How to fix ValueError: too many values to unpack (expected 2)? - python

Recently faced with such a problem: ValueError: too many values to unpack (expected 2).
import os
import natsort
from PIL import Image
import torchvision
import torch
import torch.optim as optim
from torchvision import transforms, models
from torch.utils.data import DataLoader, Dataset
import torch.nn as nn
import torch.nn.functional as F
root_dir = './images/'
class Col(Dataset):
def __init__(self, main_dir, transform):
self.main_dir = main_dir
self.transform = transform
all_images = self.all_img(main_dir = main_dir)
self.total_imges = natsort.natsorted(all_images)
def __len__(self):
return len(self.total_imges)
def __getitem__(self, idx):
img_loc = os.path.join(self.total_imges[idx])
image = Image.open(img_loc).convert("RGB")
tensor_image = self.transform(image)
return tensor_image
def all_img(self, main_dir):
img = []
for path, subdirs, files in os.walk(main_dir):
for name in files:
img.append(os.path.join(path, name))
return img
model = models.resnet18(pretrained=False)
model.fc = nn.Sequential(nn.Linear(model.fc.in_features, 256),
nn.ReLU(),
nn.Dropout(p=0.3),
nn.Linear(256, 100),
nn.ReLU(),
nn.Dropout(p=0.4),
nn.Linear(100,9))
# model.load_state_dict(torch.load('model.pth'))
for name, param in model.named_parameters():
if("bn" not in name):
param.requires_grad = False
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5457, 0.5457, 0.5457], std=[0.2342, 0.2342, 0.2342])
])
data = Col(main_dir=root_dir, transform=transform)
dataset = torch.utils.data.DataLoader(data, batch_size=130)
train_set, validate_set= torch.utils.data.random_split(dataset, [round(len(dataset)*0.7), (len(dataset) - round(len(dataset)*0.7))])
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model.to(device)
def train(model, optimizer, loss_fn, train_set, validate_set, epochs=20, device="cpu"):
for epoch in range(1, epochs+1):
training_loss = 0.0
valid_loss = 0.0
model.train()
for batch in train_set:
optimizer.zero_grad()
inputs, targets = batch
inputs = inputs.to(device)
targets = targets.to(device)
output = model(inputs)
loss = loss_fn(output, targets)
loss.backward()
optimizer.step()
training_loss += loss.data.item() * inputs.size(0)
training_loss /= len(train_set.dataset)
model.eval()
num_correct = 0
num_examples = 0
for batch in validate_set:
inputs, targets = batch
inputs = inputs.to(device)
output = model(inputs)
targets = targets.to(device)
loss = loss_fn(output,targets)
valid_loss += loss.data.item() * inputs.size(0)
correct = torch.eq(torch.max(F.softmax(output, dim=1), dim=1)[1], targets)
num_correct += torch.sum(correct).item()
num_examples += correct.shape[0]
valid_loss /= len(validate_set.dataset)
print('Epoch: {}, Training Loss: {:.2f}, Validation Loss: {:.2f}, accuracy = {:.2f}'.format(epoch, training_loss,
valid_loss, num_correct / num_examples))
optimizer = optim.Adam(model.parameters(), lr=0.0001)
But the call to this function
train(model, optimizer,torch.nn.CrossEntropyLoss(), train_set.dataset, validate_set.dataset, epochs=100, device=device)
gives this error
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
/tmp/ipykernel_4828/634509595.py in <module>
----> 1 train(model, optimizer,torch.nn.CrossEntropyLoss(), train_set.dataset, validate_set.dataset, epochs=100, device=device)
/tmp/ipykernel_4828/1473922939.py in train(model, optimizer, loss_fn, train_set, validate_set, epochs, device)
6 for batch in train_set:
7 optimizer.zero_grad()
----> 8 inputs, targets = batch
9 inputs = inputs.to(device)
10 targets = targets.to(device)
ValueError: too many values to unpack (expected 2)

Batch doesn't contain both the inputs and the targets. Your problem is just that getitem returns only tensor_image (which is presumably the inputs) and not whatever targets should be.

Related

How can I make prediction for the model below. I want to feed an image in trained model and get the output?

