remove certain numbers from two dataframes python - python

I have two dataframes
dt AAPL AMC AMZN ASO ATH ... SPCE SRNE TH TSLA VIAC WKHS
0 2021-04-12 36 28 6 20 1 ... 5 0 0 50 23 0
1 2021-04-13 46 15 5 16 6 ... 5 0 0 122 12 1
2 2021-04-14 12 4 1 5 2 ... 2 0 0 39 1 0
3 2021-04-15 30 23 3 14 2 ... 15 0 0 101 9 0
dt AAPL AMC AMZN ASO ATH ... SPCE SRNE TH TSLA VIAC WKHS
0 2021-04-12 41 28 4 33 10 ... 5 0 0 56 14 3
1 2021-04-13 76 22 7 12 29 ... 4 0 0 134 8 2
2 2021-04-14 21 15 2 7 16 ... 2 0 0 61 3 0
3 2021-04-15 54 43 9 2 31 ... 16 0 0 83 13 1
I want to remove numbers from two dataframe that are lower than 10 if the instance is deleted from one dataframe the same cell should be remove in another dataframe same thing goes other way around
Appreciate your help

Use a mask:
## pre-requisite
df1 = df1.set_index('dt')
df2 = df2.set_index('dt')
## processing
mask = df1.lt(10) | df2.lt(10)
df1 = df1.mask(mask)
df2 = df2.mask(mask)
output:
>>> df1
AAPL AMC AMZN ASO ATH SPCE SRNE TH TSLA VIAC WKHS
dt
2021-04-12 36 28.0 NaN 20.0 NaN NaN NaN NaN 50 23.0 NaN
2021-04-13 46 15.0 NaN 16.0 NaN NaN NaN NaN 122 NaN NaN
2021-04-14 12 NaN NaN NaN NaN NaN NaN NaN 39 NaN NaN
2021-04-15 30 23.0 NaN NaN NaN 15.0 NaN NaN 101 NaN NaN
>>> df2
AAPL AMC AMZN ASO ATH SPCE SRNE TH TSLA VIAC WKHS
dt
2021-04-12 41 28.0 NaN 33.0 NaN NaN NaN NaN 56 14.0 NaN
2021-04-13 76 22.0 NaN 12.0 NaN NaN NaN NaN 134 NaN NaN
2021-04-14 21 NaN NaN NaN NaN NaN NaN NaN 61 NaN NaN
2021-04-15 54 43.0 NaN NaN NaN 16.0 NaN NaN 83 NaN NaN

Related

first argument must be an iterable of pandas objects, you passed an object of type "DataFrame" - not sure why

