Consider the following dataframe, called data:
Only two elements of the "teacher" column appear twice, the others appear once only.
I make a bar plot with Plotly Express:
import plotly.express as px
px.bar(data.sort_values("start_time", ascending=False), x="teacher", y="start_time", color="start_time",
color_continuous_scale="Bluered", barmode="group")
and the following is output:
I would like to have bars next to each other, rather than stacked. I think that px stacks them (contrary to the behaviour in their docs) because I do not have the same number of occurrences for each teacher.
Is that correct?
How can I fix it?
According to this forum post, what is happening is that plotly.express is interpreting start_time as a continuous variable which is why you get a colorbar, but then falls back onto stacking the bars instead of grouping them.
As suggested by #Emmanuelle, you could solve this by creating a new start_time column that is a string called start_time_str, then pass this column to the color argument. This forces plotly.express to interpret this variable as discrete. However, you would then lose the color bar and get a legend:
data['start_time_str'] = data['start_time'].astype('str')
fig = px.bar(data.sort_values("start_time", ascending=False), x="teacher", y="start_time", color="start_time_str",color_continuous_scale="Bluered", barmode="group")
So assuming you want to preserve the colorbar, and have stacked bars, you'll need a more complicated workaround.
You can use plotly.express to plot the first bar so that you get the colorbar, then use fig.add_trace to add the second bar as a graph_object. When you add the second bar, you will need to specify the color and to do that, you'll need some helper functions such as normalize_color_val that converts the y-value of this bar to a normalized color value relative to the data on a scale of 0 to 1, and get_color which returns the color of the bar (as an rgb string) when you pass the colorscale name and normalized value.
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
data = pd.DataFrame(
{'teacher':['Lingrand','Milanesio','Menin','Malot','Malot','Schminke','Cornelli','Milanesio','Marchello','Menin','Huet'],
'start_time':[12,12,5,0,5,0,4,8,-1,0,4]}
)
# This function allows you to retrieve colors from a continuous color scale
# by providing the name of the color scale, and the normalized location between 0 and 1
# Reference: https://stackoverflow.com/questions/62710057/access-color-from-plotly-color-scale
def get_color(colorscale_name, loc):
from _plotly_utils.basevalidators import ColorscaleValidator
# first parameter: Name of the property being validated
# second parameter: a string, doesn't really matter in our use case
cv = ColorscaleValidator("colorscale", "")
# colorscale will be a list of lists: [[loc1, "rgb1"], [loc2, "rgb2"], ...]
colorscale = cv.validate_coerce(colorscale_name)
if hasattr(loc, "__iter__"):
return [get_continuous_color(colorscale, x) for x in loc]
return get_continuous_color(colorscale, loc)
# Identical to Adam's answer
import plotly.colors
from PIL import ImageColor
def get_continuous_color(colorscale, intermed):
"""
Plotly continuous colorscales assign colors to the range [0, 1]. This function computes the intermediate
color for any value in that range.
Plotly doesn't make the colorscales directly accessible in a common format.
Some are ready to use:
colorscale = plotly.colors.PLOTLY_SCALES["Greens"]
Others are just swatches that need to be constructed into a colorscale:
viridis_colors, scale = plotly.colors.convert_colors_to_same_type(plotly.colors.sequential.Viridis)
colorscale = plotly.colors.make_colorscale(viridis_colors, scale=scale)
:param colorscale: A plotly continuous colorscale defined with RGB string colors.
:param intermed: value in the range [0, 1]
:return: color in rgb string format
:rtype: str
"""
if len(colorscale) < 1:
raise ValueError("colorscale must have at least one color")
hex_to_rgb = lambda c: "rgb" + str(ImageColor.getcolor(c, "RGB"))
if intermed <= 0 or len(colorscale) == 1:
c = colorscale[0][1]
return c if c[0] != "#" else hex_to_rgb(c)
if intermed >= 1:
c = colorscale[-1][1]
return c if c[0] != "#" else hex_to_rgb(c)
for cutoff, color in colorscale:
if intermed > cutoff:
low_cutoff, low_color = cutoff, color
else:
high_cutoff, high_color = cutoff, color
break
if (low_color[0] == "#") or (high_color[0] == "#"):