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import os
import torch
import torchvision
from torchvision import datasets
from torchvision import transforms as T # for simplifying the transforms
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader, sampler, random_split
from torchvision import models
!pip install timm # kaggle doesnt have it installed by default
import timm
from timm.loss import LabelSmoothingCrossEntropy
import sys
from tqdm import tqdm
import time
import copy
def get_classes(data_dir):
all_data = datasets.ImageFolder(data_dir)
return all_data.classes
def get_data_loaders(data_dir, batch_size, train = False):
if train:
#train
transform = T.Compose([
T.RandomHorizontalFlip(),
T.RandomVerticalFlip(),
T.RandomApply(torch.nn.ModuleList([T.ColorJitter()]), p=0.25),
T.Resize(256),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), # imagenet means
T.RandomErasing(p=0.2, value='random')
])
train_data = datasets.ImageFolder(os.path.join(data_dir, "train/"), transform = transform)
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=4)
return train_loader, len(train_data)
else:
# val/test
transform = T.Compose([ # We dont need augmentation for test transforms
T.Resize(256),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), # imagenet means
])
val_data = datasets.ImageFolder(os.path.join(data_dir, "validation/"), transform=transform)
test_data = datasets.ImageFolder(os.path.join(data_dir, "train/"), transform=transform)
val_loader = DataLoader(val_data, batch_size=batch_size, shuffle=True, num_workers=4)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True, num_workers=4)
return val_loader, test_loader, len(val_data), len(test_data)
dataset_path = "/kaggle/input/dfdc-faces-of-the-train-sample"
(train_loader, train_data_len) = get_data_loaders(dataset_path, 128, train=True)
(val_loader, test_loader, valid_data_len, test_data_len) = get_data_loaders(dataset_path, 32, train=False)
classes = get_classes("/kaggle/input/dfdc-faces-of-the-train-sample/train")
print(classes, len(classes))
dataloaders = {
"train": train_loader,
"validation": val_loader
}
dataset_sizes = {
"train": train_data_len,
"validation": valid_data_len
}
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = torch.hub.load('facebookresearch/deit:main', 'deit_tiny_patch16_224', pretrained=True)
for param in model.parameters(): #freeze model
param.requires_grad = False
n_inputs = model.head.in_features
model.head = nn.Sequential(
nn.Linear(n_inputs, 512),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, len(classes))
)
model = model.to(device)
print(model.head)
criterion = LabelSmoothingCrossEntropy()
criterion = criterion.to(device)
optimizer = optim.Adam(model.head.parameters(), lr=0.001)
# lr scheduler
exp_lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.97)
def train_model(model, criterion, optimizer, scheduler, num_epochs=1):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch}/{num_epochs - 1}')
print("-"*10)
for phase in ['train', 'validation']: # We do training and validation phase per epoch
if phase == 'train':
model.train() # model to training mode
else:
model.eval() # model to evaluate
running_loss = 0.0
running_corrects = 0.0
