Calculate days difference between every date column in Pandas dataframe at once - python

I have a sample dataframe below df:
Step 1 Step 2 Step 3 Step 4
0 1/1 2/13 3/23 4/7
1 1/6 2/27 3/26 4/11
2 1/9 3/2 4/1 4/18
I would like to get the days difference in days between each successive step all at once, and create a new column for each difference, like so:
Step 1 Step 2 Step 3 Step 4 diff_btwn_1_2 diff_btwn_2_3 diff_btwn_3_4
0 1/1 2/13 3/23 4/7 43 38 15
1 1/6 2/27 3/26 4/11 52 27 16
2 1/9 3/2 4/1 4/18 52 30 17
Is there a way to do this efficiently in Python? I am running into some complications trying to loop through columns and dynamically name the variables based on the integer value associated with the step.

Convert your dates to_datetime, which will given a mostly useless year value of 1900 (or assign your own year if you know what it should be). This then allows you to use diff to calculate the date difference between successive columns. Finally join the results back.
To keep your initial formatted dates, I'll work with a copy of your DataFrame that has datetime values.
Also, since you don't have year information you may need to be careful with the days depending upon whether you expect it to be a leap year or not.
import pandas as pd
dfdates = df.apply(pd.to_datetime, format='%m/%d')
# Get difference in days, drop first `NaN` diff.
diffs = dfdates.diff(axis=1).apply(lambda x: x.dt.days).iloc[:, 1:]
# Rename columns
diffs.columns = 'diff_' + dfdates.columns[:-1] + '-' + diffs.columns
df = pd.concat([df, diffs], axis=1)
print(df)
Step 1 Step 2 Step 3 Step 4 diff_Step 1-Step 2 diff_Step 2-Step 3 diff_Step 3-Step 4
0 1/1 2/13 3/23 4/7 43 38 15
1 1/6 2/27 3/26 4/11 52 27 16
2 1/9 3/2 4/1 4/18 52 30 17

I figured out a solution. A couple of things, first my data originally does have dates with the year. Therefore, in my solution below, you will see I don't change the fields to datetimes (excluded the year in original post to save space). Secondly, there are NaT values in my original dataset, and solution posted by ALollz was causing unexpected behaviors (but works perfectly if there are no NaTs). I can't drop the NaT values from the original process_df because there would be almost no data in the later steps.
def create_days_diff_dataframe(data):
'''Creates days difference column for every sequential milestone
and adds to new dataframe'''
days_diff_df = pd.DataFrame()
for i in range(len(data.columns[:-1])):
days_diff_btwn_milestones = (data.iloc[:, i + 1] - data.iloc[:, i]).dt.days
days_diff_df['days_diff_' + data.columns[i] + ' - ' + data.columns[i + 1]] = days_diff_btwn_milestones
return days_diff_df
days_diff_df = create_days_diff_dataframe(process_df)

