get_pin('a:0:i')
analog_pin1 = board.get_pin('a:1:i')
analog_pin2 = board.get_pin('a:2:i')
analog_pin3 = board.get_pin('a:3:i')
analog_pin4 = board.get_pin('a:4:i')
analog_pin5 = board.get_pin('a:5:i')
it = pyfirmata.util.Iterator(board)
it.start()
analog_pin0.enable_reporting()
analog_pin1.enable_reporting()
analog_pin2.enable_reporting()
analog_pin3.enable_reporting()
analog_pin4.enable_reporting()
analog_pin5.enable_reporting()
data = []
count = 0
x = 0
start = 0
while x <= 1000:
reading0 = analog_pin0.read()
if reading0 != None:
voltage0 = reading0 * 5
voltage0 = round(voltage0,2)
else:
voltage0 = float('nan')
reading1 = analog_pin1.read()
if reading1 != None:
voltage1 = reading1 * 5
voltage1 = round(voltage1,2)
else:
voltage1 = float('nan')
reading2 = analog_pin2.read()
if reading2 != None:
voltage2 = reading2 * 5
voltage2 = round(voltage2,2)
else:
voltage2 = float('nan')
reading3 = analog_pin3.read()
if reading3 != None:
voltage3 = reading3 * 5
voltage3 = round(voltage3,2)
else:
voltage3 = float('nan')
reading4 = analog_pin4.read()
if reading4 != None:
voltage4 = reading4 * 5
voltage4 = round(voltage4,2)
else:
voltage4 = float('nan')
reading5 = analog_pin5.read()
if reading5 != None:
voltage5 = reading5 * 5
voltage5 = round(voltage5,2)
else:
voltage5 = float('nan')
datarow = {'Voltage0': voltage0, 'Voltage1': voltage1, 'Voltage2' : voltage2, 'Voltage3': voltage3, 'Voltage4' : voltage4, 'Voltage5' : voltage5, 'Time' : time.strftime("%Y-%m-%d_%H:%M:%S")}
data.append(datarow)
if count%500 == 0:
dataframe = pd.DataFrame(data)
dataframe.to_csv('data.csv')
x += 1
count += 1
#time.sleep(1)enter code here
Your code seems to work, but it's not very efficient. Every 500 iterations, you rewrite all your data instead of updating your file with the new data in the end. You might consider saving it this way instead:
if count%500 == 0:
dataframe = pd.DataFrame(data)
dataframe.to_csv('data.csv',mode='a',header=False)
data = []
If it's still not fast enough, you might consider saving your data to a binary format such as .npy (numpy format), and convert it later to csv.
I am working on a program that estimates the statistic Tajima's D in a series of sliding windows across a chromosome. The chromosome itself is also divided into a number of different regions with (hopefully) functional significance. The sliding window analysis is performed by my script on each region.
At the start of the program, I define the size of the sliding windows and the size of the steps that move from one window to the next. I import a file which contains the coordinates for each different chromosomal region, and import another file which contains all the SNP data I am working with (this is read line-by-line, as it is a large file). The program loops through the list of chromosomal locations. For each location, it generates an index of steps and windows for the analysis, partitions the SNP data into output files (corresponding with the steps), calculates key statistics for each step file, and combines these statistics to estimate Tajima's D for each window.
The program works well for small files of SNP data. It also works well for the first iteration over the first chromosomal break point. However, for large files of SNP data, the step size in the analysis is inexplicably decreased as the program iterates over each chromosomal regions. For the first chromosomal regions, the step size is 2500 nucleotides (this is what it is suppose to be). For the second chromosome segment, however, the step size is 1966, and for the third it is 732.
If anyone has any suggestions at to why this might be the case, please let me know. I am especially stumped as this program seems to work size for small files but not for larger ones.
