I generate a lots of figures with a script which I do not display but store to harddrive. After a while I get the message
/usr/lib/pymodules/python2.7/matplotlib/pyplot.py:412: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (matplotlib.pyplot.figure) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam figure.max_num_figures).
max_open_warning, RuntimeWarning)
Thus, I tried to close or clear the figures after storing. So far, I tried all of the followings but no one works. I still get the message from above.
plt.figure().clf()
plt.figure().clear()
plt.clf()
plt.close()
plt.close('all')
plt.close(plt.figure())
And furthermore I tried to restrict the number of open figures by
plt.rcParams.update({'figure.max_num_figures':1})
Here follows a piece of sample code that behaves like described above. I added the different options I tried as comments at the places I tried them.
from pandas import DataFrame
from numpy import random
df = DataFrame(random.randint(0,10,40))
import matplotlib.pyplot as plt
plt.ioff()
#plt.rcParams.update({'figure.max_num_figures':1})
for i in range(0,30):
fig, ax = plt.subplots()
ax.hist([df])
plt.savefig("/home/userXYZ/Development/pic_test.png")
#plt.figure().clf()
#plt.figure().clear()
#plt.clf()
#plt.close() # results in an error
#plt.close('all') # also error
#plt.close(plt.figure()) # also error
To be complete, that is the error I get when using plt.close:
can't invoke "event" command: application has been destroyed
while executing "event generate $w <>"
(procedure "ttk::ThemeChanged" line 6)
invoked from within "ttk::ThemeChanged"
The correct way to close your figures would be to use plt.close(fig), as can be seen in the below edit of the code you originally posted.
from pandas import DataFrame
from numpy import random
df = DataFrame(random.randint(0,10,40))
import matplotlib.pyplot as plt
plt.ioff()
for i in range(0,30):
fig, ax = plt.subplots()
ax.hist(df)
name = 'fig'+str(i)+'.png' # Note that the name should change dynamically
plt.savefig(name)
plt.close(fig) # <-- use this line
The error that you describe at the end of your question suggests to me that your problem is not with matplotlib, but rather with another part of your code (such as ttk).
plt.show() is a blocking function, so in the above code, plt.close() will not execute until the fig windows are closed.
You can use plt.ion() at the beginning of your code to make it non-blocking. Even though this has some other implications the fig will be closed.
I was still having the same issue on Python 3.9.7, matplotlib 3.5.1, and VS Code (the issue that no combination of plt.close() closes the figure). I have three loops which the most inner loop plots more than 20 figures. The solution that is working for me is using agg as backend and del someFig after plt.close(someFig). Subsequently, the order of code would be something like:
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
someFig = plt.figure()
.
.
.
someFig.savefig('OUTPUT_PATH')
plt.close(someFig) # --> (Note 1)
del someFig
.
.
.
NOTE 1: If this line is removed, the output figures may not be plotted correctly! Especially when the number of elements to be rendered in the figure is high.
NOTE 2: I don't know whether this solution could backfire or not, but at least it is working and not hugging RAM or preventing plotting figures!
import tensorflow as tf
from matplotlib import pyplot as plt
sample_image = tf.io.read_file(str(PATH / 'Path to your file'))
sample_image = tf.io.decode_jpeg(sample_image)
print(sample_image.shape)
plt.figure("1 - Sample Image ")
plt.title(label="Sample Image", fontsize=12, color="red")
plt.imshow(sample_image)
plt.show(block=False)
plt.pause(3)
plt.close()
plt.show(block=False)
plt.pause(interval) do the trick
This does not really solve my problem, but it is a work-around to handle the high memory consumption I faced and I do not get any of the error messages as before:
from pandas import DataFrame
from numpy import random
df = DataFrame(random.randint(0,10,40))
import matplotlib.pyplot as plt
plt.ioff()
for i in range(0,30):
plt.close('all')
fig, ax = plt.subplots()
ax.hist([df])
plt.savefig("/home/userXYZ/Development/pic_test.png")
import matplotlib.pyplot as pl
%matplot inline
def learning_curves(X_train, y_train, X_test, y_test):
""" Calculates the performance of several models with varying sizes of training data.
