Count all numbers from matrix list in python [duplicate] - python

This question already has answers here:
python .count for multidimensional arrays (list of lists)
(3 answers)
Closed 1 year ago.
def count(matrix: list, number: int):
count([[1, 4, 0, 0, 6, 3], [0, 3, 4, 0, 0, 0], [0, 0, 5, 6, 0]], 0)
I am trying to make function that counts all zeros or any other number from matrix list but for now its 0.

try this:
def count(matrix: list, number: int):
return sum(l.count(number) for l in matrix)
count([[1, 4, 0, 0, 6, 3], [0, 3, 4, 0, 0, 0], [0, 0, 5, 6, 0]], 0)
# 9
count([[1, 4, 0, 0, 6, 3], [0, 3, 4, 0, 0, 0], [0, 0, 5, 6, 0]], 6)
# 2

import itertools
def count(matrix: list, number: int):
return list(itertools.chain.from_iterable(matrix)).count(number)
count([[1, 4, 0, 0, 6, 3], [0, 3, 4, 0, 0, 0], [0, 0, 5, 6, 0]], 0)
9

Related

Python creating 2D array

num1 = [1,2,3,4,5]
num2 = [1,2,3,4,5]
arr1 = [[0]*(len(num2)+1)]*(len(num1)+1)
arr2 = [[0 for _ in range(len(num2)+1)] for _ in range(len(num1)+1)]
I get a different answer when I define arr1 and arr2.
Aren't arr1 and arr2 create the same 2D array?
They are not the same. arr1 is a list with (len(nums1)+1) references to the same list [0]*(len(nums2)+1). So when you modify an element in one of them, all references will see this change as well.
For example,
>>> arr1[0][0] += 1
>>> print(arr1)
[[1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0]]
arr2 doesn't suffer from this problem because it has len(nums1)+1 distinct lists:
>>> arr2[0][0] += 1
>>> print(arr2)
[[1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]]
A better way to see the difference is to use a random number to fill the entries.
from random import randrange
num1 = [1,2,3,4,5]
num2 = [1,2,3,4,5]
arr1 = [[randrange(10)]*(len(nums2)+1)]*(len(nums1)+1)
arr2 = [[randrange(10) for _ in range(len(nums2)+1)] for _ in range(len(nums1)+1)]
print(arr1)
print(arr2)
The output is:
[[5, 5, 5, 5, 5, 5], [5, 5, 5, 5, 5, 5], [5, 5, 5, 5, 5, 5], [5, 5, 5, 5, 5, 5], [5, 5, 5, 5, 5, 5], [5, 5, 5, 5, 5, 5]]
[[7, 4, 2, 4, 0, 3], [7, 5, 1, 0, 1, 7], [4, 4, 1, 0, 2, 1], [2, 3, 6, 2, 6, 7], [6, 6, 6, 0, 3, 3], [0, 4, 5, 0, 6, 6]]
You can see that for the arr1, it populates every entry with the same number; while for arr2, the entries are all truly random. This is because arr1 is constructed by expanding a list of just one number, which is [5] here.

