i have a data set named customer_base, containing over 800K rows like below:
ID
AGE
GENDER
OCCUPATION
1
64
101
"occ1"
2
64
100
"occ2"
2
66
100
Nan
2
Nan
100
"occ2"
3
Nan
101
"occ3"
3
Nan
Nan
Nan
3
32
Nan
Nan
.
.
.
.
and after a grouping operation the desired version of it should be like below:
ID
AGE
GENDER
OCCUPATION
1
64
101
"occ1"
2
66
100
"occ2"
3
32
101
"occ3"
.
.
.
.
previously i tried a code sample like below to get a table as clean as possible, but it took too much time. now i need a faster function to get any of the available values of occupation column.
customer_base.groupby("ID",
as_index=False).agg({"GENDER":"max",
"AGE":"max",
"OCCUPATION":lambda x: np.nan if len(x[x.notna()])==0 else x[x.notna()].values[0]})
thanks in advance for your optimization ideas, sorry for possible question duplication
Use GroupBy.first for first non NaNs values:
df = customer_base.groupby("ID", as_index=False).agg({"AGE":"max",
"GENDER":"max",
"OCCUPATION":'first'})
print (df)
ID AGE GENDER OCCUPATION
0 1 64.0 101.0 "occ1"
1 2 66.0 100.0 "occ2"
2 3 32.0 101.0 "occ3"
Related
I am trying to rank some values in one column over a rolling period of N days instead of having the ranking done over the entire set. I have seen several methods here using rolling_apply but I have read that this is no longer in python. For example, in the following table;
A
01-01-2013
100
02-01-2013
85
03-01-2013
110
04-01-2013
60
05-01-2013
20
06-01-2013
40
For the column A above, how can I have the rank as below for N = 3;
A
Ranked_A
01-01-2013
100
NaN
02-01-2013
85
Nan
03-01-2013
110
1
04-01-2013
60
3
05-01-2013
20
3
06-01-2013
40
2
Yes we have some work around, still with rolling but need apply
df.A.rolling(3).apply(lambda x: pd.Series(x).rank(ascending=False)[-1])
01-01-2013 NaN
02-01-2013 NaN
03-01-2013 1.0
04-01-2013 3.0
05-01-2013 3.0
06-01-2013 2.0
Name: A, dtype: float64
I want to have an extra column with the maximum relative difference [-] of the row-values and the mean of these rows:
The df is filled with energy use data for several years.
The theoretical formula that should get me this is as follows:
df['max_rel_dif'] = MAX [ ABS(highest energy use – mean energy use), ABS(lowest energy use – mean energy use)] / mean energy use
Initial dataframe:
ID y_2010 y_2011 y_2012 y_2013 y_2014
0 23 22631 21954.0 22314.0 22032 21843
1 43 27456 29654.0 28159.0 28654 2000
2 36 61200 NaN NaN 31895 1600
3 87 87621 86542.0 87542.0 88456 86961
4 90 58951 57486.0 2000.0 0 0
5 98 24587 25478.0 NaN 24896 25461
Desired dataframe:
ID y_2010 y_2011 y_2012 y_2013 y_2014 max_rel_dif
0 23 22631 21954.0 22314.0 22032 21843 0.02149
1 43 27456 29654.0 28159.0 28654 2000 0.91373
2 36 61200 NaN NaN 31895 1600 0.94931
3 87 87621 86542.0 87542.0 88456 86961 0.01179
4 90 58951 57486.0 2000.0 0 0 1.48870
5 98 24587 25478.0 NaN 24896 25461 0.02065
tried code:
import pandas as pd
import numpy as np
df = pd.DataFrame({"ID": [23,43,36,87,90,98],
"y_2010": [22631,27456,61200,87621,58951,24587],
"y_2011": [21954,29654,np.nan,86542,57486,25478],
"y_2012": [22314,28159,np.nan,87542,2000,np.nan],
"y_2013": [22032,28654,31895,88456,0,24896,],
"y_2014": [21843,2000,1600,86961,0,25461]})
print(df)
a = df.loc[:, ['y_2010','y_2011','y_2012','y_2013', 'y_2014']]
# calculate mean
mean = a.mean(1)
# calculate max_rel_dif
df['max_rel_dif'] = (((df.max(axis=1).sub(mean)).abs(),(df.min(axis=1).sub(mean)).abs()).max()).div(mean)
# AttributeError: 'tuple' object has no attribute 'max'
-> I'm obviously doing the wrong thing with the tuple, I just don't know how to get the maximum values
from the tuples and divide them then by the mean in the proper Phytonic way
I feel like the whole function can be
s=df.filter(like='y')
s.sub(s.mean(1),axis=0).abs().max(1)/s.mean(1)
0 0.021494
1 0.913736
2 0.949311
3 0.011800
4 1.488707
5 0.020653
dtype: float64
First, skip the row of data if the columns have more than 2 columns that are empty. After this step, the rows with more than 2 columns missing value will be filtered out.