# some color scale names (such as cividis) returns:
# [[loc1, "hex1"], [loc2, "hex2"], ...]
low_color = hex_to_rgb(low_color)
high_color = hex_to_rgb(high_color)
return plotly.colors.find_intermediate_color(
lowcolor=low_color,
highcolor=high_color,
intermed=((intermed - low_cutoff) / (high_cutoff - low_cutoff)),
colortype="rgb",
)
def normalize_color_val(color_val, data=data):
return (color_val - min(data.start_time)) / (max(data.start_time - min(data.start_time)))
## add the first bars
fig = px.bar(
data.sort_values("start_time", ascending=False).loc[~data['teacher'].duplicated()],
x="teacher", y="start_time", color="start_time",
color_continuous_scale="Bluered", barmode="group"
)
## add the other bars, these will automatically be grouped
for x,y in data.sort_values("start_time", ascending=False).loc[data['teacher'].duplicated()].itertuples(index=False):
fig.add_trace(go.Bar(
x=[x],
y=[y],
marker=dict(color=get_color('Bluered', normalize_color_val(y))),
hovertemplate="teacher=%{x}<br>start_time=%{y}<extra></extra>",
showlegend=False
))
fig.show()
I am playing with the third example of "Scatter plots with a legend" in the matplotlib manual.
I have tweaked the marker sizes to:
s = (50 / price) ** 2
And as an input to legend_elements I am using:
func=lambda s: 50 / np.sqrt(s)
I get the output below. The marker sizes of the legend are wrong. Why is that?
Here is the code:
import numpy as np
import matplotlib.pyplot as plt
volume = np.random.rayleigh(27, size=40)
amount = np.random.poisson(10, size=40)
ranking = np.random.normal(size=40)
price = np.random.uniform(1, 10, size=40)
fig, ax = plt.subplots()
s = (50 / price) ** 2
scatter = ax.scatter(volume, amount, c=ranking, s=s,
vmin=-3, vmax=3, cmap="Spectral", label=price)
legend1 = ax.legend(*scatter.legend_elements(num=5),
loc="upper left", title="Ranking")
ax.add_artist(legend1)
kw = dict(prop="sizes", num=5, color=scatter.cmap(0.7), fmt="$ {x:.2f}",
func=lambda s: 50 / np.sqrt(s),
)
legend2 = ax.legend(*scatter.legend_elements(**kw),
loc="lower right", title="Price")
for p, v, a in zip(price, volume, amount):
ax.annotate(round(p, 0), (v, a))
plt.show()
The issue appears to be related to the inverse relationship between price and marker size. The way the data is calculated in legend_elements doesn't account for this, and the calculation doesn't quite work. I've submitted a pull request.
The problem is in np.interp that expects increasing input for the second argument. Here is a work around for now that sorts the input first:
legend2 = ax.legend(*legend_elements(scatter, **kw),
loc="lower right", title="Price")
Run this after defining legend_elements as:
def legend_elements(self, prop="colors", num="auto",
fmt=None, func=lambda x: x, **kwargs):
"""
Creates legend handles and labels for a PathCollection. This is useful
for obtaining a legend for a :meth:`~.Axes.scatter` plot. E.g.::
scatter = plt.scatter([1, 2, 3], [4, 5, 6], c=[7, 2, 3])
plt.legend(*scatter.legend_elements())
Also see the :ref:`automatedlegendcreation` example.
Parameters
----------
prop : string, optional, default *"colors"*
Can be *"colors"* or *"sizes"*. In case of *"colors"*, the legend
handles will show the different colors of the collection. In case
of "sizes", the legend will show the different sizes.
num : int, None, "auto" (default), array-like, or `~.ticker.Locator`,
optional
Target number of elements to create.
If None, use all unique elements of the mappable array. If an
integer, target to use *num* elements in the normed range.
If *"auto"*, try to determine which option better suits the nature
of the data.
The number of created elements may slightly deviate from *num* due
to a `~.ticker.Locator` being used to find useful locations.
If a list or array, use exactly those elements for the legend.
