Two confusion matrix plots have different sizes - python

I'm trying to plot to confusion matrix in the same image, but they come out in different sizes.
Here's the code:
fig, ax = plt.subplots(nrows=1, ncols=2, figsize = (18,8))
fig.suptitle('Matriz de Confusão')
skplt.metrics.plot_confusion_matrix(y_test, y_pred_log, normalize=True, ax=ax[0], title=('Regressão Logística'))
skplt.metrics.plot_confusion_matrix(y_test, y_pred_tree, normalize=True, ax=ax[1], title=('Árvore de decisão'))
ax[0].xaxis.set_ticklabels(['Normal', 'Fraude']); ax[0].yaxis.set_ticklabels(['Normal', 'Fraude']);
ax[1].xaxis.set_ticklabels(['Normal', 'Fraude']); ax[1].yaxis.set_ticklabels(['Normal', 'Fraude']);
plt.show()
And this is what I'm getting:
How can I change the size of the second plot?
Also if I could delete the extra color bar would be nice.

You sould define the axes where colorbar need to be placed. You can check this answer as a reference.
Applying those concept to your case would result in something similar to this:
import matplotlib.pyplot as plt
import numpy as np
M1 = np.random.rand(2, 2)
M2 = np.random.rand(2, 2)
fig, ax = plt.subplots(1, 2, figsize = (18, 8))
plt.subplots_adjust(right = 0.77)
cbar_ax_1 = fig.add_axes([0.8, 0.1, 0.04, 0.8])
cbar_ax_2 = fig.add_axes([0.9, 0.1, 0.04, 0.8])
im_1 = ax[0].imshow(M1, cmap = 'magma')
im_2 = ax[1].imshow(M2, cmap = 'magma')
plt.colorbar(im_1, cax = cbar_ax_1)
plt.colorbar(im_2, cax = cbar_ax_2)
plt.show()
If you want one colorbar only, it is wiser to normalize the unique colorbar based on both matrices' values:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import Normalize
from matplotlib import cm
M1 = np.random.rand(2, 2)
M2 = np.random.rand(2, 2)
fig, ax = plt.subplots(1, 2, figsize = (18, 8))
plt.subplots_adjust(right = 0.87)
cbar_ax = fig.add_axes([0.9, 0.1, 0.04, 0.8])
norm = Normalize(vmin = min(np.min(M1), np.min(M2)), vmax = max(np.max(M1), np.max(M2)))
cmap = cm.magma
im_1 = ax[0].imshow(M1, cmap = cmap)
im_2 = ax[1].imshow(M2, cmap = cmap)
plt.colorbar(cm.ScalarMappable(norm = norm, cmap = cmap), cax = cbar_ax)
plt.show()

