Plot three y-axes time-series data of different scale using Matplotlib - python

I have a time-series dataset. I want to plot the data i.e. current, voltage, and power each on the y-axis. I tried to do it with the following code but facing some errors (Image link attached).
Need help with the following:
adjusting scale of each y-axis
setting color of each y-axis
setting legends
Any other suggestions for improvement of code or alternative solutions are most welcome.
fig, ax1 = plt.subplots(figsize=(12,10))
ax2 = ax1.twinx()
ax3 = ax1.twinx()
ax1.set_ylim(0, 10)
ax2.set_ylim(0, 100)
ax3.set_ylim(0, 1000)
ax1.set_ylabel("Output Current")
ax2.set_ylabel("Output Voltage")
ax3.set_ylabel("Output Power")
color1 = plt.cm.viridis(0)
color2 = plt.cm.viridis(0.5)
color3 = plt.cm.viridis(.9)
ax1 = output_params.Output_Voltage.plot(color=color1, label= 'Output Current')
ax2 = output_params.Output_Current.plot(color=color2, label='Output Voltage')
ax3 = output_params.Output_Power.plot(color=color3, label='Output Power')
lns = [ax1, ax2, ax3]
ax1.legend(handles=lns, loc='best')
# right, left, top, bottom
ax3.spines['right'].set_position(('outward', 60))
ax1.yaxis.label.set_color(ax1.get_color())
ax2.yaxis.label.set_color(ax2.get_color())
ax3.yaxis.label.set_color(ax3.get_color())
# Adjust spacings w.r.t. figsize
fig.tight_layout()

Related

Modifying subplots sizes

I have been trying to find some answers, but most of them don't include a table, or they solve the problem generally and I get in trouble trying to find a workaround with the table I created as I managed to put the table through an empty axis. But now decreasing the right-axis size (as the table gets accommodated to the axis size) and increasing the left two-axis size is becoming a daunting task.
I have this code:
fig = plt.figure(figsize=(18,5))
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(223)
ax3 = fig.add_subplot(122)
ax3.axis('off')
data = pd.DataFrame({'metrics': ['MSLE train', 'msle_test', 'asdsad'],
'values': [0.43, 0.52, 0.54]})
ax3.table(cellText=data.values, colLabels=data.columns, loc='center')
fig.suptitle(f'Train MSLE: {msle_train}, Test MSLE: {msle_test}')
ax1 = y_data.plot(label='Original data', ax=ax1, c='blue')
ax1 = y_pred_train.plot(ax=ax1, c='orange')
ax1 = y_pred_test.plot(ax=ax1, c='orange', linestyle='--')
ax1.legend()
ax2 = error_train.plot(label='Train error', ax=ax2)
ax2 = error_test.plot(label='Test error', ax=ax2, linestyle='--')
ax2.legend()
plt.show()
That returns this plot:
I'm looking to increase the horizontal size of the two left plots, something near the red mark:
Any suggestions?
You can use gridspec.
It even works with a vertical centered right hand side and a table:
import matplotlib.pyplot as plt
from matplotlib import gridspec
import pandas as pd
data = pd.DataFrame({'metrics': ['MSLE train', 'msle_test', 'asdsad'],
'values': [0.43, 0.52, 0.54]})
fig = plt.figure(figsize=(18,5))
gs = gridspec.GridSpec(4, 2, width_ratios=[3,1])
ax1 = fig.add_subplot(gs[0:2,:-1])
ax1.set_title('ax1')
ax2 = fig.add_subplot(gs[2:4,:-1])
ax2.set_title('ax2')
ax3 = fig.add_subplot(gs[1:3,1])
ax3.set_axis_off()
ax3.table(cellText=data.values, colLabels=data.columns, loc='center')
fig.tight_layout()
plt.show()
Notes:
Horizontal alignment is set with the ratio of width_ratios=[3,1]
fig.tight_layout() is helpfull to automatically align the spacing between the plots.
Vertical centering is achieved with a little workaround by having initially a larger vertical grid than required (no. of vertical plots) and distributing the plots and table accordingly (see e.g. gs[2:4).
The titles were just added for visual orientation.
ax3.set_axis_off() is required to suppress the plot frame at the table position - without it you'll get:

How do you controle zorder across twinx in matplotlib?