for inputs, labels in tqdm(dataloaders[phase]):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'): # no autograd makes validation go faster
outputs = model(inputs)
_, preds = torch.max(outputs, 1) # used for accuracy
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step() # step at end of epoch
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print("{} Loss: {:.4f} Acc: {:.4f}".format(phase, epoch_loss, epoch_acc))
if phase == 'validation' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict()) # keep the best validation accuracy model
print()
time_elapsed = time.time() - since # slight error
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print("Best Val Acc: {:.4f}".format(best_acc))
model.load_state_dict(best_model_wts)
return model
model_ft = train_model(model, criterion, optimizer, exp_lr_scheduler)# now it is a lot faster
test_loss = 0.0
class_correct = list(0 for i in range(len(classes)))
class_total = list(0 for i in range(len(classes)))
model.eval()
for data, target in tqdm(test_loader):
data, target = data.to(device), target.to(device)
with torch.no_grad(): # turn off autograd for faster testing
output = model(data)
loss = criterion(output, target)
test_loss = loss.item() * data.size(0)
_, pred = torch.max(output, 1)
correct_tensor = pred.eq(target.data.view_as(pred))
correct = np.squeeze(correct_tensor.cpu().numpy())
if len(target) == 32:
for i in range(32):
label = target.data[i]
class_correct[label] += correct[i].item()
class_total[label] += 1
test_loss = test_loss / test_data_len
print('Test Loss: {:.4f}'.format(test_loss))
for i in range(len(classes)):
if class_total[i] > 0:
print("Test Accuracy of %5s: %2d%% (%2d/%2d)" % (
classes[i], 100*class_correct[i]/class_total[i], np.sum(class_correct[i]), np.sum(class_total[i])
))
else:
print("Test accuracy of %5s: NA" % (classes[i]))
print("Test Accuracy of %2d%% (%2d/%2d)" % (
100*np.sum(class_correct)/np.sum(class_total), np.sum(class_correct), np.sum(class_total)
))
torch.save(model.state_dict(),'checkpoint.pt')
I have copied this code from Kaggle and similarly the data. The dataset is also present on kaggle and it's name is same as used in the code dataset path above. The code just works fine and also makes the model, but I don't know how to make a prediction.
​
from PIL import Image
import cv2
path_to_model = 'checkpoint.pt'
imgpath='../input/dfdc-faces-of-the-train-sample/train/fake/aapnvogymq_0_0.png'
img=cv2.imread(imgpath)
transform = T.Compose([ # We dont need augmentation for test transforms
T.Resize(256),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), # imagenet means
])
PIL_image = Image.fromarray(np.uint8(img)).convert('RGB')
imge=transform(PIL_image)
imge=imge.view(-1,3,224,224)
print(imge.shape)
model.load_state_dict(torch.load(path_to_model))
#print(summary(model,(3,224,224)))
model.eval()
labels = labels.to(device)
logits = model(imge.to(device))
params = list(model.parameters())
sm = nn.Softmax()
#weight_softmax = model.linear1.weight.detach().cpu().numpy()
logits = sm(logits)
_,prediction = torch.max(logits,1)
confidence = logits[:,int(prediction.item())].item()*100
print('confidence of prediction:',logits[:,int(prediction.item())].item()*100)
print(prediction.item())
I did it myself and I can predict now

