Append to only one column in a dataframe python - python

I have an empty panda date frame. I want to append value to one column at a time. I am trying to iterate through the columns using for loop and append a value (5 for example). I wrote the code below but it does not work. any idea?
example:
df: ['a', 'b', 'c']
for column in df:
df.append({column: 5}, ignore_index=True)
I want to implement this by iterating through the columns. the result should be
df: ['a', 'b', 'c']
5 5 5

This sounds like a horrible idea as it would become extremely inefficient as your df grows in size and I'm almost certain there is a much better way to do this if you would give more context. But for sake of answering the question you could use the shape of the df to figure out the row, and the column name as the column and use .at to manually assign the value.
Here we assign 3 values to the df, one column at a time.
import pandas as pd
df = pd.DataFrame({'a':[],'b':[],'c':[]})
values_to_add = [3,4,5]
for v in values_to_add:
row = df.shape[0]
for column in df.columns:
df.at[row,column] = v
Output
a b c
0 3.0 3.0 3.0
1 4.0 4.0 4.0
2 5.0 5.0 5.0

Related

Get column name with last valid value for each index

I have a dataframe like this -
A B C
0 1 NaN 3.0
1 2 3.0 NaN
2 2 NaN NaN
3 NaN NaN 53
I need to find the column name with the last valid value for each index. For example for the above dataframe, I want to get output something like this.
['C','B','A','C]
I did try to get the column names but was only able to grab the values by using iteritems() on the transpose of the dataframe. Also since It loops through the dataframe, I don't find it very optimal. Please find my approach below
l_val = []
for idx, row in df.T.iteritems():
last_val = None
for x in row:
if not pd.isna(x):
last_val = x
l_val.append(last_val)
Returns -
[3.0, 3.0, 2.0]
I have tried searching a lot but most answers referred to last_valid_index method which would return the last valid index in a column which I don't get if I can use for my problem. Can someone please suggest me any fast way to do it.
You can do:
df.idxmax(axis=1).to_list()
Output:
['C', 'B', 'A', 'C']
EDIT:
For the solution which I showed above you will get the index of maximum value. However you can also have a dataframe where values in first columns are greater than values in columns at the end. Then I would suggest using the solution below to get index of last valid value:
df.T.apply(pd.Series.last_valid_index).to_list()
Output:
['C', 'B', 'A', 'C']

pandas transform with NaN values in grouped columns [duplicate]