Then, as some of the columns still have 1 or 2 columns are empty. So I will fill in the empty column with the mean value of that row.
I can run the second step with my code below, however, I am not sure how to filter out the rows with more than 2 columns missing value.
I have tried using dropna but it deleted all the columns of the table.
My code:
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as pp
%matplotlib inline
# high technology exports percentage of manufatory exports
hightech_export = pd.read_csv('hightech_export_1.csv')
#skip the row of data if the columns have more than 2 columns are empty
hightech_export.dropna(axis=1, how='any', thresh=2, subset=None, inplace=False)
# Fill in data with mean value.
m = hightech_export.mean(axis=1)
for i, col in enumerate(hightech_export):
hightech_export.iloc[:, i] = hightech_export.iloc[:, i].fillna(m)
My dataset:
Country Name 2001 2002 2003 2004
Philippines 71
Malta 62 58 60 58
Singapore 60 56
Malaysia 58 57 55
Ireland 47 41 34 34
Georgia 38 41 24 38
Costa Rica
You can make use of .isnull() method for doing your first task.
Replace this:
hightech_export.dropna(axis=1, how='any', thresh=2, subset=None, inplace=False)
with:
hightech_export= hightech_export.loc[hightech_export.isnull().sum(axis=1)<=2]
Ok try this ...
import pandas as pd
import numpy as np
data1={'Name':['Tom',np.NaN,'Mary','Jane'],'Age':[20,np.NaN,40,30],'Pay':[np.NaN,np.NaN,20,25]}
data2={'Name':['Tom','Bob','Mary'],'Age':[40,30,20]}
df1=pd.DataFrame.from_records(data1)
Check the df
df1
Age Name Pay
0 20.0 Tom NaN
1 NaN NaN NaN
2 40.0 Mary 20.0
3 30.0 Jane 25.0
record with index 1 has 3 missing values...
Replace and make missing values None
df1 = df1.replace({pd.np.nan: None})
Now write function to count missing values per row.... and to create a list
def count_na(lst):
missing = [n for n in lst if not n]
return len(missing)
missing_data=[]
for index,n in df1.iterrows():
missing_data.append(count_na(list(n)))
Use this list as a new Column in the Dataframe
df1['missing']=missing_data
df1 should look like this
Age Name Pay missing
0 20 Tom None 1
1 None None None 3
2 40 Mary 20 0
3 30 Jane 25 0
So filtering becomes easy....
# Now only take records with <2 missing
df1[df1.missing<2]
Hope that helps...
A simple way is to compare on a row basis the count of value and the number of columns of the dataframe. You can then just replace NaN with the avg of the dataframe.
Code could be:
result = df.loc[df.apply(lambda x: x.count(), axis=1) >= (len(df.columns) - 2)].replace(
np.nan, df.agg('mean'))
With your example data, it gives as expected:
Country Name 2001 2002 2003 2004
1 Malta 62.0 58.00 60.000000 58.0
2 Singapore 60.0 49.25 39.333333 56.0
3 Malaysia 58.0 57.00 39.333333 55.0
4 Ireland 47.0 41.00 34.000000 34.0
5 Georgia 38.0 41.00 24.000000 38.0
Try this
hightech_export.dropna(thresh=2, inplace=True)
in place of the line of code
hightech_export.dropna(axis=1, how='any', thresh=2, subset=None, inplace=False)
I am trying to calculate the means of all previous rows for each column of the DataFrame and add the calculated mean column to the DataFrame.
