How to not print the j in Python complex numbers? - python

Let's say one of the answers is supposed to be 3.00, it will be printed as 3.00+0.00j.
How do I remove the j and have it as 3.00 only?
# Viete's Algorithm
def result_2(a3,a2,a0,a1):
b = b_cof(a3,a2,a1,a0)
a = a_cof(a3,a2,a1)
p = P(a3, a2)
r = -(b / 2.0)
q = (a / 3.0)
if ((r**2)+(q**3))<= 0.0:
if q==0:
theta = 0
if q<0:
theta = cmath.acos(r/(-q**(3.0/2.0)))
phi1 = theta / 3.0
phi2 = phi1 - ((2*cmath.pi) / 3.0)
phi3 = phi1 + ((2*cmath.pi) / 3.0)
print("X1 = ", "{:.2f}".format(2*math.sqrt(-q)*cmath.cos(phi1)-p/3.0))
print("X2 = ", "{:.2f}".format(2*math.sqrt(-q)*cmath.cos(phi2)-p/3.0))
print("X3 = ", "{:.2f}".format(2*math.sqrt(-q)*cmath.cos(phi3)-p/3.0))

You could drop the imaginary part from the number if it is zero:
>>> x=3+0j
>>> print(f"X1 = {x if x.imag else x.real:.2f}")
X1 = 3.00
>>> x=3+1j
>>> print(f"X1 = {x if x.imag else x.real:.2f}")
X1 = 3.00+1.00j

Related

How do you solve a non-linear equation using fsolve on python?

I attempted to use the code below as a guide, in order to solve a non-linear equation, but I continue to get errors such as "object too deep for desired array" and "Result from function call is not a proper array of floats".
from scipy.optimize import fsolve
from math import exp
def equations(vars):
x, y = vars
eq1 = x+y**2-4
eq2 = exp(x) + x*y - 3
return [eq1, eq2]
x, y = fsolve(equations, (1, 1))
print(x, y)
My code will be posted below. It points out the error on the line "Q = fsolve(equations, 1)"
%reset -f
from math import *
T = 4 # N·m
ω = 1800*(pi/30) # rad/s
A1 = .00131 # m^2
A2 = .00055 # m^2
P1 = 12000 # Pa
P2 = 200000 # Pa
ρ = 1000 # kg/m^3
μ = .89e-3 # N·s/m^2
η = .57 # % efficiency
g = 9.81 # m/s^2
γ = 9810 # N/m^3
Z2 = .7 # m
P_motor = T*ω
print(P_motor)
P_pump = P_motor*η
print(P_pump)
from scipy.optimize import fsolve
def equations(vars):
Q = vars
eq1 = γ*Q*( ((P2-P1)/γ) + ( ( ( (Q**2) / (A2**2) ) - ( (Q**2) / (A1**2) ) )/2*g) + Z2) - P_pump
return [eq1]
Q = fsolve(equations, 1)
print(Q)
Since you have only one equation with one unknown variable, you don't need to put the output in a list. You can replace return [eq1] with return eq1.
The new code would be:
%reset -f
from math import *
T = 4 # N·m
ω = 1800*(pi/30) # rad/s
A1 = .00131 # m^2
A2 = .00055 # m^2
P1 = 12000 # Pa
P2 = 200000 # Pa
ρ = 1000 # kg/m^3
μ = .89e-3 # N·s/m^2
η = .57 # % efficiency
g = 9.81 # m/s^2
γ = 9810 # N/m^3
Z2 = .7 # m
P_motor = T*ω
print(P_motor)
P_pump = P_motor*η
print(P_pump)
from scipy.optimize import fsolve
def equations(vars):
Q = vars
eq1 = γ*Q*( ((P2-P1)/γ) + ( ( ( (Q**2) / (A2**2) ) - ( (Q**2) / (A1**2) ) )/2*g) + Z2) - P_pump
return eq1
Q = fsolve(equations, 1)
print(Q)
Output:
753.9822368615503
429.7698750110836
[0.0011589]
The documentation states
func : callable f(x, *args)
A function that takes at least one (possibly vector) argument, and returns a value of the same length.
if your input is a list of 2 values, it is expecting the function to return something of the same shape. So in your 1st example, you pass [x,y] and you return [eq1, eq2], so it works, but in second case, you pass a scalar and return a list
So, you can change your input to Q = fsolve(equations, (1,)) or change your returned value to return eq1:
def equations(vars):
Q = vars
eq1 = γ*Q*( ((P2-P1)/γ) + ( ( ( (Q**2) / (A2**2) ) - ( (Q**2) / (A1**2) ) )/2*g) + Z2) - P_pump
return eq1

How to output a list using a while loop?