Related

Counting consecutive days of temperature data

So I have some sea surface temperature anomaly data. These data have been filtered down so that these are the values that are below a certain threshold. However, I am trying to identify cold spells - that is, to isolate events that last longer than 5 consecutive days. A sample of my data is below (I've been working between xarray datasets/dataarrays and pandas dataframes). Note, the 'day' is the day number of the month I am looking at (eventually will be expanded to the whole year). I have been scouring SO/the internet for ways to extract these 5-day-or-longer events based on the 'day' column, but I haven't gotten anything to work. I'm still relatively new to coding so my first thought was looping over the rows of the 'day' column but I'm not sure. Any insight is appreciated.
Here's what some of my data look like as a pandas df:
lat lon time day ssta
5940 24.125 262.375 1984-06-03 3 -1.233751
21072 24.125 262.375 1984-06-04 4 -1.394495
19752 24.125 262.375 1984-06-05 5 -1.379742
10223 24.125 262.375 1984-06-27 27 -1.276407
47355 24.125 262.375 1984-06-28 28 -1.840763
... ... ... ... ... ...
16738 30.875 278.875 2015-06-30 30 -1.345640
3739 30.875 278.875 2020-06-16 16 -1.212824
25335 30.875 278.875 2020-06-17 17 -1.446407
41891 30.875 278.875 2021-06-01 1 -1.714249
27740 30.875 278.875 2021-06-03 3 -1.477497
64228 rows × 5 columns
As a filtered xarray:
xarray.Dataset
Dimensions: lat: 28, lon: 68, time: 1174
Coordinates:
time (time) datetime64[ns] 1982-06-01 ... 2021-06-04
lon (lon) float32 262.1 262.4 262.6 ... 278.6 278.9
lat (lat) float32 24.12 24.38 24.62 ... 30.62 30.88
day (time) int64 1 2 3 4 5 6 7 ... 28 29 30 1 2 3 4
Data variables:
ssta (time, lat, lon) float32 nan nan nan nan ... nan nan nan nan
Attributes: (0)
TLDR; I want to identify (and retain the information of) events that are 5+ consecutive days, ie if there were a day 3 through day 8, or day 21 through day 30, etc.
I think rather than filtering your original data you should try to do it the pandas way which in this case means obtain a series with true false values depending on your condition.
Your data seems not to include temperatures so here is my example:
import pandas as pd
import numpy as np
df = pd.DataFrame(data={'temp':np.random.randint(10,high=40,size=64228,dtype='int64')})
Will generate a DataFrame with a single column containing random temperatures between 10 and 40 degrees. Notice that I can just work with the auto generated index but you might have to switch it to a column like time or date or something like that using .set_index. Say we are interested in the consecutive days with more than 30 degrees.
is_over_30 = df['temp'] > 30
will give us a True/False array with that information. Notice that this format is very useful since we can index with it. E.g. df[is_over_30] will give us the rows of the dataframe for days where the temperature is over 30 deg. Now we wanna shift the True/False values in is_over_30 one spot forward and generate a new series that is true if both are true like so
is_over_30 & np.roll(is_over_30, -1)
Basically we are done here and could write 3 more of those & rolls. But there is a way to write it more concise.
from functools import reduce
is_consecutively_over_30 = reduce(lambda a,b: a&b, [np.roll(is_over_30, -i) for i in range(5)])
Keep in mind that that even though the last 4 days can't be consecutively over 30 deg this might still happen here since roll shifts the first values into the position relevant for that. But you can just set the last 4 values to False to resolve this.
is_consecutively_over_30[-4:] = False
You can pull the day ranges of the spells using this approach:
min_spell_days = 6
days = {'day': [1,2,5,6,7,8,9,10,17,19,21,22,23,24,25,26,27,31]}
df = pd.DataFrame(days)
Find number of days between consecutive entries:
diff = df['day'].diff()
Mark the last day of a spell:
df['last'] = (diff == 1) & (diff.shift(-1) > 1)
Accumulate the number of days in each spell:
df['diff0'] = np.where(diff > 1, 0, diff)
df['cs'] = df['diff0'].eq(0).cumsum()
df['spell_days'] = df.groupby('cs')['diff0'].transform('cumsum')
Mark the last entry as the last day of a spell if applicable:
if diff.iat[-1] == 1:
df['last'].iat[-1] = True
Select the last day of all qualifying spells:
df_spells = (df[df['last'] & (df['spell_days'] >= (min_spell_days-1))]).copy()
Identify the start, end and duration of each spell:
df_spells['end_day'] = df_spells['day']
df_spells['start_day'] = (df_spells['day'] - df['spell_days'])
df_spells['spell_days'] = df['spell_days'] + 1
Resulting df:
df_spells[['start_day','end_day','spell_days']].astype('int')
start_day end_day spell_days
7 5 10 6
16 21 27 7
Also, using date arithmetic 'day' you could represent a serial day number relative to some base date - like 1/1/1900. That way spells that span month and year boundaries could be handled. It would then be trivial to convert back to a date using date arithmetic and that serial number.