I have the following code below. I am trying to concatenate columns together and fill an empty dataframe 'emptyframe'.
The idea is that I start with 3 columns, then add on another 3 columns, then another 3 colums etc...
emptyframe = pd.DataFrame()
for j in range(0,len(df.columns)):
newdata = pd.concat((newdf.loc[:,j],happydf.loc[:,j],motivedf.loc[:,j]),axis=1)
emptyframe = pd.concat(newdata,emptyframe)
print(emptyframe)
However, the following code gives me the error 'first argument must be an iterable of pandas objects, you passed an object of type "DataFrame"'.
As an example:
newdata = pd.concat((newdf.loc[:,0],happydf.loc[:,0],motivedf.loc[:,0]),axis=1)
Gives me:
0 0 0
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 fullMiss 37 66
6 nearMiss 33 67
7 hit 75 60
8 fullMiss 36 63
9 hit 74 42
10 nearMiss 19 45
11 fullMiss 24 28
12 fullMiss 13 20
13 nearMiss 2 9
14 fullMiss 8 9
15 fullMiss 3 4
16 nearMiss 52 5
17 fullMiss 49 2
18 fullMiss 52 3
19 fullMiss 52 0
20 hit 50 10
21 nearMiss 59 3
22 hit 52 2
23 fullMiss 54 4
24 nearMiss 35 1
25 fullMiss 49 0
26 nearMiss 51 13
27 fullMiss 54 9
28 nearMiss 53 4
I would be so grateful for a helping hand!
As an example, the first 10 lines of 'newdf':
0 1 2 3 4 5 6 ... 71 72 73 74 75 76 77
0 NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN
5 fullMiss fullMiss fullMiss fullMiss fullMiss hit fullMiss ... fullMiss fullMiss nearMiss nearMiss fullMiss nearMiss fullMiss
6 nearMiss nearMiss nearMiss nearMiss nearMiss fullMiss nearMiss ... nearMiss nearMiss hit fullMiss hit fullMiss nearMiss
7 hit hit hit fullMiss fullMiss nearMiss fullMiss ... hit hit fullMiss hit fullMiss hit fullMiss
8 fullMiss fullMiss hit fullMiss fullMiss fullMiss fullMiss ... fullMiss nearMiss fullMiss nearMiss nearMiss fullMiss nearMiss
9 hit fullMiss hit nearMiss nearMiss fullMiss fullMiss ... nearMiss nearMiss hit hit fullMiss nearMiss fullMiss
happydf:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 64 65 66 67 68 69 70 71 72 73 74 75 76 77
0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
5 37 31 48 32 17 70 6 3 22 52 20 99 51 29 ... 3 51 52 50 18 28 22 52 35 36 1 9 4 20
6 33 42 39 35 34 8 15 0 23 49 67 50 50 29 ... 49 50 41 43 54 39 35 35 16 68 0 89 0 62
7 75 75 65 36 52 20 4 0 28 100 34 49 47 28 ... 97 42 100 43 20 36 100 43 23 28 99 21 30 35
8 36 63 70 33 53 1 5 50 7 18 29 1 64 74 ... 50 46 50 45 19 72 58 30 48 12 3 54 0 38
9 74 32 58 35 30 16 8 49 83 50 30 1 51 39 ... 48 39 31 39 12 37 42 59 18 68 88 12 5 33
motivedf
0 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 64 65 66 67 68 69 70 71 72 73 74 75 76 77
0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
5 66 50 65 62 17 35 46 95 51 72 51 0 56 24 ... 79 26 82 25 76 25 69 51 86 15 71 66 2 60
6 67 44 60 51 40 67 46 49 52 74 50 0 58 26 ... 85 24 48 24 77 34 62 64 66 50 63 70 4 64
7 60 58 67 39 45 52 48 0 52 95 53 0 51 24 ... 83 11 66 28 76 28 90 63 45 23 71 53 55 50
8 63 44 67 34 52 0 48 53 52 50 53 0 55 41 ... 51 10 28 28 51 72 65 62 50 0 62 50 4 62
9 42 44 58 28 50 69 52 50 52 49 51 1 53 32 ... 39 0 52 45 35 16 45 64 31 15 69 39 3 49
I used the 'append' function to solve this issue:
emptyframe = pd.DataFrame()
for j in range(0,len(df.columns)):
newdata = pd.concat((newdf.iloc[:,j],happydf.iloc[:,j],motivedf.iloc[:,j]),axis=1)
emptyframe = emptyframe.append(newdata)
print(emptyframe)
:)

Pandas: grab positions in dataframe which indexes are listed in another dataframe

Suppose that I have 2 dataframes, with indexes populated so that elements in columns are unique, because in real data they are:
vals = pd.DataFrame(np.random.randint(0,10,(10, 3)), columns=list('ABC'))
indexes = pd.DataFrame(np.argsort(np.random.randint(0,10,(10, 3)), axis=0)[:5], columns=list('ABC'))
>>> vals
A B C
0 64 20 48
1 28 60 81
2 5 73 77
3 74 66 86
4 41 39 21
5 65 37 98
6 10 20 73
7 6 70 3
8 36 29 28
9 43 13 12
>>> indexes
A B C
0 4 2 3
1 3 3 8
2 5 1 7
3 9 8 9
4 2 4 0
I would like to retain only those values in vals which indexes are listed in indexes. I don't care about row integrity or NAs, as I'll use the columns as Series later.
This is what I came up with:
vals_indexes = pd.DataFrame()
for i in range(vals.shape[1]):
vals_indexes = pd.concat([vals_indexes, vals.iloc[[e for e in indexes.iloc[:, i] if e in vals.index], i]], axis=1)
>>> vals_indexes
A B C
0 NaN NaN 48.0
1 NaN 60.0 NaN
2 5.0 73.0 NaN
3 74.0 66.0 86.0
4 41.0 39.0 NaN
5 65.0 NaN NaN
7 NaN NaN 3.0
8 NaN 29.0 28.0
9 43.0 NaN 12.0
Which is a bit ugly, but works for me. Question: is there a more effective way to do this?
use .loc within a loop to replace non existing index with nan
for i in vals.columns:
vals.loc[vals[i].isin(list(indexes[i].unique())),i]=np.nan
print(vals)
A B C
0 NaN 2.0 NaN
1 NaN 5.0 NaN
2 2.0 3.0 NaN
3 NaN NaN NaN
4 NaN NaN 6.0
5 9.0 NaN NaN
6 NaN NaN 4.0
7 NaN 7.0 NaN
8 2.0 NaN NaN
9 NaN NaN NaN

