I used naive approach to write a wrapper. Get all *args and **kwargs and pass them to the enclosing function. But something went wrong. So I simplified example to the core to illustrate my troubles.
# simplies wrapper possible: just pass the args
def wraps(f):
def call(*argv, **kw):
# add some meaningful manipulations later
return f(*argv, **kw)
return call
# check the wrapper behaves identically
class M:
def __init__(this, param):
this.param = param
M.__new__ = M.__new__
m1 = M(1)
M.__new__ = wraps(M.__new__)
m2 = M(2)
m1 was instantiated normally, but m2 fails with the following error description
TypeError: object.__new__() takes exactly one argument (the type to instantiate)
The question is how to define wraps and call function properly so they would behave identically to the function being wrapped regardless of the wrapped function.
It is not the end objective obviously, since primitive lambda x: x would suffice. It is a starting point from which I could introduce further complications.
The short answer: It's impossible. You could not define a perfect wrapper in python (and in many other languages too).
Slightly longer version. Python function is a first-class object and all manipulations acceptable for objects could be performed with a function too. So you could not presume that some complex procedure would limit itself with only calling the function passed as argument and would not use the function object in other unobvious ways
Much more verbose speculation with examples
Functions defined only at part of the domain are pretty common
def half(i):
if i < 0:
raise ValueError
if i & 1:
raise ValueError
return i / 2
Pretty straight. No we could get a little more confusing:
class Veggy:
def __init__(this, kind):
this.kind = kind
def pr(this):
print(this.kind)
def assess(v):
if v.kind in ['tomato', 'carrot']:
raise ValueError
v.pr()
Here Veggy used as a function proxy but also have public property kind which the assess function check before executing.
The same thing could be done with a function object since it also have additional properties besides calling.
def test(x):
return x + x
def assess4(f, *argv, **kw):
if f.__name__ != 'test':
raise ValueError
if f.__module__ != '__main__':
raise ValueError
if len(f.__code__.co_code) % 8 == 4:
raise ValueError
return f(*argv, **kw)
Writing correct wrapper becomes a challenge. That challenge could be complicated further:
def assess0(f, *argv, **kw):
if len(f.__code__.co_code) % 8 == 0:
kw['arg'] = True
return f(*argv[1:], kw)
else
kw['arg'] = False
return f(*argv[:-1], **kw)
Universal wrapper should handle both assess0 and assess4 correctly which is pretty impossible. And we have not touched id magic. Checking id would cast acceptable function in stone.
Coding etiquette
So you could not write a wrapper. Why someone bother to write one? Why function are so common when they could not guarantee behavior equivalence and could possible introduce non-trivial changes in code flow?
The simple answer is coding conventions. The famous substitution principle. Code should keep behavior properties when some object is substituted with another of the same type. Python put little focus on type nomination and enforcing. Rigorous type system is not a must, you could establish APIs and protocols through documentation and type annotation like the python language does.
Programs must be written for people to read, and only incidentally for machines to execute. OOP conventions are all in people minds. So python developers broke conventions requiring some non-stadard behavior for overriding object methods. This non-conventional OOP treatment make impossible to use decorators for transforming __init__ and __new__ methods.
The final solution
If python treats __new__ so special then generic wrapper should do the same.
# simplest wrapper possible: just pass the args
def wraps(f):
def call(*argv, **kw):
# add some meaningful manipulations later
return f(*argv, **kw)
def call_new(*argv, **kw):
# add some meaningful manipulations later
return f(argv[0])
if f is object.__new__:
return call_new
# elif other_special_case: pass
else:
return call
Now it could successfully pass the test
# check the wrapper behaves identically
class M:
def __init__(this, param):
this.param = param
M.__new__ = M.__new__
m1 = M(1)
M.__new__ = wraps(M.__new__)
m2 = M(2)
The drawback is that you should implement distinct workaround for any other convention breaking functions besides __new__ to make your function wrapper semi-applicable in universal context. But it is the best you could get out of python.
