pyqtgraph cuts off tick labels if showGrid is called - python

I am attempting to show some subplots using pyqtgraph.
I would like to set x and/or y axis limits and a grid on these plots.
Here an example without the grid:
import numpy as np
import pyqtgraph as pg
x = np.linspace(0, 2*np.pi, 1000)
y = np.sin(x)
app = pg.mkQApp()
win = pg.GraphicsLayoutWidget(show = True)
p1 = win.addPlot(row = 0, col = 0)
p1.plot(x = x, y = y, pen = pg.mkPen(color = 'b', width = 1))
p1.setXRange(0, 2*np.pi, padding = 0)
p1.setYRange(-1, 1, padding = 0)
app.exec_()
If I turn on the grid with:
...
p1.showGrid(x = True, y = True)
app.exec_()
then I get:
As you can see in the bottom left corner, x and y first ticks are cutted off and this issue shows up only when I turn on the grid.
How can I show the grid on my plots (and set properly x and y limits) without cutting off axis tick labels?

This issue appears to have been created in attempt to fix another detailed here on github: https://github.com/pyqtgraph/pyqtgraph/issues/732
In the pyqtgraph/AxisItem.py source, if you hash out the below two lines (1162, 1163) the issue is corrected, but artifacts will show on the axis again:
# Draw all text
if self.style['tickFont'] is not None:
p.setFont(self.style['tickFont'])
p.setPen(self.textPen())
# bounding = self.boundingRect().toAlignedRect()
# p.setClipRect(bounding) # Ignore Clip
for rect, flags, text in textSpecs:
p.drawText(rect, int(flags), text)
Another option, as listed on the github issue link, would be to only show axis ticks that fit the bounding box (overwrite in AxisItem.py source):
# Draw all text
if self.style['tickFont'] is not None:
p.setFont(self.style['tickFont'])
p.setPen(self.textPen())
bounding = self.boundingRect()
for rect, flags, text in textSpecs:
# PATCH: only draw text that completely fits
if bounding.contains(rect):
p.drawText(rect, int(flags), text)
My preferred method though has been to set the grid via the 'top' and 'right' axis and disable it from 'left' and 'bottom', where the tick labels reside. Give this a try:
import numpy as np
import pyqtgraph as pg
x = np.linspace(0, 2*np.pi, 1000)
y = np.sin(x)
app = pg.mkQApp()
win = pg.GraphicsLayoutWidget(show = True)
p1 = win.addPlot(row = 0, col = 0)
p1.plot(x = x, y = y, pen = pg.mkPen(color = 'b', width = 1))
p1.setXRange(0, 2*np.pi, padding = 0)
p1.setYRange(-1, 1, padding = 0)
p1.showGrid(x = True, y = True)
p1.getAxis('left').setGrid(False) # Disable left axis grid
p1.getAxis('bottom').setGrid(False) # Dsiable bottom axis grid
for key in ['right', 'top']:
p1.showAxis(key) # Show top/right axis (and grid, since enabled here)
p1.getAxis(key).setStyle(showValues=False) # Hide tick labels on top/right
app.exec_()
Resulting plot: result
On line 581 of pyqtgraph/AxisItem.py source you can see how the tick bounding rectangles are handled differently if 'self.grid' is True or False:
def boundingRect(self):
linkedView = self.linkedView()
if linkedView is None or self.grid is False:
rect = self.mapRectFromParent(self.geometry())
## extend rect if ticks go in negative direction
## also extend to account for text that flows past the edges
tl = self.style['tickLength']
if self.orientation == 'left':
rect = rect.adjusted(0, -15, -min(0, tl), 15)
elif self.orientation == 'right':
rect = rect.adjusted(min(0, tl), -15, 0, 15)
elif self.orientation == 'top':
rect = rect.adjusted(-15, 0, 15, -min(0, tl))
elif self.orientation == 'bottom':
rect = rect.adjusted(-15, min(0, tl), 15, 0)
return rect
else:
return self.mapRectFromParent(self.geometry()) | linkedView.mapRectToItem(self, linkedView.boundingRect())