Firstly, I have tried doing this code but have no success in outputting a list using a while loop.
I have done the suggestions of both #
Someone_who_likes_SE and #ace1234
The code I have is this:
import math
x1 = 0.1
x2 = 0.5
d = 0.2
theta = 1.14840969035
x_list = []
i = x1
while (i < x2):
i = i + d * math.cos(theta)
x_list.append(i)
print(x_list)
The output are:
[0.181987700205 0.263975400411 0.345963100616 0.427950800822 0.5099385010273055]
Is there a way to get the 0.1 at the start?
The 0.50999385010273055 should also not be there as it is over 0.5.
Change the while loop to -
while (i < x2):
i = i + d * math.cos(theta)
x_list.append(i)
print(x_list)
You want the list, so you should print the list. But what you have done is print i
Edit - If you want 0.1 in start and want to remove 0.50.... then move append method up like this -
while (i < x2):
x_list.append(i)
i = i + d * math.cos(theta)
print(x_list)
It's actually working.
Line 11 is actually appending to the list:
import math
x1 = 0.1
x2 = 0.5
d = 0.2
theta = 1.14840969035
x_list = []
i = x1
while (i < x2):
print(i)
i = i + d * math.cos(theta)
x_list.append(i) # <--- appending
only you're not printing it out.
import math
x1 = 0.1
x2 = 0.5
d = 0.2
theta = 1.14840969035
x_list = []
i = x1
while (i < x2):
print(i) # <--- prints out the numbers.
i = i + d * math.cos(theta)
x_list.append(i)
So this will work:
import math
x1 = 0.1
x2 = 0.5
d = 0.2
theta = 1.14840969035
x_list = []
i = x1
while (i < x2):
#print(i)
i = i + d * math.cos(theta)
x_list.append(i)
print(x_list)
Output:
[0.18198770020501776, 0.26397540041003553, 0.3459631006150533, 0.4279508008200711, 0.5099385010250889]
The output that you saw is the print that I commented below. If you print the list object after loop the result is that you're expecting.
import math
x1 = 0.1
x2 = 0.5
d = 0.2
theta = 1.14840969035
x_list = []
i = x1
while (i < x2):
#print(i) <--- this is that you was seing!
i = i + d * math.cos(theta)
x_list.append(i)
## try print the list object:
print(x_list)

Same time integration code in Matlab and python, matlab is stable, python blows up