Error:Dimension out of range. Multi-class text classification with nn.CrossEntropyLoss()

I' a newbie in text classification and I'm trying to create a multiclass text classification. First this code worked like a charm for a binary classification but I'm trying to convert it into multiclass clasification. I switched loss function from nn.BCELoss() to nn.CrossEntropyLoss() and I removed the softmax because CrossEntropyLoss has that included but now I get an error IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1)
Please let me know if I need to add anything else
n_epochs = 3
best_valid_loss = float('inf')
t_loss=[]
v_loss=[]
for epoch in range(n_epochs):
train_loss, train_acc = train(model, train_iterator,optimizer, criterion)
valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'saved_weights.pt')
t_loss.append(train_loss)
v_loss.append(valid_loss)
print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%')
IndexError Traceback (most recent call last)
<ipython-input-130-88e45751bc44> in <module>()
6 for epoch in range(n_epochs):
7
----> 8 train_loss, train_acc = train(model, train_iterator,optimizer, criterion)
9
10 valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
3 frames
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py in cross_entropy(input, target, weight, size_average, ignore_index, reduce, reduction)
2822 if size_average is not None or reduce is not None:
2823 reduction = _Reduction.legacy_get_string(size_average, reduce)
-> 2824 return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
2825
2826
IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1)
Here is the full code to recreate:
import numpy as np
import pandas as pd
from pandas import DataFrame
import re
import spacy
import string
import matplotlib.pyplot as plt
import torch
import torchtext
from torchtext.legacy import data
from torchtext.legacy import datasets
#from torchtext import data
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
seed=50
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
Data loader:
class DataFrameDataset(data.Dataset):
def __init__(self, df, fields, is_test=False, **kwargs):
examples = []
for i, row in df.iterrows():
label = row.target if not is_test else None
text = row.text
examples.append(data.Example.fromlist([text, label], fields))
super().__init__(examples, fields, **kwargs)
#staticmethod
def sort_key(ex):
return len(ex.text)
#classmethod
def splits(cls, fields, train_df, val_df=None, test_df=None, **kwargs):
train_data, val_data, test_data = (None, None, None)
data_field = fields
if train_df is not None:
train_data = cls(train_df.copy(), data_field, **kwargs)
if val_df is not None:
val_data = cls(val_df.copy(), data_field, **kwargs)
if test_df is not None:
test_data = cls(test_df.copy(), data_field, True, **kwargs)
return tuple(d for d in (train_data, val_data, test_data) if d is not None)
Data preparation
def data_preparation(train, valid, batch_size):
text=data.Field(tokenize='spacy', batch_first=True, include_lengths=True) #spacy je tokenizer
label=data.LabelField(dtype=torch.float, batch_first=True)
fields = [('text',text),('label', label)]
train_ds, valid_ds=DataFrameDataset.splits(fields, train_df=train, val_df=valid)
text.build_vocab(train_ds, min_freq=3, vectors="glove.6B.200d")
label.build_vocab(train_ds)
print("Size of TEXT vocabulary:",len(text.vocab))
print("Size of LABEL vocabulary:",len(label.vocab))
train_iterator, valid_iterator=data.BucketIterator.splits((train_ds,valid_ds),
batch_size=batch_size, sort_key= lambda x:len(x.text),
sort_within_batch=True,
device=device)
vocab_size=len(text.vocab)
return text, vocab_size, train_iterator, valid_iterator
&
text, vocab_size, train_iterator, valid_iterator=data_preparation(train_d, valid_d,batch_size=128)
Defining the classifier
class classifier(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, n_layers,
bidirectional, dropout):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim,
hidden_dim,
num_layers= n_layers,
dropout=dropout,
batch_first=True)
self.fc = nn.Linear(hidden_dim*2 , output_dim)
#self.softmax = nn.Softmax(dim=1)
def forward(self, text, text_lengths):
embedded = self.embedding(text)
packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths.cpu(),batch_first=True)
packed_output, (hidden, cell) = self.lstm(packed_embedded)
hidden = torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)
#dense_outputs=self.fc(hidden)
#outputs=self.softmax(dense_outputs)
outputs=self.fc(hidden)
return outputs
Parameters & defining model, loss function, optimizer...
size_of_vocab = vocab_size
embedding_dim = 50
num_hidden_nodes = 20
num_output_nodes = 1
num_layers = 3
bidirectional = True
dropout = 0.2
model = classifier(size_of_vocab, embedding_dim, num_hidden_nodes,num_output_nodes, num_layers,
bidirectional, dropout = dropout)
optimizer = torch.optim.Adam(model.parameters(), lr=0.002)
criterion = nn.CrossEntropyLoss()
model = model.to(device)
criterion = criterion.to(device)
def binary_accuracy(preds, y):
rounded_preds = torch.round(preds)
correct = (rounded_preds == y).float()
acc = correct.sum() / len(correct)
return acc
Model training and evaluating
def train(model, iterator,optimizer, criterion):
epoch_loss = 0
epoch_acc = 0
model.train()
for batch in iterator:
optimizer.zero_grad()
text, text_lengths = batch.text
predictions = model(text, text_lengths).squeeze()
loss = criterion(predictions, batch.label)
acc = binary_accuracy(predictions, batch.label)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
&
def evaluate(model, iterator, criterion):
epoch_loss = 0
epoch_acc = 0
model.eval()
with torch.no_grad():
for batch in iterator:
text, text_lengths = batch.text
predictions = model(text, text_lengths).squeeze()
loss = criterion(predictions, batch.label)
acc = binary_accuracy(predictions, batch.label)
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
&
n_epochs = 3
best_valid_loss = float('inf')
t_loss=[]
v_loss=[]
for epoch in range(n_epochs):
train_loss, train_acc = train(model, train_iterator,optimizer, criterion)
valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'saved_weights.pt')
t_loss.append(train_loss)
v_loss.append(valid_loss)
print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%')