Related

Ursina - Make button only clickable when within a certain radius from camera

I have created a 3d button in ursina, but suppose we are a kilometer away from the button, we can still press it. Where is the logic in it? I would like to make the button clickable only when in a certain radius from it.
horror_gamemode = Button(parent = scene, model = 'cube', texture = None, color = color.black, highlight_color = color.dark_gray, scale = 1, position = (3, -49, 4), collider = 'mesh')
If I got it right, you want to make a button not clickable when we are over, lets say, 100 meters. For that you can use ursina's distance function to calculate the position between the camera and the button and if it is less that 100 meters, then make it clickable, otherwise unclickable (you can use .disabled = False # or True).
Example:
from ursina import *
from ursina.prefabs import *
app = Ursina()
horror_gamemode = Button(parent = scene, model = 'cube', texture = None, color = color.black, highlight_color = color.dark_gray, scale = 1, position = (0, 0, 0), collider = 'mesh')
def some_random_func():
print("HI")
def update():
if (distance(camera, horror_gamemode) < 50):
button.color = color.green
button.disabled = False
horror_gamemode.on_click = some_random_func
else:
button.color = color.red
print(distance(horror_gamemode, camera))
button.disabled = True
horror_gamemode.on_click = None
EditorCamera()
app.run()

Moving verticle lines around in a Matplotlib plot?