Related
To start with, my question here is about the semantics and the logic behind why the Python language was designed like this in the case of chained decorators. Please notice the nuance how this is different from the question
How decorators chaining work?
Link: How decorators chaining work? It seems quite a number of other users had the same doubts, about the call order of chained Python decorators. It is not like I can't add a __call__ and see the order for myself. I get this, my point is, why was it designed to start from the bottom, when it comes to chained Python decorators?
E.g.
def first_func(func):
def inner():
x = func()
return x * x
return inner
def second_func(func):
def inner():
x = func()
return 2 * x
return inner
#first_func
#second_func
def num():
return 10
print(num())
Quoting the documentation on decorators:
The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:
def f(arg):
...
f = staticmethod(f)
#staticmethod
def f(arg):
...
From this it follows that the decoration in
#a
#b
#c
def fun():
...
is equivalent to
fun = a(b(c(fun)))
IOW, it was designed like that because it's just syntactic sugar.
For proof, let's just decorate an existing function and not return a new one:
def dec1(f):
print(f"dec1: got {vars(f)}")
f.dec1 = True
return f
def dec2(f):
print(f"dec2: got {vars(f)}")
f.dec2 = True
return f
#dec1
#dec2
def foo():
pass
print(f"Fully decked out: {vars(foo)}")
prints out
dec2: got {}
dec1: got {'dec2': True}
Fully decked out: {'dec2': True, 'dec1': True}
TL;DR
g(f(x)) means applying f to x first, then applying g to the output.
Omit the parentheses, add # before and line break after each function name:
#g
#f
x
(Syntax only valid if x is the definition of a function/class.)
Abstract explanation
The reasoning behind this design decision becomes fairly obvious IMHO, if you remember what the decorator syntax - in its most abstract and general form - actually means. So I am going to try the abstract approach to explain this.
It is all about syntax
To be clear here, the distinguishing factor in the concept of the "decorator" is not the object underneath it (so to speak) nor the operation it performs. It is the special syntax and the restrictions for it. Thus, a decorator at its core is nothing more than feature of Python grammar.
The decorator syntax requires a target to be decorated. Initially (see PEP 318) the target could only be function definitions; later class definitions were also allowed to be decorated (see PEP 3129).
Minimal valid syntax
Syntactically, this is valid Python:
def f(): pass
#f
class Target: pass # or `def target: pass`
However, this will (perhaps unsuprisingly) cause a TypeError upon execution. As has been reiterated multiple times here and in other posts on this platform, the above is equivalent to this:
def f(): pass
class Target: pass
Target = f(Target)
Minimal working decorator
The TypeError stems from the fact that f lacks a positional argument. This is the obvious logical restriction imposed by what a decorator is supposed to do. Thus, to achieve not only syntactically valid code, but also have it run without errors, this is sufficient:
def f(x): pass
#f
class Target: pass
This is still not very useful, but it is enough for the most general form of a working decorator.
Decoration is just application of a function to the target and assigning the output to the target's name.
Chaining functions ⇒ Chaining decorators
We can ignore the target and what it is or does and focus only on the decorator. Since it merely stands for applying a function, the order of operations comes into play, as soon as we have more than one. What is the order of operation, when we chain functions?
def f(x): pass
def g(x): pass
class Target: pass
Target = g(f(Target))
Well, just like in the composition of purely mathematical functions, this implies that we apply f to Target first and then apply g to the result of f. Despite g appearing first (i.e. further left), it is not what is applied first.
Since stacking decorators is equivalent to nesting functions, it seems obvious to define the order of operation the same way. This time, we just skip the parentheses, add an # symbol in front of the function name and a line break after it.
def f(x): pass
def g(x): pass
#g
#f
class Target: pass
But, why though?