Here is an algorithm of Exponential time differencing method, using the original
Matlab code from Oxford
clc
clear
% viscosity
nu = 0.5;
% Spatial grid and initial condition:
N = 128;
x = 2*pi*(0:N-1)'/N;
u = cos(x).*(1+sin(x));
v = fft(u);
% Precompute various ETDRK4 scalar quantities:
h = 0.01;
tot = 5;
% time step
k = [0:N/2-1 0 -N/2+1:-1]';
% wave numbers
L = 1/16*k.^2 - 1/16^3*nu*k.^4;
% Fourier multipliers
E = exp(h*L);
E2 = exp(h*L/2);
M =16;
% no. of points for complex means
r = exp(1i*pi*((1:M)-.5)/M); % roots of unity
% construct things on the
LR = h*L(:,ones(M,1)) + r(ones(N,1),:);
Q = h*real(mean( (exp(LR/2)-1)./LR ,2) );
f1 = h*real(mean( (-4-LR+exp(LR).*(4-3*LR+LR.^2))./LR.^3 ,2));
f2 = h*real(mean( (2+LR+exp(LR).*(-2+LR))./LR.^3 ,2));
f3 = h*real(mean( (-4-3*LR-LR.^2+exp(LR).*(4-LR))./LR.^3 ,2));
% Main time-stepping loop:
uu=u;tt=0;
vv=v;
NvNV = [];
aa = [];
bb = [];
cc = [];
NvNv = [];
NaNa = [];
NbNb = [];
NcNc = [];
nmax = floor(tot/h);
g = -0.5i*k;
%
for n = 1:nmax
t = n*h;
Nv = g.*fft(real(ifft(v)).^2);
a = E2.*v + Q.*Nv;
Na = g.*fft(real(ifft(a)).^2);
b = E2.*v + Q.*Na;
Nb = g.*fft(real(ifft(b)).^2);
c = E2.*a + Q.*(2*Nb-Nv);
Nc = g.*fft(real(ifft(c)).^2);
v = E.*v + Nv.*f1 + 2*(Na+Nb).*f2 + Nc.*f3;
u = real(ifft(v));
uu = [uu,u];
vv = [vv,v];
tt = [tt,t];
aa = [aa,a];
bb = [bb,b];
cc = [cc,c];
NvNv = [NvNv,Nv];
NaNa = [NaNa,Na];
NbNb = [NbNb,Nb];
NcNc = [NcNc,Nc];
end
Python code
# spatial domain: 0,2pi
# time domain: 0,2
# init
import numpy as np
from matplotlib import pyplot as plt
np.seterr(all='raise')
plt.style.use('siads')
np.random.seed(0)
pi = np.pi
# viscosity
nu = 0.5
# mesh
mesh = 128
# time restriction
tot = 5
# distributed x point
x = np.linspace(0, 2.0 * pi, mesh, endpoint=False)
# force IC
u0 = np.cos(x)*(1.0 + np.sin(x))
N = mesh
k_array_noshift = np.fft.fftfreq(mesh)*mesh
u = u0
v = np.fft.fft(u)
h = 0.01
## follow them, set -N/2 to zer
k_array_noshift[mesh / 2] = 0
## Linear part in fourier space
L = 1.0/16.0*k_array_noshift**2 - nu*1.0/16.0**3 * k_array_noshift**4
## Fourier mulitplier
E = np.exp(h * L)
E2 = np.exp(h * L / 2.0)
## select number of points on the circle
M = 16
## choose radius 1, since k^2-k^4 ranges a lot... so 1 is enough to make sure only one singular point
r = np.exp(1j * np.pi * (np.arange(1, M + 1) - 0.5) / M)
r = r.reshape(1, -1)
r_on_circle = np.repeat(r, mesh, axis=0)
## define hL on M copies
LR = h * L
LR = LR.reshape(-1, 1)
LR = np.repeat(LR, M, axis=1)
## obtain hL on circle
LR = LR + r_on_circle
## important quantites used in ETDRK4
# g = -0.5*i*k
g = -0.5j * k_array_noshift
# averaged Q, f1,f2,f3
Q = h*np.real(np.mean( (np.exp(LR/2.0)-1)/LR, axis=1 ))
f1 = h*np.real(np.mean( (-4.0-LR + np.exp(LR)*(4.0-3.0*LR+LR**2))/LR**3, axis=1 ))
f2 = h*np.real(np.mean( (2.0+LR + np.exp(LR)*(-2.0 + LR))/LR**3, axis=1 ))
f3 = h*np.real(np.mean( (-4.0-3.0*LR - LR**2 + np.exp(LR)*(4.0 - LR))/LR**3, axis=1 ))
def compute_u2k_zeropad_dealiased(uk_):
u2k = np.fft.fft(np.real(np.fft.ifft(uk_))**2)
# three over two law
# N = uk.size
#
# # map uk to uk_fine
#
# uk_fine = np.hstack((uk[0:N / 2], np.zeros((N / 2)), uk[-N / 2:])) * 3.0 / 2.0
#
# # convert uk_fine to physical space
# u_fine = np.real(np.fft.ifft(uk_fine))
#
# # compute square
# u2_fine = np.square(u_fine)
#
# # compute fft on u2_fine
# u2k_fine = np.fft.fft(u2_fine)
#
# # convert u2k_fine to u2k
# u2k = np.hstack((u2k_fine[0:N / 2], u2k_fine[-N / 2:])) / 3.0 * 2.0
return u2k
print 'dt =', h
# np.linalg.norm(np.fft.ifft(uk_0)-u0) # very good
ntsnap = int(tot/h)
isnap = 0