I'm trying to control the zorder of different plots across twinx axes. How can I get the blue noisy plots to appear in the background and the orange smoothed plots to appear in the foreground in this plot?
from matplotlib import pyplot as plt
import numpy as np
from scipy.signal import savgol_filter
random = np.random.RandomState(0)
x1 = np.linspace(-10,10,500)**3 + random.normal(0, 100, size=500)
x2 = np.linspace(-10,10,500)**2 + random.normal(0, 100, size=500)
fig,ax1 = plt.subplots()
ax1.plot(x1, zorder=0)
ax1.plot(savgol_filter(x1,99,2), zorder=1)
ax2 = ax1.twinx()
ax2.plot(x2, zorder=0)
ax2.plot(savgol_filter(x2,99,2), zorder=1)
plt.show()
Similar to this thread, though not ideal, this is an approach using twiny along with twinx.
# set up plots
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax3 = ax1.twiny()
ax4 = ax2.twiny()
# background
ax1.plot(x1)
ax2.plot(x2)
# smoothed
ax3.plot(savgol_filter(x1,99,2), c='orange')
ax4.plot(savgol_filter(x2,99,2), c='orange')
# turn off extra ticks and labels
ax3.tick_params(axis='x', which='both', bottom=False, top=False)
ax4.tick_params(axis='x', which='both', bottom=False, top=False)
ax3.set_xticklabels([])
ax4.set_xticklabels([])
# fix zorder
ax1.set_zorder(1)
ax2.set_zorder(2)
ax3.set_zorder(3)
ax4.set_zorder(4)
plt.show()
Output:

My graph doesn't display entirely x-axis and grid in the background (Matplotlib/Python)

I'm trying to plot some revenues against EBIT on a chart with a secondary Y-axis.
Everything seems to be ok except
the grid doesn't display entirely.
the x-axis doesn't display entirely either.
Does anyone have a solution to display entirely these 2 features ?
Here is a screen cap of my graph :
graph
Here is the data :
data
And here is my code :
x = msft_ebit_revenue_new['period']
y1 = msft_ebit_revenue_new['EBIT']
y2 = msft_ebit_revenue_new['Revenues']
Plot Line1 (Left Y Axis)
fig, ax1 = plt.subplots(1,1,figsize=(16,9), dpi= 80)
ax1.plot(x, y1, color='tab:red')
# Plot Line2 (Right Y Axis)
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
ax2.plot(x, y2, color='tab:blue')
Decorations
ax1 (left Y axis)
ax1.set_xlabel('Period', fontsize=10)
ax1.tick_params(axis='x', rotation=0, labelsize=12)
ax1.set_ylabel('EBIT', color='tab:red', fontsize=20)
ax1.tick_params(axis='y', rotation=0, labelcolor='tab:red' )
ax1.grid(alpha=.4)
ax2 (right Y axis)
ax2.set_ylabel("Revenues ($ in millions)", color='tab:blue', fontsize=20)
ax2.tick_params(axis='y', labelcolor='tab:blue')
ax2.set_xticks(np.arange(0, len(x), 60))
ax2.set_xticklabels(x[::60], rotation=90, fontdict={'fontsize':10})
ax2.set_title("EBIT vs Revenues (MSFT)", fontsize=22)
fig.tight_layout()
plt.show()
Thank you !
Alex
Problem
Display x-axis labels
Display grid
Solution
Comment the following lines:
ax2.set_xticks(np.arange(0, len(x), 60))
ax2.set_xticklabels(x[::60], rotation=90, fontdict={'fontsize':10})

how to adjust the ticks of the different y axis in one graph to have the same high

Here I plot a bar graph and a line graph in the same figure:
There are 2 y-axes, money and increase_rate, each on a different scale.
How can I set the ticks of the two y-axes to be at the same hight?
import numpy as np
import matplotlib.pyplot as plt
time = [2000,2001,2002,2003]
money = [1000,2000,4000,6000]
increase_rate =[2,1,6,12]
fig, ax1 = plt.subplots()
width = 0.75
ax1.set_xlabel("")
ax1.set_ylabel("")
ax1.bar(time, money ,width = width, color = "#9370DB", alpha=0.6)
ax1.tick_params(axis='y')
ax1.spines['right'].set_visible(False)
ax1.spines['left'].set_visible(False)
ax1.spines['top'].set_visible(False)
ax1.spines['bottom'].set_visible(False)
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
ax2.set_ylabel("")
ax2.plot(time, increase_rate, color = "#FFFF00", lw = 3)
ax2.tick_params(axis='y')
ax2.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax2.spines['top'].set_visible(False)
ax2.grid(color='black', linestyle='dotted', linewidth=0.8, alpha = 0.5)
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.show()
Use the set_yticks to set the tick positions.
ax1.set_yticks(np.linspace(0, max(money), 5))
ax2.set_yticks(np.linspace(0, max(increase_rate), 5))