Related

matplotlib set_aspect(num) on an axis doesn't resize display box in a gridspec

I'm plotting an image with their two projections (x and y) in a GridSpec. When I use the set_aspect on the central image, the image size box isn't resized for its minimal size (without blank) as you can see below. Does somebody have a solution to resolve this case?
Matplotlib 3.0.2, Python 3.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
plt.rcParams['toolbar'] = 'toolmanager'
matplotlib.use('Qt5Agg')
ldata = np.random.random((256, 256))
xhisto = np.sum(ldata, axis=0)
yhisto = np.sum(ldata, axis=1)
fig = plt.figure()
gs = plt.GridSpec(2, 2, height_ratios=[10,1], width_ratios=[3,30], wspace=0.1, hspace=0.1)
ax_image = plt.subplot(gs[1])
ax_histoy = plt.subplot(gs[0], sharey=ax_image)
ax_histox = plt.subplot(gs[3], sharex=ax_image)
plt.subplots_adjust(right=0.8)
colorAx = plt.axes([0.85, 0.4, 0.02, 0.45])
im = ax_image.imshow(ldata, cmap='jet', interpolation='none', aspect='auto')
ax_histox.plot(xhisto)
ax_histoy.plot(yhisto, range(256))
ax_image.invert_yaxis()
ax_image.tick_params(labelbottom=False, labelleft=False)
ax_histoy.spines['right'].set_visible(False)
ax_histoy.spines['bottom'].set_visible(False)
ax_histox.spines['right'].set_visible(False)
ax_histox.spines['top'].set_visible(False)
ax_histoy.set_ylim(1,256)
ax_histox.set_xlim(1,256)
ax_histox.set_xlabel('X')
ax_histoy.set_ylabel('Y')
ax_image.set_title('Matplotlib - Plot 2D')
ax_histoy.tick_params(axis='x',labelsize=8,labelrotation=90)
ax_histox.tick_params(axis='y',labelsize=8)
ax_histoy.xaxis.tick_top()
ax_histox.yaxis.tick_left()
plt.colorbar(im, cax = colorAx)
ax_image.set_aspect(0.5)
plt.show()
I try to find a solution for resizing the height of the projection on the left
Using the example as you explain give the save result with a ratio different as 1:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
# Fixing random state for reproducibility
np.random.seed(19680801)
# the random data
x = np.random.randn(1000)
y = np.random.randn(1000)
fig, axScatter = plt.subplots(figsize=(5.5, 5.5))
# the scatter plot:
axScatter.scatter(x, y)
axScatter.set_aspect(0.3)
# create new axes on the right and on the top of the current axes
# The first argument of the new_vertical(new_horizontal) method is
# the height (width) of the axes to be created in inches.
divider = make_axes_locatable(axScatter)
axHistx = divider.append_axes("top", 1.2, pad=0.1, sharex=axScatter)
axHisty = divider.append_axes("right", 1.2, pad=0.1, sharey=axScatter)
# make some labels invisible
axHistx.xaxis.set_tick_params(labelbottom=False)
axHisty.yaxis.set_tick_params(labelleft=False)
# now determine nice limits by hand:
binwidth = 0.25
xymax = max(np.max(np.abs(x)), np.max(np.abs(y)))
lim = (int(xymax/binwidth) + 1)*binwidth
bins = np.arange(-lim, lim + binwidth, binwidth)
axHistx.hist(x, bins=bins)
axHisty.hist(y, bins=bins, orientation='horizontal')
# the xaxis of axHistx and yaxis of axHisty are shared with axScatter,
# thus there is no need to manually adjust the xlim and ylim of these
# axis.
axHistx.set_yticks([0, 50, 100])
axHisty.set_xticks([0, 50, 100])
plt.show()
Result with axes_grid
Could it solved with axes_grid ???

How to set discrete colorbar ticks in mpl_toolkits.axes_grid1.ImageGrid?