Merging Two Columns in DataFrame With Variable Column Names

Editing my original post to hopefully simplify my question... I'm merging multiple DataFrames into one, SomeData.DataFrame, which gives me the following:
Key 2019-02-17 2019-02-24_x 2019-02-24_y 2019-03-03
0 A 80 NaN NaN 80
1 B NaN NaN 45 36
2 C 44 NaN 39 NaN
3 D 80 NaN NaN 12
4 E 49 2 NaN NaN
What I'm trying to do now is efficiently merge the columns ending in "_x" and "_y" while keeping everything else in place so that I get:
Key 2019-02-17 2019-02-24 2019-03-03
0 A 80 NaN 80
1 B NaN 45 36
2 C 44 39 NaN
3 D 80 NaN 12
4 E 49 2 NaN
The other issue I'm trying to account for is that the data contained in SomeData.DataFrame changes weekly so that my column headers are unpredictable. Meaning, some weeks I may not have the above issue at all and other weeks, there may be multiple instances for example:
Key 2019-02-17 2019-02-24_x 2019-02-24_y 2019-03_10_x 2019-03-10_y
0 A 80 NaN NaN 80 NaN
1 B NaN NaN 45 36 NaN
2 C 44 NaN 39 NaN 12
3 D 80 NaN NaN 12 NaN
4 E 49 2 NaN NaN 17
So that again the desired result would be:
Key 2019-02-17 2019-02-24 2019-03_10
0 A 80 NaN 80
1 B NaN 45 36
2 C 44 39 12
3 D 80 NaN 12
4 E 49 2 17
Is what I'm asking reasonable or am I venturing outside the bounds of Pandas' limits? I can't find anyone trying to do anything similar so I'm not sure anymore. Thank you in advance!
Edited answer to updated question:
df = df.set_index('Key')
df.groupby(df.columns.str.split('_').str[0], axis=1).sum()
Output:
2019-02-17 2019-02-24 2019-03-03
Key
A 80.0 0.0 80.0
B 0.0 45.0 36.0
C 44.0 39.0 0.0
D 80.0 0.0 12.0
E 49.0 2.0 0.0
Second dataframe Output:
df.groupby(df.columns.str.split('_').str[0], axis=1).sum()
Output:
2019-02-17 2019-02-24 2019-03-10
Key
A 80.0 0.0 80.0
B 0.0 45.0 36.0
C 44.0 39.0 12.0
D 80.0 0.0 12.0
E 49.0 2.0 17.0
You could try something like this:
df_t = df.T
df_t.set_index(df_t.groupby(level=0).cumcount(), append=True)\
.unstack().T\
.sort_values(df.columns[0])[df.columns.unique()]\
.reset_index(drop=True)
Output:
val03-20 03-20 val03-24 03-24
0 a 1 d 5
1 b 6 e 7
2 c 4 f 10
3 NaN NaN g 5
4 NaN NaN h 6
5 NaN NaN i 1