I have been looking around for a while and cant seem to find much on moving elements around after they have been plotted. I have a series of vertical lines plotted and if they are to close together i would like to be able to space then out a bit more. The issue is that they cant be moved to the left ever. I have code that can evenly space all these with that constraint but now I0m focusing on just making sure they are not clumped together. here is an example picture of what I'm working with:
full view
zoomed in on a problem
Thee question really is if there is a way I am able to click and drag these red lines around so they are not to close to others? i need to be able to retrieve the new positions of all the lines after this is done after i have made them all nicely spaced but i assume this would be fairly simple after i have this mechanic in place?
I'm not looking for specific implementation just some help on places I could look to be able to make this click and drag utility possible.
This may not be possible in matplotlib itself and i may have to look outward into making some GUI to do this but i have no experience in this so probably not the best solution although probably the best.
Any insight into how I might be able to achieve the click drag utility will be greatly appreciated!
-Thank you
got it working from a movable polygon example here: https://matplotlib.org/stable/gallery/event_handling/poly_editor.html
import numpy as np
import pandas as pd
from matplotlib.lines import Line2D
from matplotlib.artist import Artist
global new_freqs
def dist(x, y):
"""
Return the distance between two points.
"""
d = x - y
return np.sqrt(np.dot(d, d))
def dist_point_to_segment(p, s0, s1):
"""
Get the distance of a point to a segment.
*p*, *s0*, *s1* are *xy* sequences
This algorithm from
http://www.geomalgorithms.com/algorithms.html
"""
v = s1 - s0
w = p - s0
c1 = np.dot(w, v)
if c1 <= 0:
return dist(p, s0)
c2 = np.dot(v, v)
if c2 <= c1:
return dist(p, s1)
b = c1 / c2
pb = s0 + b * v
return dist(p, pb)
class PolygonInteractor:
"""
A polygon editor.
Key-bindings
't' toggle vertex markers on and off. When vertex markers are on,
you can move them, delete them
'd' delete the vertex under point
'i' insert a vertex at point. You must be within epsilon of the
line connecting two existing vertices
"""
showverts = True
epsilon = 5 # max pixel distance to count as a vertex hit
def __init__(self, ax, poly, start_freqs):
if poly.figure is None:
raise RuntimeError('You must first add the polygon to a figure '
'or canvas before defining the interactor')
self.ax = ax
canvas = poly.figure.canvas
self.poly = poly
x, y = zip(*self.poly.xy)
self.line = Line2D(x, y,
marker='o', markerfacecolor='r',
animated=True)
self.ax.add_line(self.line)
ax.vlines(x,linestyle="--", ymin=0.0, ymax=1, alpha=0.9, color=col, gid="new_lines")
self.original_freqs = start_freqs #variable for storing the starting frequencies
self.orig_cols = col # array or starting colours
self.new_cols = self.orig_cols # array or new colours, same as original to begin with
self.issue_spacing = 1.0e6 # variable to store the value of kids to close together
self.cid = self.poly.add_callback(self.poly_changed)
self._ind = None # the active vert
canvas.mpl_connect('draw_event', self.on_draw)
canvas.mpl_connect('button_press_event', self.on_button_press)
canvas.mpl_connect('key_press_event', self.on_key_press)
canvas.mpl_connect('button_release_event', self.on_button_release)
canvas.mpl_connect('motion_notify_event', self.on_mouse_move)
self.canvas = canvas
def draw_new_positions(self):
for i in range(len(self.new_cols)):
if self.poly.xy[i,0] != self.original_freqs[i]:
if self.poly.xy[i,0] < self.original_freqs[i]:
self.new_cols[i] = "purple" #if the kid has moved backwward show purple
elif (self.poly.xy[i+1,0]-self.poly.xy[i,0]) < self.issue_spacing or (self.poly.xy[i,0]-self.poly.xy[i-1,0]) < self.issue_spacing :
self.new_cols[i] = "black" #if the kid to close the the ones next to it show black
else:
self.new_cols[i] = "orange" #if the kid has moved and is positioned ok show orange
else:
self.new_cols[i] = self.orig_cols[i]
new_lines = self.ax.vlines(self.poly.xy[:-1,0], ymin=-1, ymax=0, linestyle="--", color=self.new_cols, alpha=0.9, gid="new_lines") #new line to move where mouse is
self.ax.draw_artist(new_lines) # drawing the line on moving the mouse
self.canvas.blit(self.ax.bbox) # blitting the canvas to render moving
new_lines.remove()
def on_draw(self, event):
self.background = self.canvas.copy_from_bbox(self.ax.bbox)
self.ax.draw_artist(self.poly)
self.ax.draw_artist(self.line)
# do not need to blit here, this will fire before the screen is
# updated
def poly_changed(self, poly):
"""This method is called whenever the pathpatch object is called."""