Python(PyTorch): TypeError: string indices must be integers

I have written the following code to train a bert model on my dataset but when I execute it I get an error at the part where I implement tqdm. I have written the entire training code below with full description of the error. How to fix this?
Code
Model
TRANSFORMERS = {
"bert-multi-cased": (BertModel, BertTokenizer, "bert-base-uncased"),
}
class Transformer(nn.Module):
def __init__(self, model, num_classes=1):
"""
Constructor
Arguments:
model {string} -- Transformer to build the model on. Expects "camembert-base".
num_classes {int} -- Number of classes (default: {1})
"""
super().__init__()
self.name = model
model_class, tokenizer_class, pretrained_weights = TRANSFORMERS[model]
bert_config = BertConfig.from_json_file(MODEL_PATHS[model] + 'bert_config.json')
bert_config.output_hidden_states = True
self.transformer = BertModel(bert_config)
self.nb_features = self.transformer.pooler.dense.out_features
self.pooler = nn.Sequential(
nn.Linear(self.nb_features, self.nb_features),
nn.Tanh(),
)
self.logit = nn.Linear(self.nb_features, num_classes)
def forward(self, tokens):
"""
Usual torch forward function
Arguments:
tokens {torch tensor} -- Sentence tokens
Returns:
torch tensor -- Class logits
"""
_, _, hidden_states = self.transformer(
tokens, attention_mask=(tokens > 0).long()
)
hidden_states = hidden_states[-1][:, 0] # Use the representation of the first token of the last layer
ft = self.pooler(hidden_states)
return self.logit(ft)
Training
def fit(model, train_dataset, val_dataset, epochs=1, batch_size=8, warmup_prop=0, lr=5e-4):
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
optimizer = AdamW(model.parameters(), lr=lr)
num_warmup_steps = int(warmup_prop * epochs * len(train_loader))
num_training_steps = epochs * len(train_loader)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps)
loss_fct = nn.BCEWithLogitsLoss(reduction='mean').cuda()
for epoch in range(epochs):
model.train()
start_time = time.time()
optimizer.zero_grad()
avg_loss = 0
for step, (x, y_batch) in tqdm(enumerate(train_loader), total=len(train_loader)):
y_pred = model(x.to(device))
loss = loss_fct(y_pred.view(-1).float(), y_batch.float().to(device))
loss.backward()
avg_loss += loss.item() / len(train_loader)
xm.optimizer_step(optimizer, barrier=True)
#optimizer.step()
scheduler.step()
model.zero_grad()
optimizer.zero_grad()
model.eval()
preds = []
truths = []
avg_val_loss = 0.
with torch.no_grad():
for x, y_batch in tqdm(val_loader):
y_pred = model(x.to(device))
loss = loss_fct(y_pred.detach().view(-1).float(), y_batch.float().to(device))
avg_val_loss += loss.item() / len(val_loader)
probs = torch.sigmoid(y_pred).detach().cpu().numpy()
preds += list(probs.flatten())
truths += list(y_batch.numpy().flatten())
score = roc_auc_score(truths, preds)
dt = time.time() - start_time
lr = scheduler.get_last_lr()[0]
print(f'Epoch {epoch + 1}/{epochs} \t lr={lr:.1e} \t t={dt:.0f}s \t loss={avg_loss:.4f} \t val_loss={avg_val_loss:.4f} \t val_auc={score:.4f}')
Error
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<timed eval> in <module>
<ipython-input-19-e47eae808597> in fit(model, train_dataset, val_dataset, epochs, batch_size, warmup_prop, lr)
22 for step, (x, y_batch) in tqdm(enumerate(train_loader), total=len(train_loader)):
23
---> 24 y_pred = model(x.to(device))
25
26 loss = loss_fct(y_pred.view(-1).float(), y_batch.float().to(device))
/opt/conda/lib/python3.6/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
724 result = self._slow_forward(*input, **kwargs)
725 else:
--> 726 result = self.forward(*input, **kwargs)
727 for hook in itertools.chain(
728 _global_forward_hooks.values(),
<ipython-input-11-2002cc7ec843> in forward(self, tokens)
41 )
42
---> 43 hidden_states = hidden_states[-1][:, 0] # Use the representation of the first token of the last layer
44
45 ft = self.pooler(hidden_states)
TypeError: string indices must be integers
Your code is designed for an older version of the transformers library:
AttributeError: 'str' object has no attribute 'dim' in pytorch
As such you will need to either downgrade to version 3.0.0, or adapt the code to deal with the new-format output of bert.

How can I save my training progress in PyTorch for a certain batch no.?