Generate Numpy array of even integers that sum to a value

Is there a numpy solution that would allow you to initialize an array based on the following conditions?
Number of elements in axis 1. (In the example below you have 4 places in each element of the array)
Sum of values. (All elements sum to 8)
Step size. (Using increments of 2)
Essentially this shows all the combinations of 4 values you can add to achieve the wanted sum (8) at a step size of 2.
My experiments fail when I set the axis 1 dimension to over 6 and the sum to over 100.
There has to be a better way to do this than what I've been trying.
array([[0, 0, 0, 8],
[0, 0, 2, 6],
[0, 0, 4, 4],
[0, 0, 6, 2],
[0, 0, 8, 0],
[0, 2, 0, 6],
[0, 2, 2, 4],
[0, 2, 4, 2],
[0, 2, 6, 0],
[0, 4, 0, 4],
[0, 4, 2, 2],
[0, 4, 4, 0],
[0, 6, 0, 2],
[0, 6, 2, 0],
[0, 8, 0, 0],
[2, 0, 0, 6],
[2, 0, 2, 4],
[2, 0, 4, 2],
[2, 0, 6, 0],
[2, 2, 0, 4],
[2, 2, 2, 2],
[2, 2, 4, 0],
[2, 4, 0, 2],
[2, 4, 2, 0],
[2, 6, 0, 0],
[4, 0, 0, 4],
[4, 0, 2, 2],
[4, 0, 4, 0],
[4, 2, 0, 2],
[4, 2, 2, 0],
[4, 4, 0, 0],
[6, 0, 0, 2],
[6, 0, 2, 0],
[6, 2, 0, 0],
[8, 0, 0, 0]], dtype=int64)
Here is a small code that will enable you to loop over the desired combinations. It takes 3 parameter:
itsize: Number of elements.
itsum: Sum of values.
itstep: Step size.
It may be necessary to optimize it if the computations you do in the FOR loop are light. I loop over more combinations than necessary (all the i,j,k,l that take values in 0,itstep,2*itstep,...,itsum) and keep only those verifying the condition that all sum up to itsum. The big size array is not computed and the rows are computed on-the-fly when iterating so you will not have the memory troubles:
class Combinations:
def __init__(self, itsize, itsum, itstep):
assert(itsum % itstep==0) # Sum is a multiple of step
assert(itsum >= itstep) # Sum bigger or equal than step
assert(itsize > 0) # Number of elements >0
self.itsize = itsize # Number of elements
self.itsum = itsum # Sum parameter
self.itstep = itstep # Step parameter
self.cvalue = None # Value of the iterator
def __iter__(self):
self.itvalue = None
return self
def __next__(self):
if self.itvalue is None: # Initialization of the iterator
self.itvalue = [0]*(self.itsize)
elif self.itvalue[0] == self.itsum: # We reached all combinations the iterator is restarted
self.itvalue = None
return None
while True: # Find the next iterator value
for i in range(self.itsize-1,-1,-1):
if self.itvalue[i]<self.itsum:
self.itvalue[i] += self.itstep
break
else:
self.itvalue[i] = 0
if sum(self.itvalue) == self.itsum:
break
return self.itvalue # Return iterator value
myiter = iter(Combinations(4,8,2))
for val in myiter:
if val is None:
break
print(val)
Output:
% python3 script.py
[0, 0, 0, 8]
[0, 0, 2, 6]
[0, 0, 4, 4]
[0, 0, 6, 2]
[0, 0, 8, 0]
[0, 2, 0, 6]
[0, 2, 2, 4]
[0, 2, 4, 2]
[0, 2, 6, 0]
[0, 4, 0, 4]
[0, 4, 2, 2]
[0, 4, 4, 0]
[0, 6, 0, 2]
[0, 6, 2, 0]
[0, 8, 0, 0]
[2, 0, 0, 6]
[2, 0, 2, 4]
[2, 0, 4, 2]
[2, 0, 6, 0]
[2, 2, 0, 4]
[2, 2, 2, 2]
[2, 2, 4, 0]
[2, 4, 0, 2]
[2, 4, 2, 0]
[2, 6, 0, 0]
[4, 0, 0, 4]
[4, 0, 2, 2]
[4, 0, 4, 0]
[4, 2, 0, 2]
[4, 2, 2, 0]
[4, 4, 0, 0]
[6, 0, 0, 2]
[6, 0, 2, 0]
[6, 2, 0, 0]
[8, 0, 0, 0]
I tried this out and also found that it slowed down significantly at that size. I think part of the problem is that the output array gets pretty large at that point. I'm not 100% sure my code is right, but the plot shows how the array size grows with condition 2 (sum of values in each row). I didn't do 100, but it looks like it would be about 4,000,000 rows
plot