Problem with merging Pandas Dataframes with Columns that don't line up

I am attempting to transpose and merge two pandas dataframes, one containing accounts, the segment which they received their deposit, their deposit information, and what day they received the deposit; the other has the accounts, and withdrawal information. The issue is, for indexing purposes, the segment information from one dataframe should line up with the information of the other, regardless of there being a withdrawal or not.
Notes:
There will always be an account for every person
There will not always be a withdrawal for every person
The accounts and data for the withdrawal dataframe only exist if a withdrawal occurs
Account Dataframe Code
accounts = DataFrame({'person':[1,1,1,1,1,2,2,2,2,2],
'segment':[1,2,3,4,5,1,2,3,4,5],
'date_received':[10,20,30,40,50,11,21,31,41,51],
'amount_received':[1,2,3,4,5,6,7,8,9,10]})
accounts = accounts.pivot_table(index=["person"], columns=["segment"])
Account Dataframe
amount_received date_received
segment 1 2 3 4 5 1 2 3 4 5
person
1 1 2 3 4 5 10 20 30 40 50
2 6 7 8 9 10 11 21 31 41 51
Withdrawal Dataframe Code
withdrawals = DataFrame({'person':[1,1,1,2,2],
'withdrawal_segment':[1,1,5,2,3],
'withdraw_date':[1,2,3,4,5],
'withdraw_amount':[10,20,30,40,50]})
withdrawals = withdrawals.reset_index().pivot_table(index = ['index', 'person'], columns = ['withdrawal_segment'])
Since there can only be unique segments for a person it is required that my column only consists of a unique number once, while still holding all of the data, which is why this dataframe looks so much different.
Withdrawal Dataframe
withdraw_date withdraw_amount
withdrawal_segment 1 2 3 5 1 2 3 5
index person
0 1 1.0 NaN NaN NaN 10.0 NaN NaN NaN
1 1 2.0 NaN NaN NaN 20.0 NaN NaN NaN
2 1 NaN NaN NaN 3.0 NaN NaN NaN 30.0
3 2 NaN 4.0 NaN NaN NaN 40.0 NaN NaN
4 2 NaN NaN 5.0 NaN NaN NaN 50.0 NaN
Merge
merge = accounts.merge(withdrawals, on='person', how='left')
amount_received date_received withdraw_date withdraw_amount
segment 1 2 3 4 5 1 2 3 4 5 1 2 3 5 1 2 3 5
person
1 1 2 3 4 5 10 20 30 40 50 1.0 NaN NaN NaN 10.0 NaN NaN NaN
1 1 2 3 4 5 10 20 30 40 50 2.0 NaN NaN NaN 20.0 NaN NaN NaN
1 1 2 3 4 5 10 20 30 40 50 NaN NaN NaN 3.0 NaN NaN NaN 30.0
2 6 7 8 9 10 11 21 31 41 51 NaN 4.0 NaN NaN NaN 40.0 NaN NaN
2 6 7 8 9 10 11 21 31 41 51 NaN NaN 5.0 NaN NaN NaN 50.0 NaN
The problem with the merged dataframe is that segments from the withdrawal dataframe aren't lined up with the accounts segments.
The desired dataframe should look something like:
amount_received date_received withdraw_date withdraw_amount
segment 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
person
1 1 2 3 4 5 10 20 30 40 50 1.0 NaN NaN NaN NaN 10.0 NaN NaN NaN NaN
1 1 2 3 4 5 10 20 30 40 50 2.0 NaN NaN NaN NaN 20.0 NaN NaN NaN NaN
1 1 2 3 4 5 10 20 30 40 50 NaN NaN NaN NaN 3.0 NaN NaN NaN NaN 30.0
2 6 7 8 9 10 11 21 31 41 51 NaN 4.0 NaN NaN NaN NaN 40.0 NaN NaN NaN
2 6 7 8 9 10 11 21 31 41 51 NaN NaN 5.0 NaN NaN NaN NaN 50.0 NaN NaN
My problem is that I can't seem to merge across both person and segments. I've thought about inserting a row and column, but because I don't know which segments are and aren't going to have a withdrawal this gets difficult. Is it possible to merge the dataframes so that they line up across both people and segments? Thanks!
Method 1 , using reindex
withdrawals=withdrawals.reindex(pd.MultiIndex.from_product([withdrawals.columns.levels[0],accounts.columns.levels[1]]),axis=1)
merge = accounts.merge(withdrawals, on='person', how='left')
merge
Out[79]:
amount_received date_received \
segment 1 2 3 4 5 1 2 3 4 5
person
1 1 2 3 4 5 10 20 30 40 50
1 1 2 3 4 5 10 20 30 40 50
1 1 2 3 4 5 10 20 30 40 50
2 6 7 8 9 10 11 21 31 41 51
2 6 7 8 9 10 11 21 31 41 51
withdraw_amount withdraw_date
segment 1 2 3 4 5 1 2 3 4 5
person
1 10.0 NaN NaN NaN NaN 1.0 NaN NaN NaN NaN
1 20.0 NaN NaN NaN NaN 2.0 NaN NaN NaN NaN
1 NaN NaN NaN NaN 30.0 NaN NaN NaN NaN 3.0
2 NaN 40.0 NaN NaN NaN NaN 4.0 NaN NaN NaN
2 NaN NaN 50.0 NaN NaN NaN NaN 5.0 NaN NaN
Method 2 , using unstack and stack
merge = accounts.merge(withdrawals, on='person', how='left')
merge.stack(dropna=False).unstack()
Out[82]:
amount_received date_received \
segment 1 2 3 4 5 1 2 3 4 5
person
1 1 2 3 4 5 10 20 30 40 50
1 1 2 3 4 5 10 20 30 40 50
1 1 2 3 4 5 10 20 30 40 50
2 6 7 8 9 10 11 21 31 41 51
2 6 7 8 9 10 11 21 31 41 51
withdraw_amount withdraw_date
segment 1 2 3 4 5 1 2 3 4 5
person
1 10.0 NaN NaN NaN NaN 1.0 NaN NaN NaN NaN
1 20.0 NaN NaN NaN NaN 2.0 NaN NaN NaN NaN
1 NaN NaN NaN NaN 30.0 NaN NaN NaN NaN 3.0
2 NaN 40.0 NaN NaN NaN NaN 4.0 NaN NaN NaN
2 NaN NaN 50.0 NaN NaN NaN NaN 5.0 NaN NaN