I'm simply trying to train a ResNet18 model using PyTorch library. The training dataset consists of 25,000 images. Therefore, it is taking a lot of time for even the first epoch to complete. Therefore, I want to save the progress after a certain no. of batch iteration is completed. But I can't figure out how to modify my code and how to use the torch.save() and torch.load() functions in my code to save the periodic progress.
My code is given below:
# BUILD THE NETWORK
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torch.nn.functional as F
import torchvision
import torchvision.models as models
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt
# DOWNLOAD PRETRAINED MODELS ON ImageNet
model_resnet18 = torch.hub.load('pytorch/vision', 'resnet18', pretrained = True)
model_resnet34 = torch.hub.load('pytorch/vision', 'resnet34', pretrained = True)
for name, param in model_resnet18.named_parameters():
if('bn' not in name):
param.requires_grad = False
for name, param in model_resnet34.named_parameters():
if('bn' not in name):
param.requires_grad = False
num_classes = 2
model_resnet18.fc = nn.Sequential(nn.Linear(model_resnet18.fc.in_features, 512),
nn.ReLU(),
nn.Dropout(),
nn.Linear(512, num_classes))
model_resnet34.fc = nn.Sequential(nn.Linear(model_resnet34.fc.in_features, 512),
nn.ReLU(),
nn.Dropout(),
nn.Linear(512, num_classes))
# FUNCTIONS FOR TRAINING AND LOADING DATA
def train(model, optimizer, loss_fn, train_loader, val_loader, epochs = 5, device = "cuda"):
print("Inside Train Function\n")
for epoch in range(epochs):
print("Epoch : {} running".format(epoch))
training_loss = 0.0
valid_loss = 0.0
model.train()
k = 0
for batch in train_loader:
optimizer.zero_grad()
inputs, targets = batch
inputs = inputs.to(device)
output = model(inputs)
loss = loss_fn(output, targets)
loss.backward()
optimizer.step()
training_loss += loss.data.item() * inputs.size(0)
print("End of batch loop iteration {} \n".format(k))
k = k + 1
training_loss /= len(train_loader.dataset)
model.eval()
num_correct = 0
num_examples = 0
for batch in val_loader:
inputs, targets = batch
inputs.to(device)
output = model(inputs)
targets = targets.to(device)
loss = loss_fn(output, targets)
valid_loss += loss.data.item() * inputs.size(0)
correct = torch.eq(torch.max(F.softmax(output, dim = 1), dim = 1)[1], targets).view(-1)
num_correct += torch.sum(correct).item()
num_examples += correct.shape[0]
valid_loss /= len(val_loader.dataset)
print('Epoch: {}, Training Loss: {:.4f}, Validation Loss: {:.4f}, accuracy = {:.4f}'.format(epoch, training_loss, valid_loss, num_correct / num_examples))
batch_size = 32
img_dimensions = 224
img_transforms = transforms.Compose([ transforms.Resize((img_dimensions, img_dimensions)),
transforms.ToTensor(),
transforms.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225])
])
img_test_transforms = transforms.Compose([ transforms.Resize((img_dimensions, img_dimensions)),
transforms.ToTensor(),
transforms.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225])
])
def check_image(path):
try:
im = Image.open(path)
return True
except:
return False
train_data_path = "E:\Image Recognition\dogsandcats\\train\\"
train_data = torchvision.datasets.ImageFolder(root=train_data_path,transform=img_transforms, is_valid_file=check_image)
validation_data_path = "E:\\Image Recognition\\dogsandcats\\validation\\"
validation_data = torchvision.datasets.ImageFolder(root=validation_data_path,transform=img_test_transforms, is_valid_file=check_image)
test_data_path = "E:\\Image Recognition\\dogsandcats\\test\\"
test_data = torchvision.datasets.ImageFolder(root=test_data_path,transform=img_test_transforms, is_valid_file=check_image)
num_workers = 6
train_data_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=num_workers)
validation_data_loader = torch.utils.data.DataLoader(validation_data, batch_size=batch_size, shuffle=False, num_workers=num_workers)
test_data_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=num_workers)
print(torch.cuda.is_available(), "\n")
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