Append is overwriting existing data in list of classes

I'm making a sudoku solving program in Python.
I have a class, an inner class, a list, constructors and a function that would make the list of Row objects.
class Table:
rows = []
def __init__(self):
initRows()
class Row:
numbers = []
def __init__(self):
"stuff that stores a list of integers in **numbers** list"
def initRows(self, numbers):
for i in range(9):
temp_row = self.Row(i, numbers)
self.rows.append(temp_row)
The program goes like this:
When a Table object is created it automatically tries to make a 9 length list of Row objects with the initRows() function.
In the initRows() function we just create a temporary object of class Row and instantly append() it to the rows list.
When we create a Row object it just stores the given numbers for the given row of the sudoku table.
If I print() the numbers list of each temporary Row object after it is created then it gives the correct values.
[0, 0, 0, 7, 4, 0, 0, 0, 6]
[4, 0, 6, 8, 0, 0, 5, 0, 7]
[7, 0, 0, 0, 9, 0, 0, 0, 4]
[0, 3, 0, 9, 8, 4, 7, 0, 0]
[8, 2, 0, 6, 1, 3, 4, 0, 9]
[0, 4, 0, 0, 0, 0, 3, 0, 0]
[0, 6, 2, 3, 7, 0, 0, 0, 5]
[0, 0, 5, 4, 0, 9, 0, 0, 0]
[0, 7, 0, 0, 6, 1, 2, 0, 8]
But when I try to print() the values of each Row object after the for loop loops once or more or after the initialization is finished then the list is filled with only the last Row object
[0, 7, 0, 0, 6, 1, 2, 0, 8]
[0, 7, 0, 0, 6, 1, 2, 0, 8]
[0, 7, 0, 0, 6, 1, 2, 0, 8]
[0, 7, 0, 0, 6, 1, 2, 0, 8]
[0, 7, 0, 0, 6, 1, 2, 0, 8]
[0, 7, 0, 0, 6, 1, 2, 0, 8]
[0, 7, 0, 0, 6, 1, 2, 0, 8]
[0, 7, 0, 0, 6, 1, 2, 0, 8]
[0, 7, 0, 0, 6, 1, 2, 0, 8]
[0, 7, 0, 0, 6, 1, 2, 0, 8]
I was searching on the internet for hours and found that people have issues with the append() function of the list class but nothing helped.
So my question is: How could I make this work?
(If any other information/part of code is needed: ask away!)
It turns out in the Row class the numbers list was a class attribute (means it's shared across all objects of the Row class) rather than an instance attribute.

How to improve a backtraching sudoku solving algorithm in Python? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 3 years ago.
Improve this question
I wrote a backtracking Sudoku solving algorithm in Python.
It solves a 2D array like this (zero means "empty field"):
[
[7, 0, 0, 0, 0, 9, 0, 0, 3],
[0, 9, 0, 1, 0, 0, 8, 0, 0],
[0, 1, 0, 0, 0, 7, 0, 0, 0],
[0, 3, 0, 4, 0, 0, 0, 8, 0],
[6, 0, 0, 0, 8, 0, 0, 0, 1],
[0, 7, 0, 0, 0, 2, 0, 3, 0],
[0, 0, 0, 5, 0, 0, 0, 1, 0],
[0, 0, 4, 0, 0, 3, 0, 9, 0],
[5, 0, 0, 7, 0, 0, 0, 0, 2],
]
like this:
[
[7, 5, 8, 2, 4, 9, 1, 6, 3],
[4, 9, 3, 1, 5, 6, 8, 2, 7],
[2, 1, 6, 8, 3, 7, 4, 5, 9],
[9, 3, 5, 4, 7, 1, 2, 8, 6],
[6, 4, 2, 3, 8, 5, 9, 7, 1],
[8, 7, 1, 9, 6, 2, 5, 3, 4],
[3, 2, 7, 5, 9, 4, 6, 1, 8],
[1, 8, 4, 6, 2, 3, 7, 9, 5],
[5, 6, 9, 7, 1, 8, 3, 4, 2]
]
But for "hard" Sudokus (where there are a lot of zeros at the beginning), it's quite slow. It takes the algorithm around 9 seconds to solve the Sudoku above. That's a lot better then what I startet with (90 seconds), but still slow.
I think that the "deepcopy" can somehow be improved/replaced (because it is executed 103.073 times in the example below), but my basic approaches were slower..
I heard of 0.01 second C/C++ solutions but I'm not sure if those are backtracking algorithms of some kind of mathematical solution...
This is my whole algorithm with 2 example Sudokus:
from copy import deepcopy
def is_sol_row(mat,row,val):
m = len(mat)
for i in range(m):
if mat[row][i] == val:
return False
return True
def is_sol_col(mat,col,val):
m = len(mat)
for i in range(m):
if mat[i][col] == val:
return False
return True
def is_sol_block(mat,row,col,val):
rainbow = [0,0,0,3,3,3,6,6,6]
i = rainbow[row]
j = rainbow[col]
elements = {
mat[i + 0][j + 0], mat[i + 1][j + 0], mat[i + 2][j + 0],
mat[i + 0][j + 1], mat[i + 1][j + 1], mat[i + 2][j + 1],
mat[i + 0][j + 2], mat[i + 1][j + 2], mat[i + 2][j + 2],
}
if val in elements:
return False
return True
def is_sol(mat,row,col,val):
return is_sol_row(mat,row,val) and is_sol_col(mat,col,val) and is_sol_block(mat,row,col,val)
def findAllZeroIndizes(mat):
m = len(mat)
indizes = []
for i in range(m):
for j in range(m):
if mat[i][j] == 0:
indizes.append((i,j))
return indizes
def sudoku(mat):
q = [(mat,0)]
zeroIndizes = findAllZeroIndizes(mat)
while q:
t,numSolvedIndizes = q.pop()
if numSolvedIndizes == len(zeroIndizes):
return t
else:
i,j = zeroIndizes[numSolvedIndizes]
for k in range(1,10):
if is_sol(t,i,j,k):
newt = deepcopy(t)
newt[i][j] = k
q.append((newt,numSolvedIndizes+1))
return False
mat = [
[7, 0, 0, 0, 0, 9, 0, 0, 3],
[0, 9, 0, 1, 0, 0, 8, 0, 0],
[0, 1, 0, 0, 0, 7, 0, 0, 0],
[0, 3, 0, 4, 0, 0, 0, 8, 0],
[6, 0, 0, 0, 8, 0, 0, 0, 1],
[0, 7, 0, 0, 0, 2, 0, 3, 0],
[0, 0, 0, 5, 0, 0, 0, 1, 0],
[0, 0, 4, 0, 0, 3, 0, 9, 0],
[5, 0, 0, 7, 0, 0, 0, 0, 2],
]
# mat = [
# [3, 0, 6, 5, 0, 8, 4, 0, 0],
# [5, 2, 0, 0, 0, 0, 0, 0, 0],
# [0, 8, 7, 0, 0, 0, 0, 3, 1],
# [0, 0, 3, 0, 1, 0, 0, 8, 0],
# [9, 0, 0, 8, 6, 3, 0, 0, 5],
# [0, 5, 0, 0, 9, 0, 6, 0, 0],
# [1, 3, 0, 0, 0, 0, 2, 5, 0],
# [0, 0, 0, 0, 0, 0, 0, 7, 4],
# [0, 0, 5, 2, 0, 6, 3, 0, 0]
# ]
print(sudoku(mat))
The largest time sink is that, for every open position, you try each of the nine digits, without learning anything about the attempts. Your test grid has 56 open grid locations, so anything you do is magnified through that lens. A little preprocessing will go a long way. For instance, make a list of available numbers in each row and column. Key that appropriately, and use that for your search instead of range(m).
Another technique is to apply simple algorithms to make trivial placements as they become available. For instance, you can quickly derive the 1 in the upper-left block, and the missing 7s in the left and middle columns of blocks. This alone cuts the solution time in half. Wherever you're down to a single choice for what number goes in a selected open square, or where a selected number can be placed in a particular row/col/block, then make that placement before you engage in exhaustive backtracking.