I have a DataFrame with many missing values in columns which I wish to groupby:
import pandas as pd
import numpy as np
df = pd.DataFrame({'a': ['1', '2', '3'], 'b': ['4', np.NaN, '6']})
In [4]: df.groupby('b').groups
Out[4]: {'4': [0], '6': [2]}
see that Pandas has dropped the rows with NaN target values. (I want to include these rows!)
Since I need many such operations (many cols have missing values), and use more complicated functions than just medians (typically random forests), I want to avoid writing too complicated pieces of code.
Any suggestions? Should I write a function for this or is there a simple solution?
pandas >= 1.1
From pandas 1.1 you have better control over this behavior, NA values are now allowed in the grouper using dropna=False:
pd.__version__
# '1.1.0.dev0+2004.g8d10bfb6f'
# Example from the docs
df
a b c
0 1 2.0 3
1 1 NaN 4
2 2 1.0 3
3 1 2.0 2
# without NA (the default)
df.groupby('b').sum()
a c
b
1.0 2 3
2.0 2 5
# with NA
df.groupby('b', dropna=False).sum()
a c
b
1.0 2 3
2.0 2 5
NaN 1 4
This is mentioned in the Missing Data section of the docs:
NA groups in GroupBy are automatically excluded. This behavior is consistent with R
One workaround is to use a placeholder before doing the groupby (e.g. -1):
In [11]: df.fillna(-1)
Out[11]:
a b
0 1 4
1 2 -1
2 3 6
In [12]: df.fillna(-1).groupby('b').sum()
Out[12]:
a
b
-1 2
4 1
6 3
That said, this feels pretty awful hack... perhaps there should be an option to include NaN in groupby (see this github issue - which uses the same placeholder hack).
However, as described in another answer, "from pandas 1.1 you have better control over this behavior, NA values are now allowed in the grouper using dropna=False"
Ancient topic, if someone still stumbles over this--another workaround is to convert via .astype(str) to string before grouping. That will conserve the NaN's.
df = pd.DataFrame({'a': ['1', '2', '3'], 'b': ['4', np.NaN, '6']})
df['b'] = df['b'].astype(str)
df.groupby(['b']).sum()
a
b
4 1
6 3
nan 2
I am not able to add a comment to M. Kiewisch since I do not have enough reputation points (only have 41 but need more than 50 to comment).
Anyway, just want to point out that M. Kiewisch solution does not work as is and may need more tweaking. Consider for example
>>> df = pd.DataFrame({'a': [1, 2, 3, 5], 'b': [4, np.NaN, 6, 4]})
>>> df
a b
0 1 4.0
1 2 NaN
2 3 6.0
3 5 4.0
>>> df.groupby(['b']).sum()
a
b
4.0 6
6.0 3
>>> df.astype(str).groupby(['b']).sum()
a
b
4.0 15
6.0 3
nan 2
which shows that for group b=4.0, the corresponding value is 15 instead of 6. Here it is just concatenating 1 and 5 as strings instead of adding it as numbers.
All answers provided thus far result in potentially dangerous behavior as it is quite possible you select a dummy value that is actually part of the dataset. This is increasingly likely as you create groups with many attributes. Simply put, the approach doesn't always generalize well.
A less hacky solve is to use pd.drop_duplicates() to create a unique index of value combinations each with their own ID, and then group on that id. It is more verbose but does get the job done:
def safe_groupby(df, group_cols, agg_dict):
# set name of group col to unique value
group_id = 'group_id'
while group_id in df.columns:
group_id += 'x'
# get final order of columns
agg_col_order = (group_cols + list(agg_dict.keys()))
# create unique index of grouped values
group_idx = df[group_cols].drop_duplicates()
group_idx[group_id] = np.arange(group_idx.shape[0])
# merge unique index on dataframe
df = df.merge(group_idx, on=group_cols)
# group dataframe on group id and aggregate values
df_agg = df.groupby(group_id, as_index=True)\
.agg(agg_dict)
# merge grouped value index to results of aggregation
df_agg = group_idx.set_index(group_id).join(df_agg)
# rename index
df_agg.index.name = None
# return reordered columns
return df_agg[agg_col_order]
Note that you can now simply do the following:
data_block = [np.tile([None, 'A'], 3),
np.repeat(['B', 'C'], 3),
[1] * (2 * 3)]
col_names = ['col_a', 'col_b', 'value']
test_df = pd.DataFrame(data_block, index=col_names).T
grouped_df = safe_groupby(test_df, ['col_a', 'col_b'],
OrderedDict([('value', 'sum')]))
This will return the successful result without having to worry about overwriting real data that is mistaken as a dummy value.
One small point to Andy Hayden's solution – it doesn't work (anymore?) because np.nan == np.nan yields False, so the replace function doesn't actually do anything.
What worked for me was this:
df['b'] = df['b'].apply(lambda x: x if not np.isnan(x) else -1)
(At least that's the behavior for Pandas 0.19.2. Sorry to add it as a different answer, I do not have enough reputation to comment.)
I answered this already, but some reason the answer was converted to a comment. Nevertheless, this is the most efficient solution:
Not being able to include (and propagate) NaNs in groups is quite aggravating. Citing R is not convincing, as this behavior is not consistent with a lot of other things. Anyway, the dummy hack is also pretty bad. However, the size (includes NaNs) and the count (ignores NaNs) of a group will differ if there are NaNs.
dfgrouped = df.groupby(['b']).a.agg(['sum','size','count'])
dfgrouped['sum'][dfgrouped['size']!=dfgrouped['count']] = None
When these differ, you can set the value back to None for the result of the aggregation function for that group.