How to add a single colobar that will show the data from 2 different subplot

What i wanna do is adding a single colorbar (at the right side of the figure shown below), that will show the colorbar for both subplots (they are at the same scale).
Another thing doesn't really make sense for me is why the lines I try to draw on the end of the code are not drawn (they are supposed to be horizontal lines on the center of both plots)
Thanks for the help.
Here are the code:
idx=0
b=plt.psd(dOD[:,idx],Fs=self.fs,NFFT=512)
B=np.zeros((2*len(self.Chan),len(b[0])))
B[idx,:]=20*log10(b[0])
c=plt.psd(dOD_filt[:,idx],Fs=self.fs,NFFT=512)
C=np.zeros((2*len(self.Chan),len(b[0])))
C[idx,:]=20*log10(c[0])
for idx in range(2*len(self.Chan)):
b=plt.psd(dOD[:,idx],Fs=self.fs,NFFT=512)
B[idx,:]=20*log10(b[0])
c=plt.psd(dOD_filt[:,idx],Fs=self.fs,NFFT=512)
C[idx,:]=20*log10(c[0])
## Calculate the color scaling for the imshow()
aux1 = max(max(B[i,:]) for i in range(size(B,0)))
aux2 = min(min(B[i,:]) for i in range(size(B,0)))
bux1 = max(max(C[i,:]) for i in range(size(C,0)))
bux2 = min(min(C[i,:]) for i in range(size(C,0)))
scale1 = 0.75*max(aux1,bux1)
scale2 = 0.75*min(aux2,bux2)
fig, axes = plt.subplots(nrows=2, ncols=1,figsize=(7,7))#,sharey='True')
fig.subplots_adjust(wspace=0.24, hspace=0.35)
ii=find(c[1]>=frange)[0]
## Making the plots
cax=axes[0].imshow(B, origin = 'lower',vmin=scale2,vmax=scale1)
axes[0].set_ylim((0,2*len(self.Chan)))
axes[0].set_xlabel(' Frequency (Hz) ')
axes[0].set_ylabel(' Channel Number ')
axes[0].set_title('Pre-Filtered')
cax2=axes[1].imshow(C, origin = 'lower',vmin=scale2,vmax=scale1)
axes[1].set_ylim(0,2*len(self.Chan))
axes[1].set_xlabel(' Frequency (Hz) ')
axes[1].set_ylabel(' Channel Number ')
axes[1].set_title('Post-Filtered')
axes[0].annotate('690nm', xy=((ii+1)/2, len(self.Chan)/2-1),
xycoords='data', va='center', ha='right')
axes[0].annotate('830nm', xy=((ii+1)/2, len(self.Chan)*3/2-1 ),
xycoords='data', va='center', ha='right')
axes[1].annotate('690nm', xy=((ii+1)/2, len(self.Chan)/2-1),
xycoords='data', va='center', ha='right')
axes[1].annotate('830nm', xy=((ii+1)/2, len(self.Chan)*3/2-1 ),
xycoords='data', va='center', ha='right')
axes[0].axis('tight')
axes[1].axis('tight')
## Set up the xlim to aprox frange Hz
axes[0].set_xlim(left=0,right=ii)
axes[1].set_xlim(left=0,right=ii)
## Make the xlabels become the actual frequency number
ticks = linspace(0,ii,10)
tickslabel = linspace(0.,frange,10)
for i in range(10):
tickslabel[i]="%.1f" % tickslabel[i]
axes[0].set_xticks(ticks)
axes[0].set_xticklabels(tickslabel)
axes[1].set_xticks(ticks)
axes[1].set_xticklabels(tickslabel)
## Draw a line to separate the two different wave lengths, and name each region
l1 = Line2D([0,frange],[28,28],ls='-',color='black')
axes[0].add_line(l1)
axes[1].add_line(l1)
And here the figure it makes:
If any more info are needed, just ask.
Basically, figure.colorbar() is good for both images, as long as their are not with too different scales. So you could let matplotlib do it for you... or you manually position your colorbar on axes inside the images. Here is how to control the location of the colorbar:
import numpy as np
from matplotlib import pyplot as plt
A = np.random.random_integers(0, 10, 100).reshape(10, 10)
B = np.random.random_integers(0, 10, 100).reshape(10, 10)
fig = plt.figure()
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
mapable = ax1.imshow(A, interpolation="nearest")
cax = ax2.imshow(A, interpolation="nearest")
# set the tickmarks *if* you want cutom (ie, arbitrary) tick labels:
cbar = fig.colorbar(cax, ax=None)
fig = plt.figure(2)
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
mapable = ax1.imshow(A, interpolation="nearest")
cax = ax2.imshow(A, interpolation="nearest")
# on the figure total in precent l b w , height
ax3 = fig.add_axes([0.1, 0.1, 0.8, 0.05]) # setup colorbar axes.
# put the colorbar on new axes
cbar = fig.colorbar(mapable,cax=ax3,orientation='horizontal')
plt.show()
Note ofcourse you can position ax3 as you wish, on the side, on the top, where ever,
as long as it is in the boundaries of the figure.
I don't know why your line2D is not appearing.
I added to my code before plt.show() the following and everything is showing:
from mpl_toolkits.axes_grid1 import anchored_artists
from matplotlib.patheffects import withStroke
txt = anchored_artists.AnchoredText("SC",
loc=2,
frameon=False,
prop=dict(size=12))
if withStroke:
txt.txt._text.set_path_effects([withStroke(foreground="w",
linewidth=3)])
ax1.add_artist(txt)
## Draw a line to separate the two different wave lengths, and name each region
l1 = plt.Line2D([-1,10],[5,5],ls='-',color='black',lineswidth=10)
ax1.add_line(l1)

Categories

Resources