I want to set discrete colorbar in ImageGrid.
ImageGrid
Here's an example:
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
import numpy as np
import matplotlib
lon,lat = np.meshgrid(np.arange(-180, 180, 10), np.arange(-85, 90, 10))
data = np.sort(np.random.rand(18, 36),axis=1)
fig = plt.figure()
grid = ImageGrid(fig, 111,
nrows_ncols=(2, 1),
axes_pad=(0.35, 0.35),
label_mode="1",
share_all=True,
cbar_location="right",
cbar_mode="each",
cbar_size="5%",
cbar_pad="6%",
)
# Settings
bounds = [0,0.01,0.04,0.07,0.1,0.13,0.16,0.2,0.25,0.35,0.45,0.6,0.9]
colors = ['#390231','#7F1CAB','#0047FD','#0072FE','#019EFF','#00C4FF','#01EDFF',\
'#00FFFB','#00FFC8','#29F905','#FBDD03','#FA0F00']
# Original colorbar
p = grid[0].pcolormesh(lon,lat,data, vmin=0, vmax=0.9, cmap='jet')
cb = grid.cbar_axes[0].colorbar(p)
# Defined colorbar
cmap = matplotlib.colors.ListedColormap(colors)
norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N)
p = grid[1].pcolormesh(lon,lat,data, cmap=cmap, norm=norm)
cb = grid.cbar_axes[1].colorbar(p, ticks=bounds)
grid[0].set_title('jet')
grid[1].set_title('Defined')
plt.show()
This is the result:
As you can see, the location of ticks are wrong.
If ticks are at boundaries of each color block, the second figure will look correct.
Subplots
Then, I tested subplots. It works fine!
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
lon,lat = np.meshgrid(np.arange(-180, 180, 10), np.arange(-85, 90, 10))
data = np.sort(np.random.rand(18, 36),axis=1)
f, (ax1, ax2) = plt.subplots(1, 2,sharey=True)
# Settings
bounds = [0,0.01,0.04,0.07,0.1,0.13,0.16,0.2,0.25,0.35,0.45,0.6,0.9]
colors = ['#390231','#7F1CAB','#0047FD','#0072FE','#019EFF','#00C4FF','#01EDFF',\
'#00FFFB','#00FFC8','#29F905','#FBDD03','#FA0F00']
# Defined colorbar
cmap = matplotlib.colors.ListedColormap(colors)
norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N)
# Jet
p = ax1.pcolormesh(lon,lat,data, vmin=0, vmax=0.9, cmap='jet')
f.colorbar(p,ax=ax1)
ax1.set_title('jet')
# Defined
p = ax2.pcolormesh(lon,lat,data, cmap=cmap, norm=norm)
f.colorbar(p,ax=ax2,ticks=bounds)
ax2.set_title('defined')
plt.show()
This is the result:
Single
I tested my script in single figure. It works fine!
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
lon,lat = np.meshgrid(np.arange(-180, 180, 10), np.arange(-85, 90, 10))
data = np.sort(np.random.rand(18, 36),axis=1)
fig = plt.figure()
# Settings
bounds = [0,0.01,0.04,0.07,0.1,0.13,0.16,0.2,0.25,0.35,0.45,0.6,0.9]
colors = ['#390231','#7F1CAB','#0047FD','#0072FE','#019EFF','#00C4FF','#01EDFF',\
'#00FFFB','#00FFC8','#29F905','#FBDD03','#FA0F00']
# Defined colorbar
cmap = matplotlib.colors.ListedColormap(colors)
norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N)
# Jet
plt.pcolormesh(lon,lat,data, vmin=0, vmax=0.9, cmap='jet')
plt.colorbar()
plt.show()
# Defined
p = plt.pcolormesh(lon,lat,data, cmap=cmap, norm=norm)
plt.colorbar(p, ticks=bounds)
plt.title('Single fig')
plt.show()
This is the result of single figure of jet and defined:
A workaround would be to set the labels manually.
ticks=np.linspace(bounds[0],bounds[-1], len(bounds))
cb = grid.cbar_axes[1].colorbar(p, ticks=ticks)
cb.ax.set_yticklabels(bounds)