counting dates not containing NaT and NaN in pandas dataframe

I have a pandas dataframe Date containing a column indicating a subject ID and several dates for each subject.
SubID date1 date2 .... daten
0 ID1 NaT NaN
1 ID2 2015-04-28 NaN
2 ID3 NaT NaN
The dates (date1, date2,....daten) contain NaT, NaN and dates in the form of yyyy-mm-dd.
I would like to count for each SubID how many "date" columns contain a real date.
in this small example I should have
SubID number of dates
0 ID1 0
1 ID2 1
2 ID3 0
I think you can use count with selecting columns by loc:
df['number of dates'] = df.loc[:,'date1':].count(axis=1)
Sample:
print (df)
SubID date1 date2
0 ID1 2015-04-28 2015-04-28
1 ID2 2015-04-28 NaT
2 ID3 NaT NaT
print (df.loc[:,'date1':])
date1 date2
0 2015-04-28 2015-04-28
1 2015-04-28 NaT
2 NaT NaT
df['number of dates'] = df.loc[:,'date1':].count(axis=1)
print (df)
SubID date1 date2 number of dates
0 ID1 2015-04-28 2015-04-28 2
1 ID2 2015-04-28 NaT 1
2 ID3 NaT NaT 0
Another solution with set_index and reset_index:
df = df.set_index('SubID')
df['number of dates'] = df.count(axis=1)
df = df.reset_index()
print (df)
SubID date1 date2 number of dates
0 ID1 2015-04-28 2015-04-28 2
1 ID2 2015-04-28 NaT 1
2 ID3 NaT NaT 0
df = pd.read_pickle('df')
df['number of dates'] = df.loc[:,'date1':].count(axis=1)
print (df)
SubID val_1_kalender_val1_a1 val_2_kalender_val1_a1_1 \
0 h2h_ht_ehv_p001_2 NaT NaN
1 h2h_ht_ehv_p002_3 2015-04-28 NaN
2 h2h_ht_ehv_p003_1 NaT NaN
3 h2h_ht_ehv_p004_4 NaT NaN
4 h2h_ht_ehv_p005_4 NaT NaN
5 h2h_ht_ehv_p006_1 NaT NaN
6 h2h_ht_ehv_p007_1 NaT NaN
7 h2h_ht_ehv_p008_3 2015-07-08 2015-08-06 00:00:00
8 h2h_ht_ehv_p009_3 2015-06-03 NaN
9 h2h_ht_ehv_p010_3 NaT NaN
10 h2h_ht_ehv_p011_3 NaT NaN
11 NaN NaT NaN
12 h2h_ht_ehv_p013_1 NaT NaN
13 h2h_ht_ehv_p014_3 NaT NaN
14 h2h_ht_ehv_p015_1 NaT NaN
15 h2h_ht_ehv_p016_1 NaT NaN
16 h2h_ht_ehv_p017_3 NaT NaN
17 h2h_ht_ehv_p018_1 2015-06-26 2015-08-10 00:00:00
18 h2h_ht_ehv_p019_1 2015-06-18 2015-07-16 00:00:00
19 h2h_ht_ehv_p020_3 NaT NaN
20 h2h_ht_ehv_p021_3 2015-08-09 NaN