Traversing groups of group by object pandas

I need help with some big pandas issue.
As a lot of people asked to have the real input and real desired output in order to answer the question, there it goes:
So I have the following dataframe
Date user cumulative_num_exercises total_exercises %_exercises
2017-01-01 1 2 7 28,57
2017-01-01 2 1 7 14.28
2017-01-01 4 3 7 42,85
2017-01-01 10 1 7 14,28
2017-02-02 1 2 14 14,28
2017-02-02 2 3 14 21,42
2017-02-02 4 4 14 28,57
2017-02-02 10 5 14 35,71
2017-03-03 1 3 17 17,64
2017-03-03 2 3 17 17,64
2017-03-03 4 5 17 29,41
2017-03-03 10 6 17 35,29
%_exercises_accum
28,57
42,85
85,7
100
14,28
35,7
64,27
100
17,64
35,28
64,69
100
-The column %_exercises is the value of the column (cumulative_num_exercises/total_exercises)*100
-The column %_exercises_accum is the value of the sum of the %_exercises for each month. (Note that at the end of each month, it reaches the value 100).
-I need to calculate, whith this data, the % of users that contributed to do a 50%, 80% and 90% of the total exercises, during each month.
-In order to do so, I have thought to create a new column, called category, which will later be used to count how many users contributed to each of the 3 percentages (50%, 80% and 90%). The category column takes the following values:
0 if the user did a %_exercises_accum = 0.
1 if the user did a %_exercises_accum < 50 and > 0.
50 if the user did a %_exercises_accum = 50.
80 if the user did a %_exercises_accum = 80.
90 if the user did a %_exercises_accum = 90.
And so on, because there are many cases in order to determine who contributes to which percentage of the total number of exercises on each month.
I have already determined all the cases and all the values that must be taken.
Basically, I traverse the dataframe using a for loop, and with two main ifs:
if (df.iloc[i][date] == df.iloc[i][date].shift()):
calculations to determine the percentage or percentages to which the user from the second to the last row of the same month group contributes
(because the same user can contribute to all the percentages, or to more than one)
else:
calculations to determine to which percentage of exercises the first
member of each
month group contributes.
The calculations involve:
Looking at the value of the category column in the previous row using shift().
Doing while loops inside the for, because when a user suddenly reaches a big percentage, we need to go back for the users in the same month, and change their category_column value to 50, as they have contributed to the 50%, but didn't reach it. for instance, in this situation:
Date %_exercises_accum
2017-01-01 1,24
2017-01-01 3,53
2017-01-01 20,25
2017-01-01 55,5
The desired output for the given dataframe at the beginning of the question would include the same columns as before (date, user, cumulative_num_exercises, total_exercises, %_exercises and %_exercises_accum) plus the category column, which is the following:
category
50
50
508090
90
50
50
5080
8090
50
50
5080
8090
Note that the rows with the values: 508090, or 8090, mean that that user is contributing to create:
508090: both 50%, 80% and 90% of total exercises in a month.
8090: both 80% and 90% of exercises in a month.
Does anyone know how can I simplify this for loop by traversing the groups of a group by object?
Thank you very much!
Given no sense of what calculations you wish to accomplish, this is my best guess at what you're looking for. However, I'd re-iterate Datanovice's point that the best way to get answers is to provide a sample output.
You can slice to each unique date using the following code:
dates = ['2017-01-01', '2017-01-01','2017-01-01','2017-01-01','2017-02-02','2017-02-02','2017-02-02','2017-02-02','2017-03-03','2017-03-03','2017-03-03','2017-03-03']
df = pd.DataFrame(
{'date':pd.to_datetime(dates),
'user': [1,2,4,10,1,2,4,10,1,2,4,10],
'cumulative_num_exercises':[2,1,3,1,2,3,4,5,3,3,5,6],
'total_exercises':[7,7,7,7,14,14,14,14,17,17,17,17]}
)
df = df.set_index('date')
for idx in df.index.unique():
hold = df.loc[idx]
### YOUR CODE GOES HERE ###