tsnap = np.linspace(0, tot, ntsnap)
usnap = np.zeros((mesh, ntsnap))
uksnap = np.zeros((mesh, ntsnap),dtype=complex)
aasnap = np.zeros((mesh, ntsnap),dtype=complex)
bbsnap = np.zeros((mesh, ntsnap),dtype=complex)
ccsnap = np.zeros((mesh, ntsnap),dtype=complex)
Nvsnap = np.zeros((mesh, ntsnap),dtype=complex)
Nasnap = np.zeros((mesh, ntsnap),dtype=complex)
Nbsnap = np.zeros((mesh, ntsnap),dtype=complex)
Ncsnap = np.zeros((mesh, ntsnap),dtype=complex)
tcur = 0.0
## main loop time stepping
while tcur <= tot and isnap < ntsnap:
# print tcur
# record snap
# if abs(tcur - tsnap[isnap]) < 1e-2:
print ' current progress =', tcur / tsnap[-1] * 100, ' % '
u = np.real(np.fft.ifft(v))
usnap[:, isnap] = u
uksnap[:, isnap] = v
Nv = g * np.fft.fft(np.real(np.fft.ifft(v))**2)
a = E2 * v + Q * Nv
Na = g * np.fft.fft(np.real(np.fft.ifft(a))**2)
b = E2 * v + Q * Na
Nb = g * np.fft.fft(np.real(np.fft.ifft(b))**2)
c = E2 * a + Q * (2.0*Nb - Nv)
Nc = g * np.fft.fft(np.real(np.fft.ifft(c))**2)
v = E*v + Nv*f1 + 2.0*(Na + Nb)*f2 + Nc*f3
aasnap[:, isnap] = a
bbsnap[:, isnap] = b
ccsnap[:, isnap] = c
Nvsnap[:, isnap] = Nv
Nasnap[:, isnap] = Na
Nbsnap[:, isnap] = Nb
Ncsnap[:, isnap] = Nc
# algo: ETDRK4
# # 1. compute nonlinear part in first fractional step
# u2k = compute_u2k_zeropad_dealiased(uk)
# Nuk = g * u2k
#
# # 2. update fractional step
# uk_a = E2 * uk + Q * Nuk
#
# # 3. compute nonlinear part in second fractional step
# Nuk_a = g * compute_u2k_zeropad_dealiased(uk_a)
#
# # 4. update fractional step
# uk_b = E2 * uk + Q * Nuk_a
#
# # 5. compute nonlinear part in third fractional step
# Nuk_b = g * compute_u2k_zeropad_dealiased(uk_b)
#
# # 6. update fractional step
# uk_c = E2 * uk_a + Q * (2.0 * Nuk_b - Nuk)
#
# # 7 compute nonlinear part in the fourth fractional step
# Nuk_c = g * compute_u2k_zeropad_dealiased(uk_c)
#
# # final, update uk
# uk = E * uk + Nuk * f1 + 2.0 * (Nuk_a + Nuk_b) * f2 + Nuk_c * f3
# record time
tcur = tcur + h
isnap = isnap + 1
# save uksnap
np.savez('output_uk',uksnap=uksnap,f1=f1,f2=f2,f3=f3,Q=Q,LR=LR,L=L,g=g, Nasnap=Nasnap, Nvsnap=Nvsnap, Nbsnap=Nbsnap, Ncsnap=Ncsnap,
aasnap=aasnap, bbsnap=bbsnap, ccsnap=ccsnap, usnap=usnap)
# plot snapshots
plt.figure(figsize=(16,16))
for isnap in xrange(ntsnap):
plt.plot(x, usnap[:,isnap])
plt.xlabel('x')
plt.ylabel('u')
plt.savefig('snapshots.png')
# plot contours
from matplotlib import cm
fig = plt.figure(figsize=(8, 8))
X, Y = np.meshgrid(x, tsnap)
Z = usnap.transpose()
V = np.linspace(-10, 10, 500)
surf = plt.contourf(X, Y, Z, V, cmap=cm.seismic)
plt.savefig('contour.png')
Python code runs to some extent says some value goes to NaN, but not for matlab. Same code, exactly
So I wish to know why and what's going on, you can run the code yourself.
What makes me feel more weird is that the first iteration is extremely good match between the two!
For more information, please check out this linkedIn link.
My LinkedIn Post that explains this problem
Finally!!!!!!!! Everything works!!!!!!!!!!!!!!!!!
I found I can make python works the same well as matlab(note that python always blows up to inf at certain physical time), by simply
changing numpy.fft to scipy.fft
Note that I tested, numpy.fft and scipy.fft evaluated in my code is almost identical but different around 1e-16..
But this matters for such a chaotic system simulation.
If I want my code to blow up, simply change scipy.fft to numpy.fft.
From my personal viewpoint as an user, numpy.fft must have some mysterious issue inside! Since matlab fft and scipy fft have no trouble in my code at all.