I am using a set of nba games data that contains 20+ features (columns) that I am trying to calculate the means for. Example of the dataset is below. (Note. "...." represent rest of the feature columns)
Team TeamPoints OpponentPoints.... TeamPoints_mean OpponentPoints_mean
ATL 102 109 .... nan nan
ATL 102 92 .... 102 109
ATL 92 94 .... 102 100.5
BOS 119 122 .... 98.67 98.33
BOS 103 96 .... 103.75 104.25
Example for calculating two of the columns:
dataset = pd.read_csv('nba.games.stats.csv')
df = dataset
df['Game_mean'] = (df.groupby('Team')['TeamPoints'].apply(lambda x: x.shift().expanding().mean()))
df['TeamPoints_mean'] = (df.groupby('Team')['OpponentsPoints'].apply(lambda x: x.shift().expanding().mean()))
Again, the code only calculates the mean and adding the column to the DataFrame one at a time. Is there a way to get the column means and add them to the DataFrame without doing one at a time? For loop? Example of what I am looking for is below.
Team TeamPoints OpponentPoints.... TeamPoints_mean OpponentPoints_mean ...("..." = mean columns of rest of the feature columns)
ATL 102 109 .... nan nan
ATL 102 92 .... 102 109
ATL 92 94 .... 102 100.5
BOS 119 122 .... 98.67 98.33
BOS 103 96 .... 103.75 104.25
Try this one:
(0) sample input:
>>> df
col1 col2 col3
0 1.490977 1.784433 0.852842
1 3.726663 2.845369 7.766797
2 0.042541 1.196383 6.568839
3 4.784911 0.444671 8.019933
4 3.831556 0.902672 0.198920
5 3.672763 2.236639 1.528215
6 0.792616 2.604049 0.373296
7 2.281992 2.563639 1.500008
8 4.096861 0.598854 4.934116
9 3.632607 1.502801 0.241920
Then processing:
(1) side table to get all the means on the side (I didn't find cummulative mean function, so went with cumsum + count)
>>> df_side=df.assign(col_temp=1).cumsum()
>>> df_side
col1 col2 col3 col_temp
0 1.490977 1.784433 0.852842 1.0
1 5.217640 4.629801 8.619638 2.0
2 5.260182 5.826184 15.188477 3.0
3 10.045093 6.270855 23.208410 4.0
4 13.876649 7.173527 23.407330 5.0
5 17.549412 9.410166 24.935545 6.0
6 18.342028 12.014215 25.308841 7.0
7 20.624021 14.577855 26.808849 8.0
8 24.720882 15.176708 31.742965 9.0
9 28.353489 16.679509 31.984885 10.0
>>> for el in df.columns:
... df_side["{}_mean".format(el)]=df_side[el]/df_side.col_temp
>>> df_side=df_side.drop([el for el in df.columns] + ["col_temp"], axis=1)
>>> df_side
col1_mean col2_mean col3_mean
0 1.490977 1.784433 0.852842
1 2.608820 2.314901 4.309819
2 1.753394 1.942061 5.062826
3 2.511273 1.567714 5.802103
4 2.775330 1.434705 4.681466
5 2.924902 1.568361 4.155924
6 2.620290 1.716316 3.615549
7 2.578003 1.822232 3.351106
8 2.746765 1.686301 3.526996
9 2.835349 1.667951 3.198489
(2) joining back, on index:
>>> df_final=df.join(df_side)
>>> df_final
col1 col2 col3 col1_mean col2_mean col3_mean
0 1.490977 1.784433 0.852842 1.490977 1.784433 0.852842
1 3.726663 2.845369 7.766797 2.608820 2.314901 4.309819
2 0.042541 1.196383 6.568839 1.753394 1.942061 5.062826
3 4.784911 0.444671 8.019933 2.511273 1.567714 5.802103
4 3.831556 0.902672 0.198920 2.775330 1.434705 4.681466
5 3.672763 2.236639 1.528215 2.924902 1.568361 4.155924