Pandas: Group by bi-monthly date field

I am trying to group by hospital staff working hours bi monthly. I have raw data on daily basis which look like below.
date hourse_spent emp_id
9/11/2016 8 1
15/11/2016 8 1
22/11/2016 8 2
23/11/2016 8 1
How I want to group by is.
cycle hourse_spent emp_id
1/11/2016-15/11/2016 16 1
16/11/2016-31/11/2016 8 2
16/11/2016-31/11/2016 8 1
I am trying to do the same with grouper and frequency in pandas something as below.
data.set_index('date',inplace=True)
print data.head()
dt = data.groupby(['emp_id', pd.Grouper(key='date', freq='MS')])['hours_spent'].sum().reset_index().sort_values('date')
#df.resample('10d').mean().interpolate(method='linear',axis=0)
print dt.resample('SMS').sum()
I also tried resampling
df1 = dt.resample('MS', loffset=pd.Timedelta(15, 'd')).sum()
data.set_index('date',inplace=True)
df1 = data.resample('MS', loffset=pd.Timedelta(15, 'd')).sum()
But this is giving data of 15 days interval not like 1 to 15 and 15 to 31.
Please let me know what I am doing wrong here.
You were almost there. This will do it -
dt = df.groupby(['emp_id', pd.Grouper(key='date', freq='SM')])['hours_spent'].sum().reset_index().sort_values('date')
emp_id date hours_spent
1 2016-10-31 8
1 2016-11-15 16
2 2016-11-15 8
The freq='SM' is the concept of semi-months which will use the 15th and the last day of every month
Put DateTime-Values into Bins
If I got you right, you basically want to put your values in the date column into bins. For this, pandas has the pd.cut() function included, which does exactly what you want.
Here's an approach which might help you:
import pandas as pd
df = pd.DataFrame({
'hours' : 8,
'emp_id' : [1,1,2,1],
'date' : [pd.datetime(2016,11,9),
pd.datetime(2016,11,15),
pd.datetime(2016,11,22),
pd.datetime(2016,11,23)]
})
bins_dt = pd.date_range('2016-10-16', freq='SM', periods=3)
cycle = pd.cut(df.date, bins_dt)
df.groupby([cycle, 'emp_id']).sum()
Which gets you:
cycle emp_id hours
------------------------ ------ ------
(2016-10-31, 2016-11-15] 1 16
2 NaN
(2016-11-15, 2016-11-30] 1 8
2 8
Had a similar question, here was my solution:
df1['BiMonth'] = df1['Date'] + pd.DateOffset(days=-1) + pd.offsets.SemiMonthEnd()
df1['BiMonth'] = df1['BiMonth'].dt.to_period('D')
The construction "df1['Date'] + pd.DateOffset(days=-1)" will take whatever is in the date column and -1 day.
The construction "+ pd.offsets.SemiMonthEnd()" converts it to a bimonthly basket, but its off by a day unless you reduce the reference date by 1.
The construction "df1['BiMonth'] = df1['BiMonth'].dt.to_period('D')" cleans out the time so you just have days.

How to convert this to a for-loop with an output to CSV

I'm trying to put together a generic piece of code that would:
Take a time series for some price data and divide it into deciles, e.g. take the past 18m of gold prices and divide it into deciles [DONE, see below]
date 4. close decile
2017-01-03 1158.2 0
2017-01-04 1166.5 1
2017-01-05 1181.4 2
2017-01-06 1175.7 1
... ...
2018-04-23 1326.0 7
2018-04-24 1333.2 8
2018-04-25 1327.2 7
[374 rows x 2 columns]
Pull out the dates for a particular decile, then create a secondary datelist with an added 30 days
#So far only for a single decile at a time
firstdecile = gold.loc[gold['decile'] == 1]
datelist = list(pd.to_datetime(firstdecile.index))
datelist2 = list(pd.to_datetime(firstdecile.index) + pd.DateOffset(months=1))
Take an average of those 30-day price returns for each decile
level1 = gold.ix[datelist]
level2 = gold.ix[datelist2]
level2.index = level2.index - pd.DateOffset(months=1)
result = pd.merge(level1,level2, how='inner', left_index=True, right_index=True)
def ret(one, two):
return (two - one)/one
pricereturns = result.apply(lambda x :ret(x['4. close_x'], x['4. close_y']), axis=1)
mean = pricereturns.mean()
Return the list of all 10 averages in a single CSV file
So far I've been able to put together something functional that does steps 1-3 but only for a single decile, but I'm struggling to expand this to a looped-code for all 10 deciles at once with a clean CSV output
First append the close price at t + 1 month as a new column on the whole dataframe.
gold2_close = gold.loc[gold.index + pd.DateOffset(months=1), 'close']
gold2_close.index = gold.index
gold['close+1m'] = gold2_close
However practically relevant should be the number of trading days, i.e. you won't have prices for the weekend or holidays. So I'd suggest you shift by number of rows, not by daterange, i.e. the next 20 trading days
gold['close+20'] = gold['close'].shift(periods=-20)
Now calculate the expected return for each row
gold['ret'] = (gold['close+20'] - gold['close']) / gold['close']
You can also combine steps 1. and 2. directly so you don't need the additional column (only if you shift by number of rows, not by fixed daterange due to reindexing)
gold['ret'] = (gold['close'].shift(periods=-20) - gold['close']) / gold['close']
Since you already have your deciles, you just need to groupby the deciles and aggregate the returns with mean()
gold_grouped = gold.groupby(by="decile").mean()
Putting in some random data you get something like the dataframe below. close and ret are the averages for each decile. You can create a csv from a dataframe via pandas.DataFrame.to_csv
close ret
decile
0 1238.343597 -0.018290
1 1245.663315 0.023657
2 1254.073343 -0.025934
3 1195.941312 0.009938
4 1212.394511 0.002616
5 1245.961831 -0.047414
6 1200.676333 0.049512
7 1181.179956 0.059099
8 1214.438133 0.039242
9 1203.060985 0.029938