Replacing multiprocessing pool.map with mpi4py

I'm a beginner in using MPI, and I'm still going through the documentation. However, there's very little to work on when it comes to mpi4py. I have written a code that currently uses the multiprocessing module to run on many cores, but I need replace this with mpi4py so that I can use more than one node to run my code. My code is below, when using the multiprocessing module, and also without.
With multiprocessing,
import numpy as np
import multiprocessing
start_time = time.time()
E = 0.1
M = 5
n = 1000
G = 1
c = 1
stretch = [10, 1]
#Point-Distribution Generator Function
def CDF_inv(x, e, m):
A = 1/(1 + np.log(m/e))
if x == 1:
return m
elif 0 <= x <= A:
return e * x / A
elif A < x < 1:
return e * np.exp((x / A) - 1)
#Elliptical point distribution Generator Function
def get_coor_ellip(dist=CDF_inv, params=[E, M], stretch=stretch):
R = dist(random.random(), *params)
theta = random.random() * 2 * np.pi
return (R * np.cos(theta) * stretch[0], R * np.sin(theta) * stretch[1])
def get_dist_sq(x_array, y_array):
return x_array**2 + y_array**2
#Function to obtain alpha
def get_alpha(args):
zeta_list_part, M_list_part, X, Y = args
alpha_x = 0
alpha_y = 0
for key in range(len(M_list_part)):
z_m_z_x = X - zeta_list_part[key][0]
z_m_z_y = Y - zeta_list_part[key][1]
dist_z_m_z = get_dist_sq(z_m_z_x, z_m_z_y)
alpha_x += M_list_part[key] * z_m_z_x / dist_z_m_z
alpha_y += M_list_part[key] * z_m_z_y / dist_z_m_z
return (alpha_x, alpha_y)
#The part of the process containing the loop that needs to be parallelised, where I use pool.map()
if __name__ == '__main__':
# n processes, scale accordingly
num_processes = 10
pool = multiprocessing.Pool(processes=num_processes)
random_sample = [CDF_inv(x, E, M)
for x in [random.random() for e in range(n)]]
zeta_list = [get_coor_ellip() for e in range(n)]
x1, y1 = zip(*zeta_list)
zeta_list = np.column_stack((np.array(x1), np.array(y1)))
x = np.linspace(-3, 3, 100)
y = np.linspace(-3, 3, 100)
X, Y = np.meshgrid(x, y)
print len(x)*len(y)*n,'calculations to be carried out.'
M_list = np.array([.001 for i in range(n)])
# split zeta_list, M_list, X, and Y
zeta_list_split = np.array_split(zeta_list, num_processes, axis=0)
M_list_split = np.array_split(M_list, num_processes)
X_list = [X for e in range(num_processes)]
Y_list = [Y for e in range(num_processes)]
alpha_list = pool.map(
get_alpha, zip(zeta_list_split, M_list_split, X_list, Y_list))
alpha_x = 0
alpha_y = 0
for e in alpha_list:
alpha_x += e[0] * 4 * G / (c**2)
alpha_y += e[1] * 4 * G / (c**2)
print("%f seconds" % (time.time() - start_time))
Without multiprocessing,
import numpy as np
E = 0.1
M = 5
G = 1
c = 1
M_list = [.1 for i in range(n)]
#Point-Distribution Generator Function
def CDF_inv(x, e, m):
A = 1/(1 + np.log(m/e))
if x == 1:
return m
elif 0 <= x <= A:
return e * x / A
elif A < x < 1:
return e * np.exp((x / A) - 1)
n = 1000
random_sample = [CDF_inv(x, E, M)
for x in [random.random() for e in range(n)]]
stretch = [5, 2]
#Elliptical point distribution Generator Function
def get_coor_ellip(dist=CDF_inv, params=[E, M], stretch=stretch):
R = dist(random.random(), *params)
theta = random.random() * 2 * np.pi
return (R * np.cos(theta) * stretch[0], R * np.sin(theta) * stretch[1])
#zeta_list is the list of coordinates of a distribution of points
zeta_list = [get_coor_ellip() for e in range(n)]
x1, y1 = zip(*zeta_list)
zeta_list = np.column_stack((np.array(x1), np.array(y1)))
#Creation of a X-Y Grid
x = np.linspace(-3, 3, 100)
y = np.linspace(-3, 3, 100)
X, Y = np.meshgrid(x, y)
def get_dist_sq(x_array, y_array):