Adding a new column in pandas dataframe from another dataframe with differing indices

This is my original dataframe.
This is my second dataframe containing one column.
I want to add the column of second dataframe to the original dataframe at the end. Indices are different for both dataframes. I did like this.
df1['RESULT'] = df2['RESULT']
It doesn't return an error and the column is added but all values are NaNs. How do I add these columns with their values?
Assuming the size of your dataframes are the same, you can assign the RESULT_df['RESULT'].values to your original dataframe. This way, you don't have to worry about indexing issues.
# pre 0.24
feature_file_df['RESULT'] = RESULT_df['RESULT'].values
# >= 0.24
feature_file_df['RESULT'] = RESULT_df['RESULT'].to_numpy()
Minimal Code Sample
df
A B
0 -1.202564 2.786483
1 0.180380 0.259736
2 -0.295206 1.175316
3 1.683482 0.927719
4 -0.199904 1.077655
df2
C
11 -0.140670
12 1.496007
13 0.263425
14 -0.557958
15 -0.018375
Let's try direct assignment first.
df['C'] = df2['C']
df
A B C
0 -1.202564 2.786483 NaN
1 0.180380 0.259736 NaN
2 -0.295206 1.175316 NaN
3 1.683482 0.927719 NaN
4 -0.199904 1.077655 NaN
Now, assign the array returned by .values (or .to_numpy() for pandas versions >0.24). .values returns a numpy array which does not have an index.
df2['C'].values
array([-0.141, 1.496, 0.263, -0.558, -0.018])
df['C'] = df2['C'].values
df
A B C
0 -1.202564 2.786483 -0.140670
1 0.180380 0.259736 1.496007
2 -0.295206 1.175316 0.263425
3 1.683482 0.927719 -0.557958
4 -0.199904 1.077655 -0.018375
You can also call set_axis() to change the index of a dataframe/column. So if the lengths are the same, then with set_axis(), you can coerce the index of one dataframe to be the same as the other dataframe.
df1['A'] = df2['A'].set_axis(df1.index)
If you get SettingWithCopyWarning, then to silence it, you can create a copy by either calling join() or assign().
df1 = df1.join(df2['A'].set_axis(df1.index))
# or
df1 = df1.assign(new_col = df2['A'].set_axis(df1.index))
set_axis() is especially useful if you want to add multiple columns from another dataframe. You can just call join() after calling it on the new dataframe.
df1 = df1.join(df2[['A', 'B', 'C']].set_axis(df1.index))

Added column to existing dataframe but entered all numbers as NaN

So I created two dataframes from existing CSV files, both consisting of entirely numbers. The second dataframe consists of an index from 0 to 8783 and one column of numbers and I want to add it on as a new column to the first dataframe which has an index consisting of a month, day and hour. I tried using append, merge and concat and none worked and then tried simply using:
x1GBaverage['Power'] = x2_cut
where x1GBaverage is the first dataframe and x2_cut is the second. When I did this it added x2_cut on properly but all the values were entered as NaN instead of the numerical values that they should be. How should I be approaching this?
x1GBaverage['Power'] = x2_cut.values
problem solved :)
The thing about pandas is that values are implicitly linked to their indices unless you deliberately specify that you only need the values to be transferred over.
If they're the same row counts and you just want to tack it on the end, the indexes either need to match, or you need to just pass the underlying values. In the example below, columns 3 and 5 are the index matching & value versions, and 4 is what you're running into now:
In [58]: df = pd.DataFrame(np.random.random((3,3)))
In [59]: df
Out[59]:
0 1 2
0 0.670812 0.500688 0.136661
1 0.185841 0.239175 0.542369
2 0.351280 0.451193 0.436108
In [61]: df2 = pd.DataFrame(np.random.random((3,1)))
In [62]: df2
Out[62]:
0
0 0.638216
1 0.477159
2 0.205981
In [64]: df[3] = df2
In [66]: df.index = ['a', 'b', 'c']
In [68]: df[4] = df2
In [70]: df[5] = df2.values
In [71]: df
Out[71]:
0 1 2 3 4 5
a 0.670812 0.500688 0.136661 0.638216 NaN 0.638216
b 0.185841 0.239175 0.542369 0.477159 NaN 0.477159
c 0.351280 0.451193 0.436108 0.205981 NaN 0.205981
If the row counts differ, you'll need to use df.merge and let it know which columns it should be using to join the two frames.