If after the explanation above (and reading the PEPs for historic background), the reasoning behind the order of operation is still not clear or still unintuitive, there is not really any good answer left, other than "because the devs thought it made sense, so get used to it".
PS
I thought I'd add a few things for additional context based on all the comments around your question.
Decoration vs. calling a decorated function
A source of confusion seems to be the distinction between what happens when applying the decorator versus calling the decorated function.
Notice that in my examples above I never actually called target itself (the class or function being decorated). Decoration is itself a function call. Adding #f above the target is calling the f and passing the target to it as the first positional argument.
A "decorated function" might not even be a function
The distinction is very important because nowhere does it say that a decorator actually needs to return a callable (function or class). f being just a function means it can return whatever it wants. This is again valid and working Python code:
def f(x): return 3.14
#f
def target(): return "foo"
try:
target()
except Exception as e:
print(repr(e))
print(target)
Output:
TypeError("'float' object is not callable")
3.14
Notice that the name target does not even refer to a function anymore. It just holds the 3.14 returned by the decorator. Thus, we cannot even call target. The entire function behind it is essentially lost immediately before it is even available to the global namespace. That is because f just completely ignores its first positional argument x.
Replacing a function
Expanding this further, if we want, we can have f return a function. Not doing that seems very strange, considering it is used to decorate a function. But it doesn't have to be related to the target at all. Again, this is fine:
def bar(): return "bar"
def f(x): return bar
#f
def target(): return "foo"
print(target())
print(target is bar)
Output:
bar
True
It comes down to convention
The way decorators are actually overwhelmingly used out in the wild, is in a way that still keeps a reference to the target being decorated around somewhere. In practice it can be as simple as this:
def f(x):
print(f"applied `f({x.__name__})`")
return
#f
def target(): return "foo"
Just running this piece of code outputs applied f(target). Again, notice that we don't call target here, we only called f. But now, the decorated function is still target, so we could add the call print(target()) at the bottom and that would output foo after the other output produced by f.
The fact that most decorators don't just throw away their target comes down to convention. You (as a developer) would not expect your function/class to simply be thrown away completely, when you use a decorator.
Decoration with wrapping
This is why real-life decorators typically either return the reference to the target at the end outright (like in the last example) or they return a different callable, but that callable itself calls the target, meaning a reference to the target is kept in that new callable's local namespace . These functions are what is usually referred to as wrappers:
def f(x):
print(f"applied `f({x.__name__})`")
def wrapper():
print(f"wrapper executing with {locals()=}")
return x()
return wrapper
#f
def target(): return "foo"
print(f"{target()=}")
print(f"{target.__name__=}")
Output:
applied `f(target)`
wrapper executing with locals()={'x': <function target at 0x7f1b2f78f250>}
target()='foo'
target.__name__='wrapper'
As you can see, what the decorator left us is wrapper, not what we originally defined as target. And the wrapper is what we call, when we write target().
Wrapping wrappers
This is the kind of behavior we typically expect, when we use decorators. And therefore it is not surprising that multiple decorators stacked together behave the way they do. The are called from the inside out (as explained above) and each adds its own wrapper around what it receives from the one applied before:
def f(x):
print(f"applied `f({x.__name__})`")
def wrapper_from_f():
print(f"wrapper_from_f executing with {locals()=}")
return x()
return wrapper_from_f
def g(x):
print(f"applied `g({x.__name__})`")
def wrapper_from_g():
print(f"wrapper_from_g executing with {locals()=}")
return x()
return wrapper_from_g
#g
#f
def target(): return "foo"
print(f"{target()=}")
print(f"{target.__name__=}")
Output:
applied `f(target)`
applied `g(wrapper_from_f)`
wrapper_from_g executing with locals()={'x': <function f.<locals>.wrapper_from_f at 0x7fbfc8d64f70>}
wrapper_from_f executing with locals()={'x': <function target at 0x7fbfc8d65630>}
target()='foo'
target.__name__='wrapper_from_g'
This shows very clearly the difference between the order in which the decorators are called and the order in which the wrapped/wrapping functions are called.