return x_array**2 + y_array**2
#Calculation of alpha, containing the loop that needs to be parallelised.
alpha_x = 0
alpha_y = 0
for key in range(len(M_list)):
z_m_z_x = X - zeta_list[key][0]
z_m_z_y = Y - zeta_list[key][1]
dist_z_m_z = get_dist_sq(z_m_z_x, z_m_z_y)
alpha_x += M_list[key] * z_m_z_x / dist_z_m_z
alpha_y += M_list[key] * z_m_z_y / dist_z_m_z
alpha_x *= 4 * G / (c**2)
alpha_y *= 4 * G / (c**2)
Basically what my code does is, it first generates a list of points that follow a certain distribution. Then I apply an equation to obtain the quantity 'alpha' using different relations between the distances of the points. The part that requires parallelisation is the single for loop involved in the calculation of alpha. What I want to do is to use mpi4py instead of multiprocessing to do this, and I am not sure how to get this going.
Transforming the multiprocessing.map version to MPI can be done using scatter / gather. In your case it is useful, that you already prepare the input list into one chunk for each rank. The main difference is, that all code gets executed by all ranks in the first place, so you must make everything that should be done only by the maste rank 0 conidtional.
if __name__ == '__main__':
comm = MPI.COMM_WORLD
if comm.rank == 0:
random_sample = [CDF_inv(x, E, M)
for x in [random.random() for e in range(n)]]
zeta_list = [get_coor_ellip() for e in range(n)]
x1, y1 = zip(*zeta_list)
zeta_list = np.column_stack((np.array(x1), np.array(y1)))
x = np.linspace(-3, 3, 100)
y = np.linspace(-3, 3, 100)
X, Y = np.meshgrid(x, y)
print len(x)*len(y)*n,'calculations to be carried out.'
M_list = np.array([.001 for i in range(n)])
# split zeta_list, M_list, X, and Y
zeta_list_split = np.array_split(zeta_list, comm.size, axis=0)
M_list_split = np.array_split(M_list, comm.size)
X_list = [X for e in range(comm.size)]
Y_list = [Y for e in range(comm.size)]
work_list = list(zip(zeta_list_split, M_list_split, X_list, Y_list))
else:
work_list = None
my_work = comm.scatter(work_list)
my_alpha = get_alpha(my_work)
alpha_list = comm.gather(my_alpha)
if comm.rank == 0:
alpha_x = 0
alpha_y = 0
for e in alpha_list:
alpha_x += e[0] * 4 * G / (c**2)
alpha_y += e[1] * 4 * G / (c**2)
This works fine as long as each processor gets a similar amount of work. If communication becomes an issue, you might want to split up the data generation among processors instead of doing it all on the master rank 0.
Note: Some things about the code are bogus, e.g. alpha_[xy] ends up as np.ndarray. The serial version runs into an error.
For people who are still interested in similar subjects, I highly recommend having a look at the MPIPoolExecutor() class here and the documentation is here.

Python script for Leibniz number row

I am trying to write simple script in Python 2.7 for calculating Pi. I am interested in Leibniz formula:
π = (4/1) - (4/3) + (4/5) - (4/7) + (4/9) - (4/11) + (4/13) - (4/15) ...
So I consider "(4/1) - (4/3)" as X, and 1-3-5 as y, y+2, y+4....
I wrote this script:
def pi():
p = 0.0
y = 1.0
x = 4.0/y - 4.0/(y+2.0)
for i in range(10000):
p = p + x
y += 4.0
print p
pi()
It isn't working as intended; could you explain why?
This one works:
def pi():
p = 0.0
y = 3.0
x = 4.0 - 4/y
for i in range(5000):
y += 2
x = x + 4/y
y += 2
x = x - 4/y
print x
pi()
#Ukimiku's answer works if you want to use your x and y approach.
Here's an alternative approach using the actual formula:
def pi():
p = 0.0
for i in range(10000):
p += 4 * ((-1)**i) / float(2 * i + 1)
print p
For range(10000) this will print
3.14149265359

Categories

Resources