How to add an empty column to a dataframe?

What's the easiest way to add an empty column to a pandas DataFrame object? The best I've stumbled upon is something like
df['foo'] = df.apply(lambda _: '', axis=1)
Is there a less perverse method?
If I understand correctly, assignment should fill:
>>> import numpy as np
>>> import pandas as pd
>>> df = pd.DataFrame({"A": [1,2,3], "B": [2,3,4]})
>>> df
A B
0 1 2
1 2 3
2 3 4
>>> df["C"] = ""
>>> df["D"] = np.nan
>>> df
A B C D
0 1 2 NaN
1 2 3 NaN
2 3 4 NaN
To add to DSM's answer and building on this associated question, I'd split the approach into two cases:
Adding a single column: Just assign empty values to the new columns, e.g. df['C'] = np.nan
Adding multiple columns: I'd suggest using the .reindex(columns=[...]) method of pandas to add the new columns to the dataframe's column index. This also works for adding multiple new rows with .reindex(rows=[...]). Note that newer versions of Pandas (v>0.20) allow you to specify an axis keyword rather than explicitly assigning to columns or rows.
Here is an example adding multiple columns:
mydf = mydf.reindex(columns = mydf.columns.tolist() + ['newcol1','newcol2'])
or
mydf = mydf.reindex(mydf.columns.tolist() + ['newcol1','newcol2'], axis=1) # version > 0.20.0
You can also always concatenate a new (empty) dataframe to the existing dataframe, but that doesn't feel as pythonic to me :)
I like:
df['new'] = pd.Series(dtype='int')
# or use other dtypes like 'float', 'object', ...
If you have an empty dataframe, this solution makes sure that no new row containing only NaN is added.
Specifying dtype is not strictly necessary, however newer Pandas versions produce a DeprecationWarning if not specified.
an even simpler solution is:
df = df.reindex(columns = header_list)
where "header_list" is a list of the headers you want to appear.
any header included in the list that is not found already in the dataframe will be added with blank cells below.
so if
header_list = ['a','b','c', 'd']
then c and d will be added as columns with blank cells
Starting with v0.16.0, DF.assign() could be used to assign new columns (single/multiple) to a DF. These columns get inserted in alphabetical order at the end of the DF.
This becomes advantageous compared to simple assignment in cases wherein you want to perform a series of chained operations directly on the returned dataframe.
Consider the same DF sample demonstrated by #DSM:
df = pd.DataFrame({"A": [1,2,3], "B": [2,3,4]})
df
Out[18]:
A B
0 1 2
1 2 3
2 3 4
df.assign(C="",D=np.nan)
Out[21]:
A B C D
0 1 2 NaN
1 2 3 NaN
2 3 4 NaN
Note that this returns a copy with all the previous columns along with the newly created ones. In order for the original DF to be modified accordingly, use it like : df = df.assign(...) as it does not support inplace operation currently.
if you want to add column name from a list
df=pd.DataFrame()
a=['col1','col2','col3','col4']
for i in a:
df[i]=np.nan
df["C"] = ""
df["D"] = np.nan
Assignment will give you this warning SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame. Try
using .loc[row_indexer,col_indexer] = value instead
so its better to use insert:
df.insert(index, column-name, column-value)
#emunsing's answer is really cool for adding multiple columns, but I couldn't get it to work for me in python 2.7. Instead, I found this works:
mydf = mydf.reindex(columns = np.append( mydf.columns.values, ['newcol1','newcol2'])
One can use df.insert(index_to_insert_at, column_header, init_value) to insert new column at a specific index.