# only copy the artist props to the line (except visibility)
vis = self.line.get_visible()
Artist.update_from(self.line, poly)
self.line.set_visible(vis) # don't use the poly visibility state
def get_ind_under_point(self, event):
"""
Return the index of the point closest to the event position or *None*
if no point is within ``self.epsilon`` to the event position.
"""
# display coords
xy = np.asarray(self.poly.xy)
xyt = self.poly.get_transform().transform(xy)
xt, yt = xyt[:, 0], xyt[:, 1]
d = np.hypot(xt - event.x, yt - event.y)
indseq, = np.nonzero(d == d.min())
ind = indseq[0]
if d[ind] >= self.epsilon:
ind = None
return ind
def on_button_press(self, event):
"""Callback for mouse button presses."""
if not self.showverts:
return
if event.inaxes is None:
return
if event.button != 1:
return
self._ind = self.get_ind_under_point(event)
def on_button_release(self, event):
"""Callback for mouse button releases."""
if not self.showverts:
return
if event.button != 1:
return
self._ind = None
def on_key_press(self, event):
"""Callback for key presses."""
if not event.inaxes:
return
if event.key == 't': #toggles the movable points on and off
self.showverts = not self.showverts
self.line.set_visible(self.showverts)
if not self.showverts:
self._ind = None
elif event.key == ' ': #prints the x vals of all polygon points (which are the new frequencies) to the console
new_freqs = self.poly.xy[:,0]
for i in range(len(new_freqs)-1):
print("{:.1f},".format(new_freqs[i]))
# print(len(new_freqs))
elif event.key == 'l': #save new frequencies to csv file and show final plot
new_freqs = self.poly.xy[:-1,0]
new_data = 0
new_data = np.zeros((len(new_freqs), 2))
new_data[:,0] = data["kid_id"]
new_data[:,1] = new_freqs
new_data_df = pd.DataFrame(data=new_data, columns=["kid_id", "f0"]) #makes a new data frame to save to csv with all new positions
new_data_df.to_csv("new_kid_positions.csv", index=False)
plt.close()
plt.figure("new array", dpi=150)
for i in range(len(new_data_df["f0"])):
if self.poly.xy[i,0] == self.original_freqs[i]:
col="green"
else:
col="orange"
plt.axvline(new_data_df["f0"][i]/1e6, color=col, linestyle="--", linewidth=1.5, alpha=0.9)
plt.plot([],[], color="orange", label="Moved")
plt.plot([],[], color="green", label="Not moved")
plt.legend(loc="best")
plt.xlabel("Frequency (MHz)")
plt.ylabel("")
plt.title("Altered array")
plt.grid()
plt.show()
if self.line.stale:
self.canvas.draw_idle()
def on_mouse_move(self, event):
"""Callback for mouse movements."""
if not self.showverts:
return
if self._ind is None:
return
if event.inaxes is None:
return
if event.button != 1:
self.moving_line.remove()
return
x, y = event.xdata, 0
self.poly.xy[self._ind] = x, y
if self._ind == 0:
self.poly.xy[-1] = x, y
elif self._ind == len(self.poly.xy) - 1:
self.poly.xy[0] = x, y
self.line.set_data(zip(*self.poly.xy))
# self.remove_series()
# f = x
# self.add_series(f, "new_lines", len(self.poly.xy[:,0])-1)
# ax.axvline(x, ymin=-1, ymax=1, linestyle="--", color="orange", alpha=0.9, animated=True)
self.canvas.restore_region(self.background)
self.ax.draw_artist(self.poly)
self.ax.draw_artist(self.line)
# self.moving_line = self.ax.axvline(x, ymin=-1, ymax=1, linestyle="--", color="orange", alpha=0.9) #new line to move where mouse is
# self.ax.draw_artist(self.moving_line) # drawing the line on moving the mouse
# self.moving_line.remove()
self.draw_new_positions()
self.canvas.blit(self.ax.bbox) # blitting the canvas to render moving
if __name__ == '__main__':
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
#reading in freequency positions
data = pd.read_csv("sorted_kids.csv")
#getting color for each line
col = [] #empty list
for i in range(len(data["issue"])):
if data["issue"][i] == 1:
col.append("red")
else:
col.append("green")
# col = np.array(col)
xs = data["f0"]
ys = np.zeros_like(xs)
poly = Polygon(np.column_stack([xs, ys]), animated=True)
fig, ax = plt.subplots(dpi=150, figsize=(12,6))
ax.add_patch(poly)
p = PolygonInteractor(ax, poly, xs)
ax.set_title('Click a point to drag. spacebar=print freqs. T=toggle move. L=save and show final solution')
ax.plot([],[], color="black", alpha=0.0, label=r"TOP: ORIGINAL ARRAY")
ax.plot([],[], color="red", label="to close")
ax.plot([],[], color="green", label="spacing ok")
ax.plot([],[], color="black", alpha=0.0, label="\nBOT: ALTEERED ARRAY")
ax.plot([],[], color="red", label="orig position & to close")
ax.plot([],[], color="green", label="orig position & ok")
ax.plot([],[], color="purple", label="moved backward!")
ax.plot([],[], color="black", label="to close still")
ax.plot([],[], color="orange", label="moved & ok")
ax.legend(loc=1, fontsize=6)
plt.xlabel("Frequency (Hz)")
ax.set_xlim((min(data["f0"])-10e6, max(data["f0"])+10e6))
ax.set_ylim((-1.5, 1.5))
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
ax.axes.get_yaxis().set_visible(False)
plt.show()