Move table position matplotlib python

I have created a figure that displays a shape and table using matplotlib. The problem is how its produced. They overlap each other. The shape is to scale so I don't want to alter it. I was wondering how I can alter the overall size of the plot or move the position of the table.
import matplotlib.pyplot as plt
import matplotlib as mpl
fig, ax = plt.subplots(figsize = (10,6))
ax.axis('equal')
plt.style.use('ggplot')
ax.grid(False)
xy = 0,0
circle = mpl.patches.Circle(xy, 160, lw = 3, edgecolor = 'black', color = 'b', alpha = 0.1, zorder = 5)
ax.add_patch(circle)
col_labels=['A','B','C','D','E']
row_labels=['diff','total']
table_vals=[['','','','',''],['','','','','']]
the_table = plt.table(cellText=table_vals,
colWidths = [0.05]*5,
rowLabels=row_labels,
colLabels=col_labels,
bbox = [0.8, 0.4, 0.2, 0.2])
ax.autoscale()
plt.show()
Add the bbox argument with your table. (instead of loc)
the_table = plt.table(cellText=table_vals,
colWidths = [0.05]*5,
rowLabels=row_labels,
colLabels=col_labels,
bbox = [0.2, 0.4, 0.4, 0.02])
The bbox argument takes 4 inputs: X, Y, Width, Height. Thus X and Y are the coordinates of the bottom left corner. Above, the height was far too small.
EDIT: Create room to play with
The idea is to make the ax smaller in the same manner.
box = ax.get_position()
a.set_position([box.x0, box.y0, box.width * 0.9, box.height])
EDIT 2: Trying to put the table on the right. As I said, you need to play with the box values, took me about 10 tries to get this. I'm using spyder as an IDE, so it's really fast.
import matplotlib.pyplot as plt
import matplotlib as mpl
fig, ax = plt.subplots(figsize = (10,6))
ax.axis('equal')
plt.style.use('ggplot')
ax.grid(False)
xy = 0,0
circle = mpl.patches.Circle(xy, 160, lw = 3, edgecolor = 'black', color = 'b', alpha = 0.1, zorder = 5)
ax.add_patch(circle)
col_labels=['A','B','C','D','E']
row_labels=['diff','total']
table_vals=[['','','','',''],['','','','','']]
the_table = plt.table(cellText=table_vals,
colWidths = [0.05]*5,
rowLabels=row_labels,
colLabels=col_labels,
bbox = [1.1, 0.5, 0.35, 0.1])
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax.autoscale()
plt.show()
Output:
Position the table outside the axes
You may use loc="right" to position the table right of the axes. Something like fig.subplots_adjust(right=0.8) will leave enough space for it.
import matplotlib.pyplot as plt
import matplotlib as mpl
plt.style.use('ggplot')
fig, ax = plt.subplots(figsize = (10,6))
fig.subplots_adjust(right=0.8)
ax.axis('equal')
ax.grid(False)
xy = 0,0
circle = mpl.patches.Circle(xy, 160, lw = 3, edgecolor = 'black',
facecolor = 'b', alpha = 0.1, zorder = 5)
ax.add_patch(circle)
col_labels=['A','B','C','D','E']
row_labels=['diff','total']
table_vals=[['','','','',''],['','','','','']]
the_table = plt.table(cellText=table_vals,
colWidths = [0.05]*5,
rowLabels=row_labels,
colLabels=col_labels,
loc='right', zorder=3)
ax.autoscale()
plt.show()
Put the table in its own axes
You may put the table in a new axes next to the existing one. The advantage is that there is no need to then play with the column width or subplot parameters.
import matplotlib.pyplot as plt
import matplotlib as mpl
plt.style.use('ggplot')
fig, (ax, ax_table) = plt.subplots(ncols=2, figsize = (10,6),
gridspec_kw=dict(width_ratios=[3,1]))
ax.axis('equal')
ax_table.axis("off")
ax.grid(False)
xy = 0,0
circle = mpl.patches.Circle(xy, 160, lw = 3, edgecolor = 'black',
facecolor = 'b', alpha = 0.1, zorder = 5)
ax.add_patch(circle)
col_labels=['A','B','C','D','E']
row_labels=['diff','total']
table_vals=[['','','','',''],['','','','','']]
the_table = ax_table.table(cellText=table_vals,
rowLabels=row_labels,
colLabels=col_labels,
loc='center')
ax.autoscale()
plt.show()