After the decoration is done, we are left with wrapper_from_g, which is referenced by our target name in global namespace. When we call it, wrapper_from_g executes and calls wrapper_from_f, which in turn calls the original target.
I'm trying to create a function that chains results from multiple arguments.
def hi(string):
print(string)<p>
return hi
Calling hi("Hello")("World") works and becomes Hello \n World as expected.
the problem is when I want to append the result as a single string, but
return string + hi produces an error since hi is a function.
I've tried using __str__ and __repr__ to change how hi behaves when it has not input. But this only creates a different problem elsewhere.
hi("Hello")("World") = "Hello"("World") -> Naturally produces an error.
I understand why the program cannot solve it, but I cannot find a solution to it.
You're running into difficulty here because the result of each call to the function must itself be callable (so you can chain another function call), while at the same time also being a legitimate string (in case you don't chain another function call and just use the return value as-is).
Fortunately Python has you covered: any type can be made to be callable like a function by defining a __call__ method on it. Built-in types like str don't have such a method, but you can define a subclass of str that does.
class hi(str):
def __call__(self, string):
return hi(self + '\n' + string)
This isn't very pretty and is sorta fragile (i.e. you will end up with regular str objects when you do almost any operation with your special string, unless you override all methods of str to return hi instances instead) and so isn't considered very Pythonic.
In this particular case it wouldn't much matter if you end up with regular str instances when you start using the result, because at that point you're done chaining function calls, or should be in any sane world. However, this is often an issue in the general case where you're adding functionality to a built-in type via subclassing.
To a first approximation, the question in your title can be answered similarly:
class add(int): # could also subclass float
def __call__(self, value):
return add(self + value)
To really do add() right, though, you want to be able to return a callable subclass of the result type, whatever type it may be; it could be something besides int or float. Rather than trying to catalog these types and manually write the necessary subclasses, we can dynamically create them based on the result type. Here's a quick-and-dirty version:
class AddMixIn(object):
def __call__(self, value):
return add(self + value)
def add(value, _classes={}):
t = type(value)
if t not in _classes:
_classes[t] = type("add_" + t.__name__, (t, AddMixIn), {})
return _classes[t](value)
Happily, this implementation works fine for strings, since they can be concatenated using +.
Once you've started down this path, you'll probably want to do this for other operations too. It's a drag copying and pasting basically the same code for every operation, so let's write a function that writes the functions for you! Just specify a function that actually does the work, i.e., takes two values and does something to them, and it gives you back a function that does all the class munging for you. You can specify the operation with a lambda (anonymous function) or a predefined function, such as one from the operator module. Since it's a function that takes a function and returns a function (well, a callable object), it can also be used as a decorator!
def chainable(operation):
class CallMixIn(object):
def __call__(self, value):
return do(operation(self, value))
def do(value, _classes={}):
t = type(value)
if t not in _classes:
_classes[t] = type(t.__name__, (t, CallMixIn), {})
return _classes[t](value)
return do
add = chainable(lambda a, b: a + b)
# or...
import operator
add = chainable(operator.add)
# or as a decorator...
#chainable
def add(a, b): return a + b
In the end it's still not very pretty and is still sorta fragile and still wouldn't be considered very Pythonic.