Finally, a `~.ticker.Locator` can be provided.
fmt : str, `~matplotlib.ticker.Formatter`, or None (default)
The format or formatter to use for the labels. If a string must be
a valid input for a `~.StrMethodFormatter`. If None (the default),
use a `~.ScalarFormatter`.
func : function, default *lambda x: x*
Function to calculate the labels. Often the size (or color)
argument to :meth:`~.Axes.scatter` will have been pre-processed
by the user using a function *s = f(x)* to make the markers
visible; e.g. *size = np.log10(x)*. Providing the inverse of this
function here allows that pre-processing to be inverted, so that
the legend labels have the correct values;
e.g. *func = np.exp(x, 10)*.
kwargs : further parameters
Allowed keyword arguments are *color* and *size*. E.g. it may be
useful to set the color of the markers if *prop="sizes"* is used;
similarly to set the size of the markers if *prop="colors"* is
used. Any further parameters are passed onto the `.Line2D`
instance. This may be useful to e.g. specify a different
*markeredgecolor* or *alpha* for the legend handles.
Returns
-------
tuple (handles, labels)
with *handles* being a list of `.Line2D` objects
and *labels* a matching list of strings.
"""
handles = []
labels = []
hasarray = self.get_array() is not None
if fmt is None:
fmt = mpl.ticker.ScalarFormatter(useOffset=False, useMathText=True)
elif isinstance(fmt, str):
fmt = mpl.ticker.StrMethodFormatter(fmt)
fmt.create_dummy_axis()
if prop == "colors":
if not hasarray:
warnings.warn("Collection without array used. Make sure to "
"specify the values to be colormapped via the "
"`c` argument.")
return handles, labels
u = np.unique(self.get_array())
size = kwargs.pop("size", mpl.rcParams["lines.markersize"])
elif prop == "sizes":
u = np.unique(self.get_sizes())
color = kwargs.pop("color", "k")
else:
raise ValueError("Valid values for `prop` are 'colors' or "
f"'sizes'. You supplied '{prop}' instead.")
fmt.set_bounds(func(u).min(), func(u).max())
if num == "auto":
num = 9
if len(u) <= num:
num = None
if num is None:
values = u
label_values = func(values)
else:
if prop == "colors":
arr = self.get_array()
elif prop == "sizes":
arr = self.get_sizes()
if isinstance(num, mpl.ticker.Locator):
loc = num
elif np.iterable(num):
loc = mpl.ticker.FixedLocator(num)
else:
num = int(num)
loc = mpl.ticker.MaxNLocator(nbins=num, min_n_ticks=num-1,
steps=[1, 2, 2.5, 3, 5, 6, 8, 10])
label_values = loc.tick_values(func(arr).min(), func(arr).max())
cond = ((label_values >= func(arr).min()) &
(label_values <= func(arr).max()))
label_values = label_values[cond]
yarr = np.linspace(arr.min(), arr.max(), 256)
xarr = func(yarr)
ix = np.argsort(xarr)
values = np.interp(label_values, xarr[ix], yarr[ix])
kw = dict(markeredgewidth=self.get_linewidths()[0],
alpha=self.get_alpha())
kw.update(kwargs)
for val, lab in zip(values, label_values):
if prop == "colors":
color = self.cmap(self.norm(val))
elif prop == "sizes":
size = np.sqrt(val)
if np.isclose(size, 0.0):
continue
h = mlines.Line2D([0], [0], ls="", color=color, ms=size,
marker=self.get_paths()[0], **kw)
handles.append(h)
if hasattr(fmt, "set_locs"):
fmt.set_locs(label_values)
l = fmt(lab)
labels.append(l)
return handles, labels
You can also manually create your own legend. The trick here is that you have to apply np.sqrt to sizes in the legend for some reason I don't quite follow but #busybear has in her snippet.