Change matplotlib colorbar to custom height

I would like to set the colorbar of my plot to a custom height, not necessarily to match the size of the plot. In fact I would like the height of the colorbar PLUS the title on top of it to match the height of the figure.
With
ax3 = divider.append_axes('right', size='10%', pad=0.3)
cb = plt.colorbar(Q, cax=ax3, ticks=[0.0, 3.0, 6.0, 9.0, 12.0, 15.0], format='%.1f')
I managed to have a colorbar with the same height as the plot, which has been asked for many other times, now I would like to shrink it.
Following suggestion provided in other questions I decided to explicitly give the colorbar its own axes with add_axes, after getting the position of the last plot axes with get_position. Here is what I'm trying to do. There are no data and no colorbar in this example, just to show that I'm not getting the result I expected:
from __future__ import unicode_literals
import numpy as np
from scipy.interpolate import griddata
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.patches import Circle
from matplotlib.pylab import cm
import matplotlib.colors as colors
from mpl_toolkits.axes_grid1 import make_axes_locatable, axes_size
matplotlib.rcParams.update({'font.size': 8})
fig = plt.figure()
fig.set_size_inches(6.3,6.3)
ax1 = plt.subplot(111)
divider = make_axes_locatable(ax1)
ax2 = divider.append_axes('right', size='100%', pad=0.3)
axes = [ax1, ax2]
ltypes = ['dashed', 'solid']
xi = np.linspace(-18.125, 18.125, 11)
yi = np.linspace(0, 28, 9)
xv, yv = np.meshgrid(xi, yi)
xcOdd = 0.2
zcOdd = 0.725
xcEven = 0.6
zcEven = 0.725
maskRadius = 0.15
for i in range(2):
ax = axes[i]
ax.set_xlabel('distance [m]')
if i == 0:
ax.set_ylabel('depth [m]')
if i == 1:
ax.set_yticklabels([])
ax.invert_yaxis()
ax.tick_params(direction='in')
ax.set_aspect('equal')
odd = Circle((xcOdd, zcOdd), .15, linewidth=1.2, color='k', fill=False)
even = Circle((xcEven, zcEven), .15, linewidth=1.2, linestyle=ltypes[i], color='k', fill=False)
vmax = 15.
vmin = 0.
norm = matplotlib.colors.Normalize(vmin,vmax, clip=False)
color_map = matplotlib.colors.ListedColormap(plt.cm.Greys(np.linspace(0.25, 1, 5)), "name")
ax.add_patch(odd)
pad = 0.03
width = 0.03
pos = ax2.get_position()
ax3 = fig.add_axes([pos.xmax + pad, pos.ymin, width, 0.7*(pos.ymax-pos.ymin) ])
plt.savefig('prova-vect-paper-test-2.eps', format='eps')
Why is get_position returning the wrong boundingbox?
You need to draw the canvas before obtaining the actual position from .get_position(). This is because due to the equal aspect ratio, the axes changes size and position at draw time.
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.colors as colors
from mpl_toolkits.axes_grid1 import make_axes_locatable
matplotlib.rcParams.update({'font.size': 8})
fig = plt.figure()
fig.set_size_inches(6.3,6.3)
ax1 = plt.subplot(111)
divider = make_axes_locatable(ax1)
ax2 = divider.append_axes('right', size='100%', pad=0.3)
axes = [ax1, ax2]
xi = np.linspace(-18.125, 18.125, 11)
yi = np.linspace(0, 28, 9)
xv, yv = np.meshgrid(xi, yi)
for i in range(2):
ax = axes[i]
ax.set_xlabel('distance [m]')
if i == 0:
ax.set_ylabel('depth [m]')
if i == 1:
ax.set_yticklabels([])
ax.invert_yaxis()
ax.tick_params(direction='in')
ax.set_aspect('equal')
vmax = 15.
vmin = 0.
norm = colors.Normalize(vmin,vmax, clip=False)
color_map = colors.ListedColormap(plt.cm.Greys(np.linspace(0.25, 1, 5)), "name")
im = ax.imshow(yv, cmap=color_map, norm=norm)
pad = 0.03
width = 0.03
fig.canvas.draw()
pos = ax2.get_position()
ax3 = fig.add_axes([pos.xmax + pad, pos.ymin, width, 0.7*(pos.ymax-pos.ymin) ])
fig.colorbar(im, cax=ax3)
plt.show()