The learning and testing error rates for each model are then plotted. """
print ("Creating learning curve graphs for max_depths of 1, 3, 6, and 10. . .")
# Create the figure window
fig = pl.figure(figsize=(10,8))
# We will vary the training set size so that we have 50 different sizes
sizes = np.rint(np.linspace(1, len(X_train), 50)).astype(int)
train_err = np.zeros(len(sizes))
test_err = np.zeros(len(sizes))
# Create four different models based on max_depth
for k, depth in enumerate([1,3,6,10]):
for i, s in enumerate(sizes):
# Setup a decision tree regressor so that it learns a tree with max_depth = depth
regressor = DecisionTreeRegressor(max_depth = depth)
# Fit the learner to the training data
regressor.fit(X_train[:s], y_train[:s])
# Find the performance on the training set
train_err[i] = performance_metric(y_train[:s], regressor.predict(X_train[:s]))
# Find the performance on the testing set
test_err[i] = performance_metric(y_test, regressor.predict(X_test))
# Subplot the learning curve graph
ax = fig.add_subplot(2, 2, k+1)
ax.plot(sizes, test_err, lw = 2, label = 'Testing Error')
ax.plot(sizes, train_err, lw = 2, label = 'Training Error')
ax.legend()
ax.set_title('max_depth = %s'%(depth))
ax.set_xlabel('Number of Data Points in Training Set')
ax.set_ylabel('Total Error')
ax.set_xlim([0, len(X_train)])
# Visual aesthetics
fig.suptitle('Decision Tree Regressor Learning Performances', fontsize=18, y=1.03)
fig.tight_layout()
fig.show()
when I run the learning_curves() function, it shows:
UserWarning:C:\Users\Administrator\Anaconda3\lib\site-packages\matplotlib\figure.py:397: UserWarning: matplotlib is currently using a non-GUI backend, so cannot show the figure
You don't need the line of fig.show(). Just remove it. Then there will be no warning message.
adding %matplotlib inline while importing helps for smooth plots in notebook
%matplotlib inline
import matplotlib.pyplot as plt
%matplotlib inline sets the backend of matplotlib to the 'inline' backend:
With this backend, the output of plotting commands is displayed inline within frontends like the Jupyter notebook, directly below the code cell that produced it. The resulting plots will then also be stored in the notebook document.
You can change the backend used by matplotlib by including:
import matplotlib
matplotlib.use('TkAgg')
before your line 1 import matplotlib.pyplot as pl, as it must be set first. See this answer for more information.
(There are other backend options, but changing backend to TkAgg worked for me when I had a similar problem)
Testing with https://matplotlib.org/examples/animation/dynamic_image.html I just add
%matplotlib notebook
which seems to work but is a little bumpy. I had to stop the kernal now and then :-(
Just type fig instead of fig.show()
You can still save the figure by fig.savefig()
If you want to view it on the web page, you can try
from IPython.display import display
display(fig)
I was trying to make 3d clustering similar to Towards Data Science Tutorial. I first thought fig.show() might be correct, but got the same warning...
Briefly viewed Matplot3d.. but then I tried plt.show() and it displayed my 3d model exactly as anticipated. I guess it makes sense too.
This would be equivalent to your pl.show()
Using python 3.5 and Jupyter Notebook
The error "matplotlib is currently using a non-GUI backend” also occurred when I was trying to display a plot using the command fig.show(). I found that in a Jupyter Notebook, the command fig, ax = plt.subplots() and a plot command need to be in the same cell in order for the plot to be rendered.