import numpy as np
import matplotlib.pyplot as plt
volume = np.random.rayleigh(27, size=40)
amount = np.random.poisson(10, size=40)
ranking = np.random.normal(size=40)
price = np.random.uniform(1, 10, size=40)
fig, ax = plt.subplots()
s = (50 / price) ** 2
scatter = ax.scatter(volume, amount, c=ranking, s=s,
vmin=-3, vmax=3, cmap="Spectral", label=price)
legend1 = ax.legend(*scatter.legend_elements(num=5),
loc="upper left", title="Ranking")
ax.add_artist(legend1)
# # easy legend
# kw = dict(prop="sizes", num=5, color=scatter.cmap(0.7), fmt="$ {x:.2f}",
# func=lambda s: 50 / np.sqrt(s),
# )
# legend2 = ax.legend(*scatter.legend_elements(**kw),
# loc="lower right", title="Price")
# ax.add_artist(legend2)
# manual legend
legend_values = np.array([2,4,6,8])
legend_sizes = (50 / legend_values) ** 2
# IMPORTANT: for some reason the square root needs to be applied to sizes in the legend
legend_sizes_sqrt = np.sqrt(legend_sizes)
elements3 = [Line2D([0], [0], color=scatter.cmap(0.7), lw=0, marker="o", linestyle=None, markersize=s) for s in legend_sizes_sqrt]
legend3 = ax.legend(elements3, [f"$ {p:.2f}" for p in legend_values], loc='lower right', title="Price")
ax.add_artist(legend3)
for p, v, a in zip(price, volume, amount):
ax.annotate(round(p, 0), (v, a))
plt.show()
Is there a way to group boxplots in matplotlib?
Assume we have three groups "A", "B", and "C" and for each we want to create a boxplot for both "apples" and "oranges". If a grouping is not possible directly, we can create all six combinations and place them linearly side by side. What would be to simplest way to visualize the groupings? I'm trying to avoid setting the tick labels to something like "A + apples" since my scenario involves much longer names than "A".
How about using colors to differentiate between "apples" and "oranges" and spacing to separate "A", "B" and "C"?
Something like this:
from pylab import plot, show, savefig, xlim, figure, \
hold, ylim, legend, boxplot, setp, axes
# function for setting the colors of the box plots pairs
def setBoxColors(bp):
setp(bp['boxes'][0], color='blue')
setp(bp['caps'][0], color='blue')
setp(bp['caps'][1], color='blue')
setp(bp['whiskers'][0], color='blue')
setp(bp['whiskers'][1], color='blue')
setp(bp['fliers'][0], color='blue')
setp(bp['fliers'][1], color='blue')
setp(bp['medians'][0], color='blue')
setp(bp['boxes'][1], color='red')
setp(bp['caps'][2], color='red')
setp(bp['caps'][3], color='red')
setp(bp['whiskers'][2], color='red')
setp(bp['whiskers'][3], color='red')
setp(bp['fliers'][2], color='red')
setp(bp['fliers'][3], color='red')
setp(bp['medians'][1], color='red')
# Some fake data to plot
A= [[1, 2, 5,], [7, 2]]
B = [[5, 7, 2, 2, 5], [7, 2, 5]]
C = [[3,2,5,7], [6, 7, 3]]
fig = figure()
ax = axes()
hold(True)
# first boxplot pair
bp = boxplot(A, positions = [1, 2], widths = 0.6)
setBoxColors(bp)
# second boxplot pair
bp = boxplot(B, positions = [4, 5], widths = 0.6)
setBoxColors(bp)
# thrid boxplot pair
bp = boxplot(C, positions = [7, 8], widths = 0.6)
setBoxColors(bp)
# set axes limits and labels
xlim(0,9)
ylim(0,9)
ax.set_xticklabels(['A', 'B', 'C'])
ax.set_xticks([1.5, 4.5, 7.5])
# draw temporary red and blue lines and use them to create a legend
hB, = plot([1,1],'b-')
hR, = plot([1,1],'r-')
legend((hB, hR),('Apples', 'Oranges'))
hB.set_visible(False)
hR.set_visible(False)
savefig('boxcompare.png')
show()
Here is my version. It stores data based on categories.