print(f'Num training images: {len(train_data_loader.dataset)}')
print(f'Num validation images: {len(validation_data_loader.dataset)}')
print(f'Num test images: {len(test_data_loader.dataset)}')
def test_model(model):
print("Inside Test Model Function\n")
correct = 0
total = 0
with torch.no_grad():
for data in test_data_loader:
images, labels = data[0].to(device), data[1].to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('correct: {:d} total: {:d}'.format(correct, total))
print('accuracy = {:f}'.format(correct / total))
model_resnet18.to(device)
optimizer = optim.Adam(model_resnet18.parameters(), lr=0.001)
if __name__ == "__main__":
train(model_resnet18, optimizer, torch.nn.CrossEntropyLoss(), train_data_loader, validation_data_loader, epochs=2, device=device)
test_model(model_resnet18)
model_resnet34.to(device)
optimizer = optim.Adam(model_resnet34.parameters(), lr=0.001)
if __name__ == "__main__":
train(model_resnet34, optimizer, torch.nn.CrossEntropyLoss(), train_data_loader, validation_data_loader, epochs=2, device=device)
test_model(model_resnet34)
import os
def find_classes(dir):
classes = os.listdir(dir)
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def make_prediction(model, filename):
labels, _ = find_classes('E:\\Image Recognition\\dogsandcats\\test\\test')
img = Image.open(filename)
img = img_test_transforms(img)
img = img.unsqueeze(0)
prediction = model(img.to(device))
prediction = prediction.argmax()
print(labels[prediction])
make_prediction(model_resnet34, 'E:\\Image Recognition\\dogsandcats\\test\\test\\3.jpg') #dog
make_prediction(model_resnet34, 'E:\\Image Recognition\\dogsandcats\\test\\test\\5.jpg') #cat
torch.save(model_resnet18.state_dict(), "./model_resnet18.pth")
torch.save(model_resnet34.state_dict(), "./model_resnet34.pth")
# Remember that you must call model.eval() to set dropout and batch normalization layers to
# evaluation mode before running inference. Failing to do this will yield inconsistent inference results.
resnet18 = torch.hub.load('pytorch/vision', 'resnet18')
resnet18.fc = nn.Sequential(nn.Linear(resnet18.fc.in_features,512),nn.ReLU(), nn.Dropout(), nn.Linear(512, num_classes))
resnet18.load_state_dict(torch.load('./model_resnet18.pth'))
resnet18.eval()
resnet34 = torch.hub.load('pytorch/vision', 'resnet34')
resnet34.fc = nn.Sequential(nn.Linear(resnet34.fc.in_features,512),nn.ReLU(), nn.Dropout(), nn.Linear(512, num_classes))
resnet34.load_state_dict(torch.load('./model_resnet34.pth'))
resnet34.eval()
# Test against the average of each prediction from the two models
models_ensemble = [resnet18.to(device), resnet34.to(device)]
correct = 0
total = 0
if __name__ == '__main__':
with torch.no_grad():
for data in test_data_loader:
images, labels = data[0].to(device), data[1].to(device)
predictions = [i(images).data for i in models_ensemble]
avg_predictions = torch.mean(torch.stack(predictions), dim=0)
_, predicted = torch.max(avg_predictions, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
if total != 0:
print('accuracy = {:f}'.format(correct / total))
print('correct: {:d} total: {:d}'.format(correct, total))
To be very precise, I want to save my progress at the end of for batch in train_loader: loop, for say k = 1500.
If anyone can guide me about modifying my code so that I can save my progress and resume it later, then it will be a great and highly appreciated.
Whenever you want to save your training progress, you need to save two things:
Your model's state dict
Your optimizer's state dict
This can be done in the following way:
def save_checkpoint(model, optimizer, save_path, epoch):
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch': epoch
}, save_path)
To resume training, you can restore your model and optimizer's state dict.
def load_checkpoint(model, optimizer, load_path):
checkpoint = torch.load(load_path)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
return model, optimizer, epoch
You can save your model at any point in training, wherever you need to. However, it should be ideal to save after finishing an epoch.