My code is below:
import sys
import math
import fileinput
import shlex
import string
windowSize = int(500)
stepSize = int(250)
n = int(50) #number of individuals in the anaysis
SNP_file = open("SNPs-1.txt",'r')
SNP_file.readline()
breakpoints = open("C:/Users/gwilymh/Desktop/Python/Breakpoint coordinates.txt", 'r')
breakpoints = list(breakpoints)
numSegments = len(breakpoints)
# Open a file to store the Tajima's D results:
outputFile = open("C:/Users/gwilymh/Desktop/Python/Sliding Window Analyses-2/Tajima's D estimates.txt", 'a')
outputFile.write(str("segmentNumber\tchrSegmentName\tsegmentStart\tsegmentStop\twindowNumber\twindowStart\twindowStop\tWindowSize\tnSNPs\tS\tD\n"))
#Calculating parameters a1, a2, b1, b2, c1 and c2
numPairwiseComparisons=n*((n-1)/2)
b1=(n+1)/(3*(n-1))
b2=(2*(n**2+n+3))/(9*n*(n-1))
num=list(range(1,n)) # n-1 values as a list
i=0
a1=0
for i in num:
a1=a1+(1/i)
i=i+1
j=0
a2=0
for j in num:
a2=a2+(1/j**2)
j=j+1
c1=(b1/a1)-(1/a1**2)
c2=(1/(a1**2+a2))*(b2 - ((n+2)/(a1*n))+ (a2/a1**2) )
counter6=0
#For each segment, assign a number and identify the start and stop coodrinates and the segment name
for counter6 in range(counter6,numSegments):
segment = shlex.shlex(breakpoints[counter6],posix = True)
segment.whitespace += '\t'
segment.whitespace_split = True
segment = list(segment)
segmentName = segment[0]
segmentNumber = int(counter6+1)
segmentStartPos = int(segment[1])
segmentStopPos = int(segment[2])
outputFile1 = open((("C:/Users/gwilymh/Desktop/Python/Sliding Window Analyses-2/%s_%s_Count of SNPs and mismatches per step.txt")%(str(segmentNumber),str(segmentName))), 'a')
#Make output files to index the lcoations of each window within each segment
windowFileIndex = open((("C:/Users/gwilymh/Desktop/Python/Sliding Window Analyses-2/%s_%s_windowFileIndex.txt")%(str(segmentNumber),str(segmentName))), 'a')
k = segmentStartPos - 1
windowNumber = 0
while (k+1) <=segmentStopPos:
windowStart = k+1
windowNumber = windowNumber+1
windowStop = k + windowSize
if windowStop > segmentStopPos:
windowStop = segmentStopPos
windowFileIndex.write(("%s\t%s\t%s\n")%(str(windowNumber),str(windowStart),str(windowStop)))
k=k+stepSize
windowFileIndex.close()
# Make output files for each step to export the corresponding SNP data into + an index of these output files
stepFileIndex = open((("C:/Users/gwilymh/Desktop/Python/Sliding Window Analyses-2/%s_%s_stepFileIndex.txt")%(str(segmentNumber),str(segmentName))), 'a')
i = segmentStartPos-1
stepNumber = 0
while (i+1) <= segmentStopPos:
stepStart = i+1
stepNumber = stepNumber+1
stepStop = i+stepSize
if stepStop > segmentStopPos:
stepStop = segmentStopPos
stepFile = open((("C:/Users/gwilymh/Desktop/Python/Sliding Window Analyses-2/%s_%s_step_%s.txt")%(str(segmentNumber),str(segmentName),str(stepNumber))), 'a')
stepFileIndex.write(("%s\t%s\t%s\n")%(str(stepNumber),str(stepStart),str(stepStop)))
i=i+stepSize
stepFile.close()
stepFileIndex.close()
# Open the index file for each step in current chromosomal segment
stepFileIndex = open((("C:/Users/gwilymh/Desktop/Python/Sliding Window Analyses-2/%s_%s_stepFileIndex.txt")%(str(segmentNumber),str(segmentName))), 'r')
stepFileIndex = list(stepFileIndex)
numSteps = len(stepFileIndex)
while 1:
currentSNP = SNP_file.readline()
if not currentSNP: break
currentSNP = shlex.shlex(currentSNP,posix=True)
currentSNP.whitespace += '\t'
currentSNP.whitespace_split = True
currentSNP = list(currentSNP)
SNPlocation = int(currentSNP[0])
if SNPlocation > segmentStopPos:break
stepIndexBin = int(((SNPlocation-segmentStartPos-1)/stepSize)+1)
#print(SNPlocation, stepIndexBin)
writeFile = open((("C:/Users/gwilymh/Desktop/Python/Sliding Window Analyses-2/%s_%s_step_%s.txt")%(str(segmentNumber),str(segmentName),str(stepIndexBin))), 'a')
writeFile.write((("%s\n")%(str(currentSNP[:]))))
writeFile.close()
counter3=0
for counter3 in range(counter3,numSteps):
# open up each step in the list of steps across the chromosomal segment:
L=shlex.shlex(stepFileIndex[counter3],posix=True)