For example, the following code will successfully show a bar plot in Out[5]:
In [3]:
import matplotlib.pyplot as plt
%matplotlib inline
In [4]:
x = 'A B C D E F G H'.split()
y = range(1, 9)
In [5]:
fig, ax = plt.subplots()
ax.bar(x, y)
Out[5]: (Container object of 8 artists)
A successful bar plot output
On the other hand, the following code will not show the plot,
In [5]:
fig, ax = plt.subplots()
Out[5]:
An empty plot with only a frame
In [6]:
ax.bar(x, y)
Out[6]: (Container object of 8 artists)
In Out[6] there is only a statement of "Container object of 8 artists" but no bar plot is shown.
I had the same error. Then I used
import matplotlib
matplotlib.use('WebAgg')
it works fine.(You have to install tornado to view in web, (pip install tornado))
Python version: 3.7
matplotlib version: 3.1.1
If you are using any profiling libraries like pandas_profiling, try commenting out them and execute the code. In my case I was using pandas_profiling to generate a report for a sample train data. commenting out import pandas_profiling helped me solve my issue.
%matplotlib notebook worked for me.
But the takes time to load and but it is clear.
You imported matplotlib.pyplot as pl. In the end type pl.show() instead of fig.show()
I'm brand new to Python, I just switched from Matlab. The distro is Anaconda 2.1.0 and I'm using the Spyder IDE that came with it.
I'm trying to make a scatter plot with equal ratios on the x and y axes, so that this code prints a square figure with the vertices of a regular hexagon plotted inside.
import numpy
import cmath
import matplotlib
coeff = [1,0,0,0,0,0,-1]
x = numpy.roots(coeff)
zeroplot = plot(real(x),imag(x), 'ro')
plt.gca(aspect='equal')
plt.show()
But plt.gca(aspect='equal') returns a blank figure with axes [0,1,0,1], and plt.show() returns nothing.
I think the main problem is that plt.gca(aspect='equal') doesn't just grab the current axis and set its aspect ratio. From the documentation, (help(plt.gca)) it appears to create a new axis if the current one doesn't have the correct aspect ratio, so the immediate fix for this should be to replace plt.gca(aspect='equal') with:
ax = plt.gca()
ax.set_aspect('equal')
I should also mention that I had a little bit of trouble getting your code running because you're using pylab to automatically load numpy and matplotlib functions: I had to change my version to:
import numpy
import cmath
from matplotlib import pyplot as plt
coeff = [1,0,0,0,0,0,-1]
x = numpy.roots(coeff)
zeroplot = plt.plot(numpy.real(x), numpy.imag(x), 'ro')
ax = plt.gca()
ax.set_aspect('equal')
plt.show()
People who are already comfortable with Python don't generally use Pylab, from my experience. In future you might find it hard to get help on things if people don't realise that you're using Pylab or aren't familiar with how it works. I'd recommend disabling it and trying to get used to accessing the functions you need through their respective modules (e.g. using numpy.real instead of just real)
This displays the figure in a GUI:
import matplotlib.pyplot as plt
plt.plot([1, 2, 3], [1, 4, 9])
plt.show()
But how do I instead save the figure to a file (e.g. foo.png)?
When using matplotlib.pyplot.savefig, the file format can be specified by the extension:
from matplotlib import pyplot as plt
plt.savefig('foo.png')
plt.savefig('foo.pdf')
That gives a rasterized or vectorized output respectively.
In addition, there is sometimes undesirable whitespace around the image, which can be removed with:
plt.savefig('foo.png', bbox_inches='tight')
Note that if showing the plot, plt.show() should follow plt.savefig(); otherwise, the file image will be blank.
As others have said, plt.savefig() or fig1.savefig() is indeed the way to save an image.