If you're willing to use an additional (empty) call to signal the end of the chain, things get a lot simpler, because you just need to return functions until you're called with no argument:
def add(x):
return lambda y=None: x if y is None else add(x+y)
You call it like this:
add(3)(4)(5)() # 12
You are getting into some deep, Haskell-style, type-theoretical issues by having hi return a reference to itself. Instead, just accept multiple arguments and concatenate them in the function.
def hi(*args):
return "\n".join(args)
Some example usages:
print(hi("Hello", "World"))
print("Hello\n" + hi("World"))
This will seem trivial perhaps, but it is a condition that I run into fairly frequently and would like to find a more elegant way of writing this code. The method, while not terribly relevant to the question, takes a text value and an optional is_checked value to create a radio button (using dominate). In this case, I can't set 'checked' to None, or false - it either has to be there or not. It doesn't seem like I should have to write the 'input' line twice though, just to optionally add an argument.
def _get_radio_button(text: str, is_checked=False):
with label(text, cls="radio-inline") as lbl:
if is_checked:
input(text, type="radio", name="optradio", checked='checked')
else:
input(text, type="radio", name="optradio")
return lbl
This would be my second approach, but it is the same lines of code and less readable - though perhaps a tiny bit more DRY.
a = dict(type='radio', name='optradio')
if is_checked:
a['checked']='checked'
with label(text, cls="radio-inline") as lbl:
input(text, **a)
Question: How can I handle this code case with the fewest lines possible without sacrificing readability?
Your code looks fine, except obviously for the naming of a, which could be input_opts or something like that.
Another possibility to make it a bit clearer is to use direct keyword arguments for the common stuff and just inject the optional ones using **. When only one is optional, this can be quite short, e.g.:
checked_arg = {'checked': 'checked'} if is_checked else {}
with label(text, cls="radio-inline") as lbl:
input(text, type="radio", name="optradio", **checked_arg)
Only as concept :) You can decorate in this way own or alien (library) functions. Even more, you can make decorator as class (with __call__ method which will decorate underlying function) which can be parameterized with simple "morphisms" of underlying function arguments (they may be list of functions - as arguments of decorator class constructor). Also you can make more declarative style decorator and to inspect underlying function arguments (for default values, for example) - you are limited only by own fantasy :) So:
from functools import wraps
def adapt_gui_args(callable):
#wraps(callable)
def w(*args, **kwargs):
if kwargs.pop('is_checked', False): kwargs['checked'] = 'checked'
return callable(*args, **kwargs)
return w
# may be decorated with adapt_gui_args if it's your function
def input(*args, **kwargs):
print("args: ", args)
print("kwargs: ", kwargs)
# decorate input function outside its source body
input = adapt_gui_args(input)
def test(is_checked=False):
input(1, 2, type="radio", is_checked=is_checked)
test(False)
test(True)
(Python 3)
First of all, I feel my title isn't quite what it should be, so if you stick through the question and come up with a better title, please feel free to edit it.
I have recently learned about Python Decorators and Python Annotations, and so I wrote two little functions to test what I have recently learned.
One of them, called wraps is supposed to mimic the behaviour of the functools wraps, while the other, called ensure_types is supposed to check, for a given function and through its annotations, if the arguments passed to some function are the correct ones.
This is the code I have for those functions:
def wraps(original_func):
"""Update the decorated function with some important attributes from the
one that was decorated so as not to lose good information"""
def update_attrs(new_func):
# Update the __annotations__
for key, value in original_func.__annotations__.items():
new_func.__annotations__[key] = value
# Update the __dict__
for key, value in original_func.__dict__.items():
new_func.__dict__[key] = value
# Copy the __name__
new_func.__name__ = original_func.__name__
# Copy the docstring (__doc__)
new_func.__doc__ = original_func.__doc__
return new_func
return update_attrs # return the decorator
def ensure_types(f):
"""Uses f.__annotations__ to check the expected types for the function's
arguments. Raises a TypeError if there is no match.