import matplotlib.pyplot as plt
import numpy as np
data_a = [[1,2,5], [5,7,2,2,5], [7,2,5]]
data_b = [[6,4,2], [1,2,5,3,2], [2,3,5,1]]
ticks = ['A', 'B', 'C']
def set_box_color(bp, color):
plt.setp(bp['boxes'], color=color)
plt.setp(bp['whiskers'], color=color)
plt.setp(bp['caps'], color=color)
plt.setp(bp['medians'], color=color)
plt.figure()
bpl = plt.boxplot(data_a, positions=np.array(xrange(len(data_a)))*2.0-0.4, sym='', widths=0.6)
bpr = plt.boxplot(data_b, positions=np.array(xrange(len(data_b)))*2.0+0.4, sym='', widths=0.6)
set_box_color(bpl, '#D7191C') # colors are from http://colorbrewer2.org/
set_box_color(bpr, '#2C7BB6')
# draw temporary red and blue lines and use them to create a legend
plt.plot([], c='#D7191C', label='Apples')
plt.plot([], c='#2C7BB6', label='Oranges')
plt.legend()
plt.xticks(xrange(0, len(ticks) * 2, 2), ticks)
plt.xlim(-2, len(ticks)*2)
plt.ylim(0, 8)
plt.tight_layout()
plt.savefig('boxcompare.png')
I am short of reputation so I cannot post an image to here.
You can run it and see the result. Basically it's very similar to what Molly did.
Note that, depending on the version of python you are using, you may need to replace xrange with range
A simple way would be to use pandas.
I adapted an example from the plotting documentation:
In [1]: import pandas as pd, numpy as np
In [2]: df = pd.DataFrame(np.random.rand(12,2), columns=['Apples', 'Oranges'] )
In [3]: df['Categories'] = pd.Series(list('AAAABBBBCCCC'))
In [4]: pd.options.display.mpl_style = 'default'
In [5]: df.boxplot(by='Categories')
Out[5]:
array([<matplotlib.axes.AxesSubplot object at 0x51a5190>,
<matplotlib.axes.AxesSubplot object at 0x53fddd0>], dtype=object)
Mock data:
df = pd.DataFrame({'Group':['A','A','A','B','C','B','B','C','A','C'],\
'Apple':np.random.rand(10),'Orange':np.random.rand(10)})
df = df[['Group','Apple','Orange']]
Group Apple Orange
0 A 0.465636 0.537723
1 A 0.560537 0.727238
2 A 0.268154 0.648927
3 B 0.722644 0.115550
4 C 0.586346 0.042896
5 B 0.562881 0.369686
6 B 0.395236 0.672477
7 C 0.577949 0.358801
8 A 0.764069 0.642724
9 C 0.731076 0.302369
You can use the Seaborn library for these plots. First melt the dataframe to format data and then create the boxplot of your choice.
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
dd=pd.melt(df,id_vars=['Group'],value_vars=['Apple','Orange'],var_name='fruits')
sns.boxplot(x='Group',y='value',data=dd,hue='fruits')
The accepted answer uses pylab and works for 2 groups. What if we have more?
Here is the flexible generic solution with matplotlib
import matplotlib.pyplot as pl
# there are 4 individuals, each one tested under 3 different settings
# --- Random data, e.g. results per algorithm:
# Invidual 1
d1_1 = [1,1,2,2,3,3]
d1_2 = [3,3,4,4,5,5]
d1_3 = [5,5,6,6,7,7]
# Individual 2
d2_1 = [7,7,8,8,9,9]
d2_2 = [9,9,10,10,11,11]
d2_3 = [11,11,12,12,13,13]
# Individual 3
d3_1 = [1,2,3,4,5,6]
d3_2 = [4,5,6,7,8,9]
d3_3 = [10,11,12,13,14,15]
# Individual 4
d4_1 = [1,1,2,2,3,3]
d4_2 = [9,9,10,10,11,11]
d4_3 = [10,11,12,13,14,15]
# --- Combining your data:
data_group1 = [d1_1, d1_2, d1_3]
data_group2 = [d2_1, d2_2, d2_3]
data_group3 = [d3_1, d3_2, d3_3]
data_group4 = [d4_1, d4_2, d4_3]
colors = ['pink', 'lightblue', 'lightgreen', 'violet']
# we compare the performances of the 4 individuals within the same set of 3 settings
data_groups = [data_group1, data_group2, data_group3, data_group4]
# --- Labels for your data:
labels_list = ['a','b', 'c']