Python: draw an interactive line (arc) with the mouse on an image

I'm doing a Python program to fit Bezier curves to the eye contour (for example one curve that is adapted to the bottom line of the brow and the other to the lid's contour ). In order to achieve this, I'm trying to put the image of the eye as the background of a plot, and then interactive draw a line with the mousse that fits the best. My problem is that I need an arc and not a circle as I have done but I don't know how to solve this.
My initial image and the circle I have to fit but I only want an arc. The line fits the brow after using my mouse (the pink part is what I want). It's important to say I have to convert this arc or line into a Bézier curve, I have a program that does this function but It will be better If I could directly draw a Bezier line in the image but I don't know-how so the main problem is to have an arc or line but nos a circle because I need an open curve. I have to use the Bezier lines because I have to calculate some medical parameters with them, so I need their coordinates.
import numpy as np
import matplotlib
import shapely
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
from matplotlib.lines import Line2D
from matplotlib.artist import Artist
from matplotlib.bezier import find_control_points
class PolygonInteractor(object):
"""
A polygon editor.
https://matplotlib.org/gallery/event_handling/poly_editor.html
Key-bindings
't' toggle vertex markers on and off. When vertex markers are on,
you can move them, delete them
'd' delete the vertex under point
'i' insert a vertex at point. You must be within epsilon of the
line connecting two existing vertices
"""
showverts = True
epsilon = 5 # max pixel distance to count as a vertex hit
def __init__(self, ax, poly, visible=False):
if poly.figure is None:
raise RuntimeError('You must first add the polygon to a figure '
'or canvas before defining the interactor')
self.ax = ax
canvas = poly.figure.canvas
self.poly = poly
self.poly.set_visible(visible)
x, y = zip(*self.poly.xy)
self.line = Line2D(x, y, ls="",
marker='*', linewidth=1, markerfacecolor='green',
animated=True)
self.ax.add_line(self.line)
self.cid = self.poly.add_callback(self.poly_changed)
self._ind = None # the active vert
canvas.mpl_connect('draw_event', self.draw_callback)
canvas.mpl_connect('button_press_event', self.button_press_callback)
canvas.mpl_connect('key_press_event', self.key_press_callback)
canvas.mpl_connect('button_release_event', self.button_release_callback)
canvas.mpl_connect('motion_notify_event', self.motion_notify_callback)
self.canvas = canvas
x,y = self.interpolate()
self.line2 = Line2D(x, y, animated=True)
self.ax.add_line(self.line2)
def interpolate(self):
x, y = self.poly.xy[:].T
i = np.arange(len(x))
interp_i = np.linspace(0, i.max(), 100 * i.max())
xi = interp1d(i, x, kind='cubic')(interp_i)
yi = interp1d(i, y, kind='cubic')(interp_i)
return xi,yi
def draw_callback(self, event):
self.background = self.canvas.copy_from_bbox(self.ax.bbox)
self.ax.draw_artist(self.poly)
self.ax.draw_artist(self.line)
self.ax.draw_artist(self.line2)