However I've found that in certain cases the figure is always shown. (eg. with Spyder having plt.ion(): interactive mode = On.) I work around this by
forcing the the figure window to close with:
plt.close(figure_object)
(see documentation). This way I don't have a million open figures during a large loop. Example usage:
import matplotlib.pyplot as plt
fig, ax = plt.subplots( nrows=1, ncols=1 ) # create figure & 1 axis
ax.plot([0,1,2], [10,20,3])
fig.savefig('path/to/save/image/to.png') # save the figure to file
plt.close(fig) # close the figure window
You should be able to re-open the figure later if needed to with fig.show() (didn't test myself).
The solution is:
pylab.savefig('foo.png')
Just found this link on the MatPlotLib documentation addressing exactly this issue:
http://matplotlib.org/faq/howto_faq.html#generate-images-without-having-a-window-appear
They say that the easiest way to prevent the figure from popping up is to use a non-interactive backend (eg. Agg), via matplotib.use(<backend>), eg:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.savefig('myfig')
I still personally prefer using plt.close( fig ), since then you have the option to hide certain figures (during a loop), but still display figures for post-loop data processing. It is probably slower than choosing a non-interactive backend though - would be interesting if someone tested that.
UPDATE: for Spyder, you usually can't set the backend in this way (Because Spyder usually loads matplotlib early, preventing you from using matplotlib.use()).
Instead, use plt.switch_backend('Agg'), or Turn off "enable support" in the Spyder prefs and run the matplotlib.use('Agg') command yourself.
From these two hints: one, two
If you don't like the concept of the "current" figure, do:
import matplotlib.image as mpimg
img = mpimg.imread("src.png")
mpimg.imsave("out.png", img)
import datetime
import numpy as np
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt
# Create the PdfPages object to which we will save the pages:
# The with statement makes sure that the PdfPages object is closed properly at
# the end of the block, even if an Exception occurs.
with PdfPages('multipage_pdf.pdf') as pdf:
plt.figure(figsize=(3, 3))
plt.plot(range(7), [3, 1, 4, 1, 5, 9, 2], 'r-o')
plt.title('Page One')
pdf.savefig() # saves the current figure into a pdf page
plt.close()
plt.rc('text', usetex=True)
plt.figure(figsize=(8, 6))
x = np.arange(0, 5, 0.1)
plt.plot(x, np.sin(x), 'b-')
plt.title('Page Two')
pdf.savefig()
plt.close()
plt.rc('text', usetex=False)
fig = plt.figure(figsize=(4, 5))
plt.plot(x, x*x, 'ko')
plt.title('Page Three')
pdf.savefig(fig) # or you can pass a Figure object to pdf.savefig
plt.close()
# We can also set the file's metadata via the PdfPages object:
d = pdf.infodict()
d['Title'] = 'Multipage PDF Example'
d['Author'] = u'Jouni K. Sepp\xe4nen'
d['Subject'] = 'How to create a multipage pdf file and set its metadata'
d['Keywords'] = 'PdfPages multipage keywords author title subject'
d['CreationDate'] = datetime.datetime(2009, 11, 13)
d['ModDate'] = datetime.datetime.today()
I used the following:
import matplotlib.pyplot as plt
p1 = plt.plot(dates, temp, 'r-', label="Temperature (celsius)")
p2 = plt.plot(dates, psal, 'b-', label="Salinity (psu)")
plt.legend(loc='upper center', numpoints=1, bbox_to_anchor=(0.5, -0.05), ncol=2, fancybox=True, shadow=True)
plt.savefig('data.png')
plt.show()
plt.close()
I found very important to use plt.show after saving the figure, otherwise it won't work.figure exported in png
The other answers are correct. However, I sometimes find that I want to open the figure object later. For example, I might want to change the label sizes, add a grid, or do other processing. In a perfect world, I would simply rerun the code generating the plot, and adapt the settings. Alas, the world is not perfect. Therefore, in addition to saving to PDF or PNG, I add:
with open('some_file.pkl', "wb") as fp:
pickle.dump(fig, fp, protocol=4)
Like this, I can later load the figure object and manipulate the settings as I please.