width = 1/len(labels_list)
xlocations = [ x*((1+ len(data_groups))*width) for x in range(len(data_group1)) ]
symbol = 'r+'
ymin = min ( [ val for dg in data_groups for data in dg for val in data ] )
ymax = max ( [ val for dg in data_groups for data in dg for val in data ])
ax = pl.gca()
ax.set_ylim(ymin,ymax)
ax.grid(True, linestyle='dotted')
ax.set_axisbelow(True)
pl.xlabel('X axis label')
pl.ylabel('Y axis label')
pl.title('title')
space = len(data_groups)/2
offset = len(data_groups)/2
# --- Offset the positions per group:
group_positions = []
for num, dg in enumerate(data_groups):
_off = (0 - space + (0.5+num))
print(_off)
group_positions.append([x+_off*(width+0.01) for x in xlocations])
for dg, pos, c in zip(data_groups, group_positions, colors):
boxes = ax.boxplot(dg,
sym=symbol,
labels=['']*len(labels_list),
# labels=labels_list,
positions=pos,
widths=width,
boxprops=dict(facecolor=c),
# capprops=dict(color=c),
# whiskerprops=dict(color=c),
# flierprops=dict(color=c, markeredgecolor=c),
medianprops=dict(color='grey'),
# notch=False,
# vert=True,
# whis=1.5,
# bootstrap=None,
# usermedians=None,
# conf_intervals=None,
patch_artist=True,
)
ax.set_xticks( xlocations )
ax.set_xticklabels( labels_list, rotation=0 )
pl.show()
Just to add to the conversation, I have found a more elegant way to change the color of the box plot by iterating over the dictionary of the object itself
import numpy as np
import matplotlib.pyplot as plt
def color_box(bp, color):
# Define the elements to color. You can also add medians, fliers and means
elements = ['boxes','caps','whiskers']
# Iterate over each of the elements changing the color
for elem in elements:
[plt.setp(bp[elem][idx], color=color) for idx in xrange(len(bp[elem]))]
return
a = np.random.uniform(0,10,[100,5])
bp = plt.boxplot(a)
color_box(bp, 'red')
Cheers!
Here's a function I wrote that takes Molly's code and some other code I've found on the internet to make slightly fancier grouped boxplots:
import numpy as np
import matplotlib.pyplot as plt
def custom_legend(colors, labels, linestyles=None):
""" Creates a list of matplotlib Patch objects that can be passed to the legend(...) function to create a custom
legend.
:param colors: A list of colors, one for each entry in the legend. You can also include a linestyle, for example: 'k--'
:param labels: A list of labels, one for each entry in the legend.
"""
if linestyles is not None:
assert len(linestyles) == len(colors), "Length of linestyles must match length of colors."
h = list()
for k,(c,l) in enumerate(zip(colors, labels)):
clr = c
ls = 'solid'
if linestyles is not None:
ls = linestyles[k]
patch = patches.Patch(color=clr, label=l, linestyle=ls)
h.append(patch)
return h
def grouped_boxplot(data, group_names=None, subgroup_names=None, ax=None, subgroup_colors=None,
box_width=0.6, box_spacing=1.0):
""" Draws a grouped boxplot. The data should be organized in a hierarchy, where there are multiple
subgroups for each main group.
:param data: A dictionary of length equal to the number of the groups. The key should be the
group name, the value should be a list of arrays. The length of the list should be
equal to the number of subgroups.
:param group_names: (Optional) The group names, should be the same as data.keys(), but can be ordered.
:param subgroup_names: (Optional) Names of the subgroups.
:param subgroup_colors: A list specifying the plot color for each subgroup.
:param ax: (Optional) The axis to plot on.