21 h2h_ht_ehv_p022_3 2015-07-05 NaN
22 h2h_ht_ehv_p023_3 NaT NaN
23 h2h_ht_ehv_p024_3 NaT NaN
24 h2h_ht_ehv_p025_3 NaT NaN
25 h2h_ht_ehv_p026_3 2015-09-12 NaN
26 h2h_ht_ehv_p027_3 NaT NaN
27 h2h_ht_ehv_p028_3 NaT NaN
28 h2h_ht_ehv_p029_3 NaT NaN
29 h2h_ht_ehv_p030_3 NaT NaN
.. ... ... ...
99 h2h_ht_ehv_p100_3 NaT NaN
100 h2h_ht_ehv_p101_3 NaT NaN
101 h2h_ht_ehv_p102_3 NaT NaN
102 h2h_ht_ehv_p103_1 2016-06-14 NaN
103 h2h_ht_ehv_p104_3 NaT NaN
104 NaN 2016-02-12 NaN
105 h2h_ht_ehv_p106_3 NaT NaN
106 h2h_ht_ehv_p107_3 NaT NaN
107 h2h_ht_ehv_p108_3 NaT NaN
108 h2h_ht_ehv_p109_3 NaT NaN
109 h2h_ht_ehv_p110_1 NaT NaN
110 h2h_ht_ehv_p111_1 NaT NaN
111 h2h_ht_ehv_p112_3 NaT NaN
112 h2h_ht_ehv_p113_3 NaT NaN
113 h2h_ht_ehv_p114_3 2016-06-06 NaN
114 h2h_ht_ehv_p115_1 NaT NaN
115 h2h_ht_ehv_p116_3 2016-03-18 NaN
116 h2h_ht_ehv_p117_3 NaT NaN
117 h2h_ht_ehv_p118_3 NaT NaN
118 NaN NaT NaN
119 h2h_ht_ehv_p120_3 NaT NaN
120 h2h_ht_ehv_p121_3 NaT NaN
121 h2h_ht_ehv_p122_3 NaT NaN
122 h2h_ht_ehv_p123_3 2016-06-21 NaN
123 h2h_ht_ehv_p124_3 NaT NaN
124 h2h_ht_ehv_p125_3 2016-03-29 NaN
125 h2h_ht_ehv_p126_3 NaT NaN
126 h2h_ht_ehv_p127_1 NaT NaN
127 h2h_ht_ehv_p128_3 NaT NaN
128 h2h_ht_ehv_p129_3 NaT NaN
val_3_kalender_val1_a1_2 val_4_kalender_val1_a1_3 \
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN
5 NaN NaN
6 NaN NaN
7 NaN NaN
8 NaN NaN
9 NaN NaN
10 NaN NaN
11 NaN NaN
12 NaN NaN
13 NaN NaN
14 NaN NaN
15 NaN NaN
16 NaN NaN
17 NaN NaN
18 2015-07-17 00:00:00 2015-07-27 00:00:00
19 NaN NaN
20 NaN NaN
21 NaN NaN
22 NaN NaN
23 NaN NaN
24 NaN NaN
25 NaN NaN
26 NaN NaN
27 NaN NaN
28 NaN NaN
29 NaN NaN
.. ... ...
99 NaN NaN
100 NaN NaN
101 NaN NaN
102 NaN NaN
103 NaN NaN
104 NaN NaN
105 NaN NaN
106 NaN NaN
107 NaN NaN
108 NaN NaN
109 NaN NaN
110 NaN NaN
111 NaN NaN
112 NaN NaN
113 NaN NaN
114 NaN NaN
115 NaN NaN
116 NaN NaN
117 NaN NaN
118 NaN NaN
119 NaN NaN
120 NaN NaN
121 NaN NaN
122 NaN NaN
123 NaN NaN
124 NaN NaN
125 NaN NaN
126 NaN NaN
127 NaN NaN
128 NaN NaN
val_5_kalender_val1_a1_4 val_6_kalender_val1_a1_5 \
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN
5 NaN NaN
6 NaN NaN
7 NaN NaN
8 NaN NaN
9 NaN NaN
10 NaN NaN
11 NaN NaN
12 NaN NaN
13 NaN NaN
14 NaN NaN
15 NaN NaN
16 NaN NaN
17 NaN NaN
18 2015-09-06 00:00:00 2015-10-03 00:00:00
19 NaN NaN
20 NaN NaN
21 NaN NaN
22 NaN NaN
23 NaN NaN
24 NaN NaN
25 NaN NaN
26 NaN NaN
27 NaN NaN
28 NaN NaN
29 NaN NaN
.. ... ...
99 NaN NaN
100 NaN NaN
101 NaN NaN
102 NaN NaN
103 NaN NaN
104 NaN NaN
105 NaN NaN
106 NaN NaN
107 NaN NaN
108 NaN NaN
109 NaN NaN
110 NaN NaN
111 NaN NaN
112 NaN NaN
113 NaN NaN
114 NaN NaN
115 NaN NaN
116 NaN NaN
117 NaN NaN
118 NaN NaN
119 NaN NaN
120 NaN NaN
121 NaN NaN
122 NaN NaN
123 NaN NaN
124 NaN NaN
125 NaN NaN
126 NaN NaN
127 NaN NaN
128 NaN NaN
val_7_kalender_val1_a1_6 val_8_kalender_val1_a1_7 \
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN
5 NaN NaN
6 NaN NaN
7 NaN NaN
8 NaN NaN
9 NaN NaN
10 NaN NaN
11 NaN NaN
12 NaN NaN
13 NaN NaN
14 NaN NaN
15 NaN NaN
16 NaN NaN
17 NaN NaN
18 NaN NaN
19 NaN NaN
20 NaN NaN
21 NaN NaN
22 NaN NaN
23 NaN NaN
24 NaN NaN
25 NaN NaN
26 NaN NaN
27 NaN NaN
28 NaN NaN
29 NaN NaN
.. ... ...
99 NaN NaN
100 NaN NaN
101 NaN NaN
102 NaN NaN
103 NaN NaN
104 NaN NaN
105 NaN NaN
106 NaN NaN
107 NaN NaN
108 NaN NaN
109 NaN NaN
110 NaN NaN
111 NaN NaN
112 NaN NaN
113 NaN NaN
114 NaN NaN
115 NaN NaN
116 NaN NaN
117 NaN NaN
118 NaN NaN
119 NaN NaN
120 NaN NaN
121 NaN NaN
122 NaN NaN
123 NaN NaN
124 NaN NaN
125 NaN NaN
126 NaN NaN
127 NaN NaN
128 NaN NaN
val_9_kalender_val1_a1_8 number of dates
0 NaN 0
1 NaN 1
2 NaN 0
3 NaN 0
4 NaN 0
5 NaN 0
6 NaN 0
7 NaN 2
8 NaN 1
9 NaN 0
10 NaN 0
11 NaN 0
12 NaN 0
13 NaN 0
14 NaN 0
15 NaN 0
16 NaN 0
17 NaN 2
18 NaN 6
19 NaN 0
20 NaN 1
21 NaN 1
22 NaN 0
23 NaN 0
24 NaN 0
25 NaN 1
26 NaN 0
27 NaN 0
28 NaN 0
29 NaN 0
.. ... ...
99 NaN 0
100 NaN 0
101 NaN 0
102 NaN 1
103 NaN 0
104 NaN 1
105 NaN 0
106 NaN 0
107 NaN 0
108 NaN 0
109 NaN 0
110 NaN 0
111 NaN 0
112 NaN 0
113 NaN 1
114 NaN 0
115 NaN 1
116 NaN 0
117 NaN 0
118 NaN 0
119 NaN 0
120 NaN 0
121 NaN 0
122 NaN 1
123 NaN 0
124 NaN 1
125 NaN 0
126 NaN 0
127 NaN 0
128 NaN 0
[129 rows x 11 columns]

Categories

Resources