I also write out the stack with the source-code and locals() dictionary for each function/method in the stack, so that I can later tell exactly what generated the figure.
NB: Be careful, as sometimes this method generates huge files.
After using the plot() and other functions to create the content you want, you could use a clause like this to select between plotting to the screen or to file:
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(4, 5)) # size in inches
# use plot(), etc. to create your plot.
# Pick one of the following lines to uncomment
# save_file = None
# save_file = os.path.join(your_directory, your_file_name)
if save_file:
plt.savefig(save_file)
plt.close(fig)
else:
plt.show()
If, like me, you use Spyder IDE, you have to disable the interactive mode with :
plt.ioff()
(this command is automatically launched with the scientific startup)
If you want to enable it again, use :
plt.ion()
You can either do:
plt.show(hold=False)
plt.savefig('name.pdf')
and remember to let savefig finish before closing the GUI plot. This way you can see the image beforehand.
Alternatively, you can look at it with plt.show()
Then close the GUI and run the script again, but this time replace plt.show() with plt.savefig().
Alternatively, you can use
fig, ax = plt.figure(nrows=1, ncols=1)
plt.plot(...)
plt.show()
fig.savefig('out.pdf')
According to question Matplotlib (pyplot) savefig outputs blank image.
One thing should note: if you use plt.show and it should after plt.savefig, or you will give a blank image.
A detailed example:
import numpy as np
import matplotlib.pyplot as plt
def draw_result(lst_iter, lst_loss, lst_acc, title):
plt.plot(lst_iter, lst_loss, '-b', label='loss')
plt.plot(lst_iter, lst_acc, '-r', label='accuracy')
plt.xlabel("n iteration")
plt.legend(loc='upper left')
plt.title(title)
plt.savefig(title+".png") # should before plt.show method
plt.show()
def test_draw():
lst_iter = range(100)
lst_loss = [0.01 * i + 0.01 * i ** 2 for i in xrange(100)]
# lst_loss = np.random.randn(1, 100).reshape((100, ))
lst_acc = [0.01 * i - 0.01 * i ** 2 for i in xrange(100)]
# lst_acc = np.random.randn(1, 100).reshape((100, ))
draw_result(lst_iter, lst_loss, lst_acc, "sgd_method")
if __name__ == '__main__':
test_draw()
The Solution :
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.style.use('ggplot')
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
plt.figure()
ts.plot()
plt.savefig("foo.png", bbox_inches='tight')
If you do want to display the image as well as saving the image use:
%matplotlib inline
after
import matplotlib
When using matplotlib.pyplot, you must first save your plot and then close it using these 2 lines:
fig.savefig('plot.png') # save the plot, place the path you want to save the figure in quotation
plt.close(fig) # close the figure window
import matplotlib.pyplot as plt
plt.savefig("image.png")
In Jupyter Notebook you have to remove plt.show() and add plt.savefig(), together with the rest of the plt-code in one cell.
The image will still show up in your notebook.
Additionally to those above, I added __file__ for the name so the picture and Python file get the same names. I also added few arguments to make It look better:
# Saves a PNG file of the current graph to the folder and updates it every time
# (nameOfimage, dpi=(sizeOfimage),Keeps_Labels_From_Disappearing)
plt.savefig(__file__+".png",dpi=(250), bbox_inches='tight')
# Hard coded name: './test.png'
Just a extra note because I can't comment on posts yet.
If you are using plt.savefig('myfig') or something along these lines make sure to add a plt.clf() after your image is saved. This is because savefig does not close the plot and if you add to the plot after without a plt.clf() you'll be adding to the previous plot.
You may not notice if your plots are similar as it will plot over the previous plot, but if you are in a loop saving your figures the plot will slowly become massive and make your script very slow.