Zero-Padding an image without numpy

I am a beginner with Python and I am learning how to treat images.
Given a square image (NxN), I would like to make it into a (N+2)x(N+2) image with a new layer of zeros around it. I would prefer not to use numpy and only stick with the basic python programming. Any idea on how to do so ?
Right now, I used .extend to add zeros on the right side and on the bottom but can't do it up and left.
Thank you for your help!
We can create a padding function that adds layers of zeros around an image (padding it).
def pad(img,layers):
#img should be rectangular
return [[0]*(len(img[0])+2*layers)]*layers + \
[[0]*layers+r+[0]*layers for r in img] + \
[[0]*(len(img[0])+2*layers)]*layers
We can test with a sample image, such as:
i = [[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]
So,
pad(i,2)
gives:
[[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 2, 3, 0, 0],
[0, 0, 4, 5, 6, 0, 0],
[0, 0, 7, 8, 9, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]
Im assuming that by image we're talking about a matrix, in that case you could do this:
img = [[5, 5, 5], [5, 5, 5], [5, 5, 5]]
row_len = len(img)
col_len = len(img[0])
new_image = list()
for n in range(col_len+2): # Adding two more rows
if n == 0 or n == col_len + 1:
new_image.append([0] * (row_len + 2)) # First and last row is just zeroes
else:
new_image.append([0] + img[n - 1] + [0]) # Append a zero to the front and back of each row
print(new_image) # [[0, 0, 0, 0, 0], [0, 5, 5, 5, 0], [0, 5, 5, 5, 0], [0, 5, 5, 5, 0], [0, 0, 0, 0, 0]]

Categories

Resources