Implementing a custom dataset with PyTorch

I'm attempting to modify this feedforward network taken from https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/01-basics/feedforward_neural_network/main.py
to utilize my own dataset.
I define a custom dataset of two 1 dim arrays as input and two scalars the corresponding output :
x = torch.tensor([[5.5, 3,3,4] , [1 , 2,3,4], [9 , 2,3,4]])
print(x)
y = torch.tensor([1,2,3])
print(y)
import torch.utils.data as data_utils
my_train = data_utils.TensorDataset(x, y)
my_train_loader = data_utils.DataLoader(my_train, batch_size=50, shuffle=True)
I've updated the hyperparameters to match new input_size (2) & num_classes (3).
I've also changed images = images.reshape(-1, 28*28).to(device) to images = images.reshape(-1, 4).to(device)
As the training set is minimal I've changed the batch_size to 1.
Upon making these modifications I receive error when attempting to train :
RuntimeError Traceback (most recent call
last) in ()
51
52 # Forward pass
---> 53 outputs = model(images)
54 loss = criterion(outputs, labels)
55
/home/.local/lib/python3.6/site-packages/torch/nn/modules/module.py in call(self, *input, **kwargs)
489 result = self._slow_forward(*input, **kwargs)
490 else:
--> 491 result = self.forward(*input, **kwargs)
492 for hook in self._forward_hooks.values():
493 hook_result = hook(self, input, result)
in forward(self, x)
31
32 def forward(self, x):
---> 33 out = self.fc1(x)
34 out = self.relu(out)
35 out = self.fc2(out)
/home/.local/lib/python3.6/site-packages/torch/nn/modules/module.py in call(self, *input, **kwargs)
489 result = self._slow_forward(*input, **kwargs)
490 else:
--> 491 result = self.forward(*input, **kwargs)
492 for hook in self._forward_hooks.values():
493 hook_result = hook(self, input, result)
/home/.local/lib/python3.6/site-packages/torch/nn/modules/linear.py in forward(self, input)
53
54 def forward(self, input):
---> 55 return F.linear(input, self.weight, self.bias)
56
57 def extra_repr(self):
/home/.local/lib/python3.6/site-packages/torch/nn/functional.py
in linear(input, weight, bias)
990 if input.dim() == 2 and bias is not None:
991 # fused op is marginally faster
--> 992 return torch.addmm(bias, input, weight.t())
993
994 output = input.matmul(weight.t())
RuntimeError: size mismatch, m1: [3 x 4], m2: [2 x 3] at
/pytorch/aten/src/THC/generic/THCTensorMathBlas.cu:249
How to amend code to match expected dimensionality ? I'm unsure what code to change as I've changed all parameters that require updating ?
Source prior to changes :
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Hyper-parameters
input_size = 784
hidden_size = 500
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001
# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='../../data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = torchvision.datasets.MNIST(root='../../data',
train=False,
transform=transforms.ToTensor())
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
# Fully connected neural network with one hidden layer
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
model = NeuralNet(input_size, hidden_size, num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# Move tensors to the configured device
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
# Test the model
# In test phase, we don't need to compute gradients (for memory efficiency)
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total))
# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')
Source post changes :
x = torch.tensor([[5.5, 3,3,4] , [1 , 2,3,4], [9 , 2,3,4]])
print(x)
y = torch.tensor([1,2,3])
print(y)
import torch.utils.data as data_utils
my_train = data_utils.TensorDataset(x, y)
my_train_loader = data_utils.DataLoader(my_train, batch_size=50, shuffle=True)
print(my_train)
print(my_train_loader)
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Hyper-parameters
input_size = 2
hidden_size = 3
num_classes = 3
num_epochs = 5
batch_size = 1
learning_rate = 0.001
# MNIST dataset
train_dataset = my_train
# Data loader
train_loader = my_train_loader
# Fully connected neural network with one hidden layer
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
model = NeuralNet(input_size, hidden_size, num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# Move tensors to the configured device
images = images.reshape(-1, 4).to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
# Test the model
# In test phase, we don't need to compute gradients (for memory efficiency)
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, 4).to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total))
# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')
You need to change input_size to 4 (2*2), and not 2 as your modified code currently shows.
If you compare it to the original MNIST example, you'll see that input_size is set to 784 (28*28) and not just to 28.

Categories

Resources