Given that today (was not available when this question was made) lots of people use Jupyter Notebook as python console, there is an extremely easy way to save the plots as .png, just call the matplotlib's pylab class from Jupyter Notebook, plot the figure 'inline' jupyter cells, and then drag that figure/image to a local directory. Don't forget
%matplotlib inline in the first line!
As suggested before, you can either use:
import matplotlib.pyplot as plt
plt.savefig("myfig.png")
For saving whatever IPhython image that you are displaying. Or on a different note (looking from a different angle), if you ever get to work with open cv, or if you have open cv imported, you can go for:
import cv2
cv2.imwrite("myfig.png",image)
But this is just in case if you need to work with Open CV. Otherwise plt.savefig() should be sufficient.
well, I do recommend using wrappers to render or control the plotting. examples can be mpltex (https://github.com/liuyxpp/mpltex) or prettyplotlib (https://github.com/olgabot/prettyplotlib).
import mpltex
#mpltex.acs_decorator
def myplot():
plt.figure()
plt.plot(x,y,'b-',lable='xxx')
plt.tight_layout(pad=0.5)
plt.savefig('xxxx') # the figure format was controlled by the decorator, it can be either eps, or pdf or png....
plt.close()
I basically use this decorator a lot for publishing academic papers in various journals at American Chemical Society, American Physics Society, Opticcal Society American, Elsivier and so on.
An example can be found as following image (https://github.com/MarkMa1990/gradientDescent):
You can do it like this:
def plotAFig():
plt.figure()
plt.plot(x,y,'b-')
plt.savefig("figurename.png")
plt.close()
Nothing was working for me. The problem is that the saved imaged was very small and I could not find how the hell make it bigger.
This seems to make it bigger, but still not full screen.
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.set_size_inches
fig.set_size_inches((w, h))
Hope that helps somebody.
You can save your image with any extension(png, jpg,etc.) and with the resolution you want. Here's a function to save your figure.
import os
def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
print("Saving figure", fig_id)
if tight_layout:
plt.tight_layout()
plt.savefig(path, format=fig_extension, dpi=resolution)
'fig_id' is the name by which you want to save your figure. Hope it helps:)
using 'agg' due to no gui on server.
Debugging on ubuntu 21.10 with gui and VSC.
In debug, trying to both display a plot and then saving to file for web UI.
Found out that saving before showing is required, otherwise saved plot is blank. I suppose that showing will clear the plot for some reason. Do this:
plt.savefig(imagePath)
plt.show()
plt.close(fig)
Instead of this:
plt.show()
plt.savefig(imagePath)
plt.close(fig)
I need to get a plot that fits the data automatically using matplotlib. This is the code I was given:
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
....
lines = LineCollection(mpl.line_holder, colors=mpl.colorholder , linestyle='solid')
plt.axes().add_collection(lines)
plt.axes().set_aspect('equal', 'datalim')
plt.draw()
plt.show()
This creates a plot, however the window is always the same (0-~.8) no matter what the data is, even if all of the data is outside that window. The resulting window has no ability to zoom out, only in, so this is a major problem. I can't find anywhere where any kind of sizing is set, nor can II find details on what defaults are. I need the window to automatically fit the data, but I can't find any function that does it (for some reason, autoscale_on(True) doesn't do it). The data is highly variable, so setting hard limits is not an option. How can i get this to display properly?
Not sure if this what you wanted, but I can change it if this was not what you were looking for.
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
import pylab as p
fig = plt.figure()
pts1 = []
pts2 = []
for i in range(100):
pts1.append([i,i])
pts2.append([-i-3,-i])
lines = LineCollection([pts1,pts2], linestyles='solid')
subplt = fig.add_subplot(111,aspect='equal')
subplt.add_collection(lines)
subplt.autoscale_view(True,True,True)
p.show()
Hope that helps.
Have a look at Eli Bendersky's Website, specifically this post. The example at the bottom of the post can be downloaded. It allows you to set whether the x axis will follow the plot or will remain static while the y axis changes with the data.