6 0.792616 2.604049 0.373296 2.620290 1.716316 3.615549
7 2.281992 2.563639 1.500008 2.578003 1.822232 3.351106
8 4.096861 0.598854 4.934116 2.746765 1.686301 3.526996
9 3.632607 1.502801 0.241920 2.835349 1.667951 3.198489
I am trying to calculate the means of all previous rows for each column of the DataFrame
To get all of the columns, you can do:
df_means = df.join(df.cumsum()/
df.applymap(lambda x:1).cumsum(),
r_suffix = "_mean")
However, if Team is a column rather the index, you'd want to get rid of it:
df_data = df.drop('Teams', axis=1)
df_means = df.join(df_data.cumsum()/
df_data.applymap(lambda x:1).cumsum(),
r_suffix = "_mean")
You could also do
import numpy as np
df_data = df[[col for col in df.columns
if np.issubdtype(df[col],np.number)]]
Or manually define a list of columns that you want to take the mean of, cols_for_mean, and then do
df_data = df[cols_for_mean]
I have two dataframes like the ones sampled below. I'm trying to append the records from one of the dataframes to the bottom of the first. So the final data frame should only have two columns. Instead I seem to be appending the columns from one dataframe on to the right side of the first. Does anyone see what I'm doing wrong?
Code:
appendDf=df1.append(df2)
df1
28343 \
0 42267
1 157180
2 186320
https://s.m.com/is/ime/M/ts/mized/5_fpx.tif
0 https://sl.com/is/i/M/...
1 https://sl.com/is/i/M/…
2 https://sl.com/is/im/M/...
df2
454 \
0 223
1 155
2 334
https://s.m.com/is/ime/M/ts/mized/5.tif
0 https://slret.com/is/i/M/...
1 https://slfdsd.com/is/i/M/…
2 https://slfd.com/is/im/M/...
appendDf.head()
28343 https://s.m.com/is/ime/M/ts/mized/5_fpx.tif 454 https://s.m.com/is/ime/M/ts/mized/5.tif
Your DataFrames do not seem to have column headers (I imagine the first row of your data is being used as the column headers), which is likely the root of your issue. When you append the second DataFrame, the program doesn't know which columns the data correspond to, so it adds them as new columns. See the following example:
import pandas as pd
df1 = pd.DataFrame([[28343, 'http://link1'], [42267, 'http://link2'],
[157180, 'http://link3'], [186320, 'http://link4']], columns=['ID','Link'])
df2 = pd.DataFrame([[454, 'http://link5'], [223, 'http://link6'],
[155, 'http://link7'], [334, 'http://link8']])
appendedDF = df1.append(df2)
Yields:
ID Link 0 1
0 28343.0 http://link1 NaN NaN
1 42267.0 http://link2 NaN NaN
2 157180.0 http://link3 NaN NaN
3 186320.0 http://link4 NaN NaN
0 NaN NaN 454.0 http://link5
1 NaN NaN 223.0 http://link6
2 NaN NaN 155.0 http://link7
3 NaN NaN 334.0 http://link8
Correct implementation:
import pandas as pd
df1 = pd.DataFrame([[28343, 'http://link1'], [42267, 'http://link2'],
[157180, 'http://link3'], [186320, 'http://link4']], columns=['ID','Link'])
df2 = pd.DataFrame([[454, 'http://link5'], [223, 'http://link6'],
[155, 'http://link7'], [334, 'http://link8']], columns=['ID','Link'])
appendedDF = df1.append(df2).reset_index(drop=True)
Yields:
ID Link
0 28343 http://link1
1 42267 http://link2
2 157180 http://link3
3 186320 http://link4
4 454 http://link5
5 223 http://link6
6 155 http://link7
7 334 http://link8