Grouping records with close DateTimes in Python pandas DataFrame

I have been spinning my wheels with this problem and was wondering if anyone has any insight on how best to approach it. I have a pandas DataFrame with a number of columns, including one datetime64[ns]. I would like to find some way to 'group' records together which have datetimes which are very close to one another. For example, I might be interested in grouping the following transactions together if they occur within two seconds of each other by assigning a common ID called Grouped ID:
Transaction ID Time Grouped ID
1 08:10:02 1
2 08:10:03 1
3 08:10:50
4 08:10:55
5 08:11:00 2
6 08:11:01 2
7 08:11:02 2
8 08:11:03 3
9 08:11:04 3
10 08:15:00
Note that I am not looking to have the time window expand ad infinitum if transactions continue to occur at quick intervals - once a full 2 second window has passed, a new window would begin with the next transaction (as shown in transactions 5 - 9). Additionally, I will ultimately be performing this analysis at the millisecond level (i.e. combine transactions within 50 ms) but stuck with seconds for ease of presentation above.
Thanks very much for any insight you can offer!
The solution i suggest requires you to reindex your data with your Time data.
You can use a list of datetimes with the desired frequency, use searchsorted to find the nearest datetimes in your index, and then use it for slicing (as suggested in question python pandas dataframe slicing by date conditions and Python pandas, how to truncate DatetimeIndex and fill missing data only in certain interval).
I'm using pandas 0.14.1 and the DataOffset object (http://pandas.pydata.org/pandas-docs/dev/timeseries.html?highlight=dateoffset). I didn't check with datetime64, but i guess you might adapt the code. DataOffset goes down to the microsecond level.
Using the following code,
import pandas as pd
import pandas.tseries.offsets as pto
import numpy as np
# Create some ome test data
d_size = 15
df = pd.DataFrame({"value": np.arange(d_size)}, index=pd.date_range("2014/11/03", periods=d_size, freq=pto.Milli()))
# Define periods to define groups (ticks)
ticks = pd.date_range("2014/11/03", periods=d_size/3, freq=5*pto.Milli())
# find nearest indexes matching the ticks
index_ticks = np.unique(df.index.searchsorted(ticks))
# make a dataframe with the group ids
dgroups = pa.DataFrame(index=df.index, columns=['Group id',])
# sets the group ids
for i, (mini, maxi) in enumerate(zip(index_ticks[:-1], index_ticks[1:])):
dgroups.loc[mini:maxi] = i
# update original dataframe
df['Group id'] = dgroups['Group id']
I was able to obtain this kind of dataframe:
value Group id
2014-11-03 00:00:00 0 0
2014-11-03 00:00:00.001000 1 0
2014-11-03 00:00:00.002000 2 0
2014-11-03 00:00:00.003000 3 0
2014-11-03 00:00:00.004000 4 0
2014-11-03 00:00:00.005000 5 1
2014-11-03 00:00:00.006000 6 1
2014-11-03 00:00:00.007000 7 1
2014-11-03 00:00:00.008000 8 1
2014-11-03 00:00:00.009000 9 1
2014-11-03 00:00:00.010000 10 2
2014-11-03 00:00:00.011000 11 2
2014-11-03 00:00:00.012000 12 2
2014-11-03 00:00:00.013000 13 2
2014-11-03 00:00:00.014000 14 2

Categories

Resources