# do not need to blit here, this will fire before the screen is
# updated
def poly_changed(self, poly):
'this method is called whenever the polygon object is called'
# only copy the artist props to the line (except visibility)
vis = self.line.get_visible()
Artist.update_from(self.line, poly)
self.line.set_visible(vis) # don't use the poly visibility state
def get_ind_under_point(self, event):
'get the index of the vertex under point if within epsilon tolerance'
# display coords
xy = np.asarray(self.poly.xy)
xyt = self.poly.get_transform().transform(xy)
xt, yt = xyt[:, 0], xyt[:, 1]
d = np.hypot(xt - event.x, yt - event.y)
indseq, = np.nonzero(d == d.min())
ind = indseq[0]
if d[ind] >= self.epsilon:
ind = None
return ind
def button_press_callback(self, event):
'whenever a mouse button is pressed'
if not self.showverts:
return
if event.inaxes is None:
return
if event.button != 1:
return
self._ind = self.get_ind_under_point(event)
def button_release_callback(self, event):
'whenever a mouse button is released'
if not self.showverts:
return
if event.button != 1:
return
self._ind = None
def key_press_callback(self, event):
'whenever a key is pressed'
if not event.inaxes:
return
if event.key == 't':
self.showverts = not self.showverts
self.line.set_visible(self.showverts)
if not self.showverts:
self._ind = None
elif event.key == 'd':
ind = self.get_ind_under_point(event)
if ind is not None:
self.poly.xy = np.delete(self.poly.xy,
ind, axis=0)
self.line.set_data(zip(*self.poly.xy))
elif event.key == 'i':
xys = self.poly.get_transform().transform(self.poly.xy)
p = event.x, event.y # display coords
for i in range(len(xys) - 1):
s0 = xys[i]
s1 = xys[i + 1]
d = dist_point_to_segment(p, s0, s1)
if d <= self.epsilon:
self.poly.xy = np.insert(
self.poly.xy, i+1,
[event.xdata, event.ydata],
axis=0)
self.line.set_data(zip(*self.poly.xy))
break
if self.line.stale:
self.canvas.draw_idle()
def motion_notify_callback(self, event):
'on mouse movement'
if not self.showverts:
return
if self._ind is None:
return
if event.inaxes is None:
return
if event.button != 1:
return
x, y = event.xdata, event.ydata
self.poly.xy[self._ind] = x, y
if self._ind == 0:
self.poly.xy[-1] = x, y
elif self._ind == len(self.poly.xy) - 1:
self.poly.xy[0] = x, y
self.line.set_data(zip(*self.poly.xy))
x,y = self.interpolate()
self.line2.set_data(x,y)
self.canvas.restore_region(self.background)
self.ax.draw_artist(self.poly)
self.ax.draw_artist(self.line)
self.ax.draw_artist(self.line2)
self.canvas.blit(self.ax.bbox)
if __name__ == '__main__':
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
theta = np.arange(0, 2*np.pi, 0.1)
r = 1.5
xs = r*np.cos(theta)
ys = r*np.sin(theta)
xs = (921, 951, 993, 1000)
ys = (1181, 1230, 1243, 257)
poly = Polygon(list(zip(xs, ys)), animated=True)
#poly = LineString([(0, 0), (1, 1)])
img = plt.imread("/Users/raquel/Desktop/TFG/IMÁGENES/Unknown.jpeg")
fig, ax = plt.subplots()
img = ax.imshow(img, extent=[0, 1300, 0, 1300])
ax.add_patch(poly)
p = PolygonInteractor(ax, poly, visible=False)
ax.set_title('Click and drag a point to move it')
x = ax.set_xlim((0, 1300))
y = ax.set_ylim((0, 1300))
plt.show()