If an argument has no annotation, object is returned and so, regardless of
the argument passed, isinstance(arg, object) evaluates to True"""
#wraps(f) # say that test_types is wrapping f
def test_types(*args, **kwargs):
# Loop through the positional args, get their name and check the type
for i in range(len(args)):
# function.__code__.co_varnames is a tuple with the names of the
##arguments in the order they are in the function def statement
var_name = f.__code__.co_varnames[i]
if not(isinstance(args[i], f.__annotations__.get(var_name, object))):
raise TypeError("Bad type for function argument named '{}'".format(var_name))
# Loop through the named args, get their value and check the type
for key in kwargs.keys():
if not(isinstance(kwargs[key], f.__annotations__.get(key, object))):
raise TypeError("Bad type for function argument named '{}'".format(key))
return f(*args, **kwargs)
return test_types
Supposedly, everything is alright until now. Both the wraps and the ensure_types are supposed to be used as decorators. The problem comes when I defined a third decorator, debug_dec that is supposed to print to the console when a function is called and its arguments. The function:
def debug_dec(f):
"""Does some annoying printing for debugging purposes"""
#wraps(f)
def profiler(*args, **kwargs):
print("{} function called:".format(f.__name__))
print("\tArgs: {}".format(args))
print("\tKwargs: {}".format(kwargs))
return f(*args, **kwargs)
return profiler
That also works cooly. The problem comes when I try to use debug_dec and ensure_types at the same time.
#ensure_types
#debug_dec
def testing(x: str, y: str = "lol"):
print(x)
print(y)
testing("hahaha", 3) # raises no TypeError as expected
But if I change the order with which the decorators are called, it works just fine.
Can someone please help me understand what is going wrong, and if is there any way of solving the problem besides swapping those two lines?
EDIT
If I add the lines:
print(testing.__annotations__)
print(testing.__code__.co_varnames)
The output is as follows:
#{'y': <class 'str'>, 'x': <class 'str'>}
#('args', 'kwargs', 'i', 'var_name', 'key')
Although wraps maintains the annotations, it doesn't maintain the function signature. You see this when you print out the co_varnames. Since ensure_types does its checking by comparing the names of the arguments with the names in the annotation dict, it fails to match them up, because the wrapped function has no arguments named x and y (it just accepts generic *args and **kwargs).
You could try using the decorator module, which lets you write decorators that act like functools.wrap but also preserve the function signature (including annotations).
There is probably also a way to make it work "manually", but it would be a bit of a pain. Basically what you would have to do is have wraps store the original functions argspec (the names of its arguments), then have ensure_dict use this stored argspec instead of the wrapper's argspec in checking the types. Essentially your decorators would pass the argspec in parallel with the wrapped functions. However, using decorator is probably easier.
Is there a way to get back from a return value from inspect.getcallargs(func) to a *args, **kw pair that can actually be used to call the func?
Use case: say I am writing a decorator, and I want to change a particular argument of a function by name. Here's the beginning of some code to do this:
#fix_x
def a(x):
print x
#fix_x
def b(**q):
print q['x']
def fix_x(func):
def wrapper(*args, **kw):
argspec = inspect.getargspec(func)
callargs = inspect.getcallargs(func, *args, **kw)
if 'x' in callargs:
callargs['x'] += 5
elif 'x' in callargs[argspec.keywords]:
callargs[argspec.keywords]['x'] += 5
# ...and now I'd like a simple way to call func with callargs...?
(I'm actually doing something more elaborate with the callargs between building them and wanting to make a call with them, but this should give an idea of what I'm looking for.)
No, there isn't currently a good way to do this, however it is in the works for Python 3.3!
See PEP 362 -- Function Signature Object for how this new feature will work.
I've written my own code to (more or less) do this. It is in ArgSpec.make_call_args in https://github.com/codemage/wmpy
The semantics are slightly different; namely, it will still just shunt any unknown args to **kw rather than accepting a separate entry dict named after the **kw parameter, but that is easy enough to change if I ever need to.
With a little bit of effort, this could probably be turned into a fairly complete 'backport' (in quotes since it obviously wouldn't share code) of PEP 362 to Python 2.7. It doesn't do keyword-only params, but those don't exist in 2.x anyway so that wouldn't affect API completeness, and the inspect module provides all the other nontrivial machinery.