cost_tbl.insert(1, "col_name", "")
The above statement would insert an empty Column after the first column.
this will also work for multiple columns:
df = pd.DataFrame({"A": [1,2,3], "B": [2,3,4]})
>>> df
A B
0 1 2
1 2 3
2 3 4
df1 = pd.DataFrame(columns=['C','D','E'])
df = df.join(df1, how="outer")
>>>df
A B C D E
0 1 2 NaN NaN NaN
1 2 3 NaN NaN NaN
2 3 4 NaN NaN NaN
Then do whatever you want to do with the columns
pd.Series.fillna(),pd.Series.map()
etc.
The below code address the question "How do I add n number of empty columns to my existing dataframe". In the interest of keeping solutions to similar problems in one place, I am adding it here.
Approach 1 (to create 64 additional columns with column names from 1-64)
m = list(range(1,65,1))
dd=pd.DataFrame(columns=m)
df.join(dd).replace(np.nan,'') #df is the dataframe that already exists
Approach 2 (to create 64 additional columns with column names from 1-64)
df.reindex(df.columns.tolist() + list(range(1,65,1)), axis=1).replace(np.nan,'')
You can do
df['column'] = None #This works. This will create a new column with None type
df.column = None #This will work only when the column is already present in the dataframe
If you have a list of columns that you want to be empty, you can use assign, then comprehension dict, then dict unpacking.
>>> df = pd.DataFrame({"A": [1,2,3], "B": [2,3,4]})
>>> nan_cols_name = ["C","D","whatever"]
>>> df.assign(**{col:np.nan for col in nan_cols_name})
A B C D whatever
0 1 2 NaN NaN NaN
1 2 3 NaN NaN NaN
2 3 4 NaN NaN NaN
You can also unpack multiple dict in a dict that you unpack if you want different values for different columns.
df = pd.DataFrame({"A": [1,2,3], "B": [2,3,4]})
nan_cols_name = ["C","D","whatever"]
empty_string_cols_name = ["E","F","bad column with space"]
df.assign(**{
**{col:np.nan for col in my_empy_columns_name},
**{col:"" for col in empty_string_cols_name}
}
)
Sorry for I did not explain my answer really well at beginning. There is another way to add an new column to an existing dataframe.
1st step, make a new empty data frame (with all the columns in your data frame, plus a new or few columns you want to add) called df_temp
2nd step, combine the df_temp and your data frame.
df_temp = pd.DataFrame(columns=(df_null.columns.tolist() + ['empty']))
df = pd.concat([df_temp, df])
It might be the best solution, but it is another way to think about this question.
the reason of I am using this method is because I am get this warning all the time:
: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
df["empty1"], df["empty2"] = [np.nan, ""]
great I found the way to disable the Warning
pd.options.mode.chained_assignment = None
The reason I was looking for such a solution is simply to add spaces between multiple DFs which have been joined column-wise using the pd.concat function and then written to excel using xlsxwriter.
df[' ']=df.apply(lambda _: '', axis=1)
df_2 = pd.concat([df,df1],axis=1) #worked but only once.
# Note: df & df1 have the same rows which is my index.
#
df_2[' ']=df_2.apply(lambda _: '', axis=1) #didn't work this time !!?
df_4 = pd.concat([df_2,df_3],axis=1)
I then replaced the second lambda call with
df_2['']='' #which appears to add a blank column
df_4 = pd.concat([df_2,df_3],axis=1)
The output I tested it on was using xlsxwriter to excel.
Jupyter blank columns look the same as in excel although doesnt have xlsx formatting.
Not sure why the second Lambda call didnt work.

Categories

Resources