How to sharex when using subplot2grid

I'm a Matlab user recently converted to Python. Most of the Python skills I manage on my own, but with plotting I have hit the wall and need some help.
This is what I'm trying to do...
I need to make a figure that consists of 3 subplots with following properties:
subplot layout is 311, 312, 313
the height of 312 and 313 is approximately half of the 311
all subplots share common X axis
the space between the subplots is 0 (they touch each other at X axis)
By the way I know how to make all this, only not in a single figure. That is the problem I'm facing now.
For example, this is my ideal subplot layout:
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0.0, 2.0, 0.01)
s1 = np.sin(2*np.pi*t)
s2 = np.exp(-t)
s3 = s1*s2
fig = plt.figure()
ax1 = plt.subplot2grid((4,3), (0,0), colspan=3, rowspan=2)
ax2 = plt.subplot2grid((4,3), (2,0), colspan=3)
ax3 = plt.subplot2grid((4,3), (3,0), colspan=3)
ax1.plot(t,s1)
ax2.plot(t[:150],s2[:150])
ax3.plot(t[30:],s3[30:])
plt.tight_layout()
plt.show()
Notice how the x axis of different subplots is misaligned. I do not know how to align the x axis in this figure, but if I do something like this:
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0.0, 2.0, 0.01)
s1 = np.sin(2*np.pi*t)
s2 = np.exp(-t)
s3 = s1*s2
fig2, (ax1, ax2, ax3) = plt.subplots(nrows=3, ncols=1, sharex=True)
ax1.plot(t,s1)
ax2.plot(t[:150],s2[:150])
ax3.plot(t[30:],s3[30:])
plt.tight_layout()
plt.show()
Now the x axis is aligned between the subplots, but all subplots are the same size (which is not what I want)
Furthermore, I would like that the subplots are touching at x axis like this:
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0.0, 2.0, 0.01)
s1 = np.sin(2*np.pi*t)
s2 = np.exp(-t)
s3 = s1*s2
fig1 = plt.figure()
plt.subplots_adjust(hspace=0)
ax1 = plt.subplot(311)
ax2 = plt.subplot(312, sharex=ax1)
ax3 = plt.subplot(313, sharex=ax1)
ax1.plot(t,s1)
ax2.plot(t[:150],s2[:150])
ax3.plot(t[30:],s3[30:])
xticklabels = ax1.get_xticklabels()+ax2.get_xticklabels()
plt.setp(xticklabels, visible=False)
plt.show()
So to rephrase my question:
I would like to use
plt.subplot2grid(..., colspan=3, rowspan=2)
plt.subplots(..., sharex=True)
plt.subplots_adjust(hspace=0)
and
plt.tight_layout()
together in the same figure. How to do that?
Just specify sharex=ax1 when creating your second and third subplots.
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0.0, 2.0, 0.01)
s1 = np.sin(2*np.pi*t)
s2 = np.exp(-t)
s3 = s1*s2
fig = plt.figure()
ax1 = plt.subplot2grid((4,3), (0,0), colspan=3, rowspan=2)
ax2 = plt.subplot2grid((4,3), (2,0), colspan=3, sharex=ax1)
ax3 = plt.subplot2grid((4,3), (3,0), colspan=3, sharex=ax1)
ax1.plot(t,s1)
ax2.plot(t[:150],s2[:150])
ax3.plot(t[30:],s3[30:])
fig.subplots_adjust(hspace=0)
for ax in [ax1, ax2]:
plt.setp(ax.get_xticklabels(), visible=False)
# The y-ticks will overlap with "hspace=0", so we'll hide the bottom tick
ax.set_yticks(ax.get_yticks()[1:])
plt.show()
If you still what to use fig.tight_layout(), you'll need to call it before fig.subplots_adjust(hspace=0). The reason for this is that tight_layout works by automatically calculating parameters for subplots_adjust and then calling it, so if subplots_adjust is manually called first, anything in the first call to it will be overridden by tight_layout.
E.g.
fig.tight_layout()
fig.subplots_adjust(hspace=0)
A possible solution is to manually create the axis using the add_axis method like shown here:
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0.0, 2.0, 0.01)
s1 = np.sin(2*np.pi*t)
s2 = np.exp(-t)
s3 = s1*s2
left, width = 0.1, 0.8
rect1 = [left, 0.5, width, 0.4]
rect2 = [left, 0.3, width, 0.15]
rect3 = [left, 0.1, width, 0.15]
fig = plt.figure()
ax1 = fig.add_axes(rect1) #left, bottom, width, height
ax2 = fig.add_axes(rect2, sharex=ax1)
ax3 = fig.add_axes(rect3, sharex=ax1)
ax1.plot(t,s1)
ax2.plot(t[:150],s2[:150])
ax3.plot(t[30:],s3[30:])
# hide labels
for label1,label2 in zip(ax1.get_xticklabels(),ax2.get_xticklabels()):
label1.set_visible(False)
label2.set_visible(False)
plt.show()
But this way you cannot use tight_layout as you explicitly define the size of each axis.

Categories

Resources