L.whitespace += '\t'
L.whitespace_split = True
L=list(L)
#print(L)
stepNumber = int(L[0])
stepStart = int(L[1])
stepStop = int(L[2])
stepSize = int(stepStop-(stepStart-1))
#Now open the file of SNPs corresponding with the window in question and convert it into a list:
currentStepFile = open(("C:/Users/gwilymh/Desktop/Python/Sliding Window Analyses-2/%s_%s_step_%s.txt")%(str(segmentNumber),str(segmentName),str(counter3+1)),'r')
currentStepFile = list(currentStepFile)
nSNPsInCurrentStepFile = len(currentStepFile)
print("number of SNPs in this step is:", nSNPsInCurrentStepFile)
#print(currentStepFile)
if nSNPsInCurrentStepFile == 0:
mismatchesPerSiteList = [0]
else:
# For each line of the file, estimate the per site parameters relevent to Tajima's D
mismatchesPerSiteList = list()
counter4=0
for counter4 in range(counter4,nSNPsInCurrentStepFile):
CountA=0
CountG=0
CountC=0
CountT=0
x = counter4
lineOfData = currentStepFile[x]
counter5=0
for counter5 in range(0,len(lineOfData)):
if lineOfData[counter5]==("A" or "a"): CountA=CountA+1
elif lineOfData[counter5]==("G" or "g"): CountG=CountG+1
elif lineOfData[counter5]==("C" or "c"): CountC=CountC+1
elif lineOfData[counter5]==("T" or "t"): CountT=CountT+1
else: continue
AxG=CountA*CountG
AxC=CountA*CountC
AxT=CountA*CountT
GxC=CountG*CountC
GxT=CountG*CountT
CxT=CountC*CountT
NumberMismatches = AxG+AxC+AxT+GxC+GxT+CxT
mismatchesPerSiteList=mismatchesPerSiteList+[NumberMismatches]
outputFile1.write(str(("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n")%(segmentNumber, segmentName,stepNumber,stepStart,stepStop,stepSize,nSNPsInCurrentStepFile,sum(mismatchesPerSiteList))))
outputFile1.close()
windowFileIndex = open((("C:/Users/gwilymh/Desktop/Python/Sliding Window Analyses-2/%s_%s_windowFileIndex.txt")%(str(segmentNumber),str(segmentName))), 'r')
windowFileIndex = list(windowFileIndex)
numberOfWindows = len(windowFileIndex)
stepData = open((("C:/Users/gwilymh/Desktop/Python/Sliding Window Analyses-2/%s_%s_Count of SNPs and mismatches per step.txt")%(str(segmentNumber),str(segmentName))), 'r')
stepData = list(stepData)
numberOfSteps = len(stepData)
counter = 0
for counter in range(counter, numberOfWindows):
window = shlex.shlex(windowFileIndex[counter], posix = True)
window.whitespace += "\t"
window.whitespace_split = True
window = list(window)
windowNumber = int(window[0])
firstCoordinateInCurrentWindow = int(window[1])
lastCoordinateInCurrentWindow = int(window[2])
currentWindowSize = lastCoordinateInCurrentWindow - firstCoordinateInCurrentWindow +1
nSNPsInThisWindow = 0
nMismatchesInThisWindow = 0
counter2 = 0
for counter2 in range(counter2,numberOfSteps):
step = shlex.shlex(stepData[counter2], posix=True)
step.whitespace += "\t"
step.whitespace_split = True
step = list(step)
lastCoordinateInCurrentStep = int(step[4])
if lastCoordinateInCurrentStep < firstCoordinateInCurrentWindow: continue
elif lastCoordinateInCurrentStep <= lastCoordinateInCurrentWindow:
nSNPsInThisStep = int(step[6])
nMismatchesInThisStep = int(step[7])
nSNPsInThisWindow = nSNPsInThisWindow + nSNPsInThisStep
nMismatchesInThisWindow = nMismatchesInThisWindow + nMismatchesInThisStep
elif lastCoordinateInCurrentStep > lastCoordinateInCurrentWindow: break
if nSNPsInThisWindow ==0 :
S = 0
D = 0
else:
S = nSNPsInThisWindow/currentWindowSize
pi = nMismatchesInThisWindow/(currentWindowSize*numPairwiseComparisons)
print(nSNPsInThisWindow,nMismatchesInThisWindow,currentWindowSize,S,pi)
D = (pi-(S/a1))/math.sqrt(c1*S + c2*S*(S-1/currentWindowSize))
outputFile.write(str(("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n")%(segmentNumber,segmentName,segmentStartPos,segmentStopPos,windowNumber,firstCoordinateInCurrentWindow,lastCoordinateInCurrentWindow,currentWindowSize,nSNPsInThisWindow,S,D)))
A quick search shows that you do change your stepSize on line 110:
stepStart = int(L[1])
stepStop = int(L[2])
stepSize = int(stepStop-(stepStart-1))
stepStop and stepStart appear to depend on your files' contents, so we can't debug it further.