"""
if group_names is None:
group_names = data.keys()
if ax is None:
ax = plt.gca()
plt.sca(ax)
nsubgroups = np.array([len(v) for v in data.values()])
assert len(np.unique(nsubgroups)) == 1, "Number of subgroups for each property differ!"
nsubgroups = nsubgroups[0]
if subgroup_colors is None:
subgroup_colors = list()
for k in range(nsubgroups):
subgroup_colors.append(np.random.rand(3))
else:
assert len(subgroup_colors) == nsubgroups, "subgroup_colors length must match number of subgroups (%d)" % nsubgroups
def _decorate_box(_bp, _d):
plt.setp(_bp['boxes'], lw=0, color='k')
plt.setp(_bp['whiskers'], lw=3.0, color='k')
# fill in each box with a color
assert len(_bp['boxes']) == nsubgroups
for _k,_box in enumerate(_bp['boxes']):
_boxX = list()
_boxY = list()
for _j in range(5):
_boxX.append(_box.get_xdata()[_j])
_boxY.append(_box.get_ydata()[_j])
_boxCoords = zip(_boxX, _boxY)
_boxPolygon = plt.Polygon(_boxCoords, facecolor=subgroup_colors[_k])
ax.add_patch(_boxPolygon)
# draw a black line for the median
for _k,_med in enumerate(_bp['medians']):
_medianX = list()
_medianY = list()
for _j in range(2):
_medianX.append(_med.get_xdata()[_j])
_medianY.append(_med.get_ydata()[_j])
plt.plot(_medianX, _medianY, 'k', linewidth=3.0)
# draw a black asterisk for the mean
plt.plot([np.mean(_med.get_xdata())], [np.mean(_d[_k])], color='w', marker='*',
markeredgecolor='k', markersize=12)
cpos = 1
label_pos = list()
for k in group_names:
d = data[k]
nsubgroups = len(d)
pos = np.arange(nsubgroups) + cpos
label_pos.append(pos.mean())
bp = plt.boxplot(d, positions=pos, widths=box_width)
_decorate_box(bp, d)
cpos += nsubgroups + box_spacing
plt.xlim(0, cpos-1)
plt.xticks(label_pos, group_names)
if subgroup_names is not None:
leg = custom_legend(subgroup_colors, subgroup_names)
plt.legend(handles=leg)
You can use the function(s) like this:
data = { 'A':[np.random.randn(100), np.random.randn(100) + 5],
'B':[np.random.randn(100)+1, np.random.randn(100) + 9],
'C':[np.random.randn(100)-3, np.random.randn(100) -5]
}
grouped_boxplot(data, group_names=['A', 'B', 'C'], subgroup_names=['Apples', 'Oranges'], subgroup_colors=['#D02D2E', '#D67700'])
plt.show()
Grouped boxplots, towards subtle academic publication styling... (source)
(Left) Python 2.7.12 Matplotlib v1.5.3. (Right) Python 3.7.3. Matplotlib v3.1.0.
Code:
import numpy as np
import matplotlib.pyplot as plt
# --- Your data, e.g. results per algorithm:
data1 = [5,5,4,3,3,5]
data2 = [6,6,4,6,8,5]
data3 = [7,8,4,5,8,2]
data4 = [6,9,3,6,8,4]
# --- Combining your data:
data_group1 = [data1, data2]
data_group2 = [data3, data4]
# --- Labels for your data:
labels_list = ['a','b']
xlocations = range(len(data_group1))
width = 0.3
symbol = 'r+'
ymin = 0
ymax = 10
ax = plt.gca()
ax.set_ylim(ymin,ymax)
ax.set_xticklabels( labels_list, rotation=0 )
ax.grid(True, linestyle='dotted')
ax.set_axisbelow(True)
ax.set_xticks(xlocations)
plt.xlabel('X axis label')
plt.ylabel('Y axis label')
plt.title('title')
# --- Offset the positions per group:
positions_group1 = [x-(width+0.01) for x in xlocations]
positions_group2 = xlocations
plt.boxplot(data_group1,
sym=symbol,
labels=['']*len(labels_list),
positions=positions_group1,
widths=width,
# notch=False,
# vert=True,
# whis=1.5,
# bootstrap=None,
# usermedians=None,
# conf_intervals=None,
# patch_artist=False,
)
plt.boxplot(data_group2,
labels=labels_list,
sym=symbol,
positions=positions_group2,
widths=width,
# notch=False,
# vert=True,
# whis=1.5,
# bootstrap=None,
# usermedians=None,
# conf_intervals=None,
# patch_artist=False,
)
plt.savefig('boxplot_grouped.png')
plt.savefig('boxplot_grouped.pdf') # when publishing, use high quality PDFs
#plt.show() # uncomment to show the plot.
I used the code given by Kuzeko and it worked well, but I found that the boxes in each group were being drawn in the reverse order. I changed ...x-_off... to ...x+_off... in the following line (just above the last for loop) which fixes it for me:
group_positions.append([x+_off*(width+0.01) for x in xlocations])
A boxplot above was modified to obtain group boxplots with 3 data types.
import matplotlib.pyplot as plt
import numpy as np
ord = [[16.9423,
4.0410,
19.1185],
[18.5134,
17.8048,
19.2669],
[18.7286,
18.0576,
19.1717],
[18.8998,
18.8469,
19.0005],
[18.8126,
18.7870,
18.8393],
[18.7770,
18.7511,
18.8022],
[18.7409,
18.7075,
18.7747],
[18.6866,
18.6624,
18.7093
],
[18.6748],
[18.9069,
18.6752,
19.0769],
[19.0012,
18.9783,
19.0202
],
[18.9448,
18.9134,
18.9813],
[19.1242,
18.8256,
19.3185],
[19.2118,
19.1661,
19.2580],
[19.2505,
19.1231,
19.3526]]
seq = [[17.8092,
4.0410,
19.6653],
[18.7266,
18.2556,
19.3739],
[18.6051,
18.0589,
19.0557],
[18.6467,
18.5629,
18.7566],
[18.5307,
18.4999,
18.5684],
[18.4732,
18.4484,
18.4985],
[18.5234,
18.5027,
18.4797,
18.4573],
[18.3987,
18.3636,
18.4544],
[18.3593],
[18.7234,
18.7092,
18.7598],
[18.7438,
18.7224,
18.7677],
[18.7304,
18.7111,
18.6880,
18.6913,
18.6678],
[18.8926,
18.5902,
19.2003],
[19.1059,
19.0835,
19.0601,
19.0373,
19.0147],
[19.1925,
19.0177,
19.2588]]
apd=[[17.0331,
4.0410,
18.5670],
[17.6124,
17.1975,
18.0755],
[17.3956,
17.1572,
17.9140],
[17.8295,
17.6514,
18.1466],
[18.0665,
17.9144,
18.2157],
[18.1518,
18.0382,
18.2722],
[18.1975,
18.0956,
18.2987],
[18.2219,
18.1293,
18.3062],
[18.2870,
18.2215,
18.3513],
[18.3047,
18.2363,
18.3950],
[18.3580,
18.2923,
18.4205],
[18.3830,
18.3250,
18.4381],
[18.4135,
18.3645,
18.4753],
[18.4580,
18.4095,
18.5170],
[18.4900,
18.4430,
18.5435]
]
ticks = [120,
240,
360,
516,
662,
740,
874,
1022,
1081,
1201,
1320,
1451,
1562,
1680,
1863]
def set_box_color(bp, color):
plt.setp(bp['boxes'], color=color)
plt.setp(bp['whiskers'], color=color)
plt.setp(bp['caps'], color=color)
plt.setp(bp['medians'], color=color)
plt.figure()
bpl = plt.boxplot(ord, positions=np.array(range(len(ord)))*3.0-0.3, sym='', widths=0.6)
bpr = plt.boxplot(seq, positions=np.array(range(len(seq)))*3.0+0.3, sym='', widths=0.6)
bpg = plt.boxplot(apd, positions=np.array(range(len(apd)))*3.0+0.9, sym='', widths=0.6)
set_box_color(bpl, '#D7191C') # colors are from http://colorbrewer2.org/
set_box_color(bpr, '#2C7BB6')
set_box_color(bpg, '#99d8c9')
# draw temporary red and blue lines and use them to create a legend
plt.plot([], c='#D7191C', label='ORD')
plt.plot([], c='#2C7BB6', label='SEQ')
plt.plot([], c='#99d8c9', label='APD')
plt.legend()
plt.xticks(range(0, len(ticks) * 3, 3), ticks)
plt.xlim(-2, len(ticks)*3)
plt.ylim(0, 20)
plt.tight_layout()
plt.show()
plt.savefig('boxcompare.png')