Python Matplotlib: reduce render time for interactive plot

I've got the following code that produces a plot that can interactively be modified. Clicking / holding the left mouse button sets the marker position, Holding the right button and moving the mouse moves the plotted data in direction x and using the mouse wheel zooms in/out. Additionally, resizing the window calls figure.tight_layout() so that the size of the axes is adapted to the window size.
# coding=utf-8
from __future__ import division
from Tkinter import *
import matplotlib
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure
from numpy import arange, sin, pi
matplotlib.use('TkAgg')
class PlotFrame(Frame):
def __init__(self, master, **ops):
Frame.__init__(self, master, **ops)
self.figure = Figure()
self.axes_main = self.figure.add_subplot(111)
for i in range(10):
t = arange(0, 300, 0.01)
s = sin(0.02 * pi * (t + 10 * i))
self.axes_main.plot(t, s)
self.plot = FigureCanvasTkAgg(self.figure, master=self)
self.plot.show()
self.plot.get_tk_widget().pack(fill=BOTH, expand=1)
self.dragging = False
self.dragging_button = None
self.mouse_pos = [0, 0]
self.marker = self.figure.axes[0].plot((0, 0), (-1, 1), 'black', linewidth=3)[0]
self.plot.mpl_connect('button_press_event', self.on_button_press)
self.plot.mpl_connect('button_release_event', self.on_button_release)
self.plot.mpl_connect('motion_notify_event', self.on_mouse_move)
self.plot.mpl_connect('scroll_event', self.on_mouse_scroll)
self.plot.mpl_connect("resize_event", self.on_resize)
def on_resize(self, _):
self.figure.tight_layout()
def axes_size(self):
pos = self.axes_main.get_position()
bbox = self.figure.get_window_extent().transformed(self.figure.dpi_scale_trans.inverted())
width, height = bbox.width * self.figure.dpi, bbox.height * self.figure.dpi
axis_size = [(pos.x1 - pos.x0) * width, (pos.y1 - pos.y0) * height]
return axis_size
def on_button_press(self, event):
# right mouse button clicked
if not self.dragging and event.button in (1, 3):
self.dragging = True
self.dragging_button = event.button
self.mouse_pos = [event.x, event.y]
# left mouse button clicked
if event.button == 1 and event.xdata is not None:
self.move_marker(event.xdata)
def on_button_release(self, event):
if self.dragging and self.dragging_button == event.button:
self.dragging = False
def on_mouse_move(self, event):
if self.dragging and self.dragging_button == 3:
dx = event.x - self.mouse_pos[0]
self.mouse_pos = [event.x, event.y]
x_min, x_max = self.figure.axes[0].get_xlim()
x_range = x_max - x_min
x_factor = x_range / self.axes_size()[0]
self.figure.axes[0].set_xlim([x_min - dx * x_factor, x_max - dx * x_factor])
self.plot.draw()
elif self.dragging and self.dragging_button == 1:
self.move_marker(event.xdata)
def on_mouse_scroll(self, event):
if event.xdata is None:
return
zoom_direction = -1 if event.button == 'up' else 1
zoom_factor = 1 + .4 * zoom_direction
x_min, x_max = self.figure.axes[0].get_xlim()
min = event.xdata + (x_min - event.xdata) * zoom_factor
max = event.xdata + (x_max - event.xdata) * zoom_factor
self.figure.axes[0].set_xlim([min, max])
self.plot.draw()
def move_marker(self, x_position):
y_min, y_max = self.figure.axes[0].get_ylim()
self.marker.set_data((x_position, x_position), (y_min, y_max))
self.plot.draw()
if __name__ == '__main__':
gui = Tk()
vf = PlotFrame(gui)
vf.pack(fill=BOTH, expand=1)
gui.mainloop()
The implementation works fine, but rendering is really slow when displaying a lot of lines. How can I make rendering faster? As you can see in the implementation above, the whole plot is drawn completely every time anything changes which shouldn't be necessary. My thoughts on this:
Resizing the window: draw everything
Zooming: draw everything
Moving the marker: just redraw the marker (one line) instead of drawing everything
Moving the plot in x direction: move the pixels currently displayed in the plot left/right and only draw pixels that are moved into the visible area
Drawing everything when resizing/zooming is fine for me, but I really need faster drawing of the latter two modifications. I already looked into matplotlib's animations, but as far as I understood, they won't help in my case. Any help is greatly appreciated, thanks!
The solution seems to be to cache elements that get redrawn as you said:
One major thing that gets redrawn is the background:
# cache the background
background = fig.canvas.copy_from_bbox(ax.bbox)
After caching restore it using restore region then just re-draw the points/line at every call you need
# restore background
fig.canvas.restore_region(background)
# redraw just the points
ax.draw_artist(points)
# fill in the axes rectangle
fig.canvas.blit(ax.bbox)
To optimize drawing blitting can be used. With it only given artists (those that were changed) will be rendered instead of the whole figure.
Motplotlib uses that technique internally in the animation module. You can use Animation class in it as a reference to implement the same behaviour in your code. Look at the _blit_draw() and several related functions after it in the sources.

Get data from plot with matplotlib

I'm using matplotlib in python to build a scatter plot.
suppose I have the following 2 data lists.
X=[1,2,3,4,5]
Y=[6,7,8,9,10]
then I use X as the X-axis value and Y as the Y-axis value to make a scatter plot. So I will have a picture with 5 scattering points on it, right?
Now the question: is it possible to build connection for these 5 points with the actual data. For example, when I click on one of these 5 points, it can tell me what original data I have used to make this point?
thanks in advance
Using a slightly modified version of Joe Kington's DataCursor:
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import matplotlib.cbook as cbook
import numpy as np
def fmt(x, y):
return 'x: {x:0.2f}\ny: {y:0.2f}'.format(x = x, y = y)
class DataCursor(object):
# https://stackoverflow.com/a/4674445/190597
"""A simple data cursor widget that displays the x,y location of a
matplotlib artist when it is selected."""
def __init__(self, artists, x = [], y = [], tolerance = 5, offsets = (-20, 20),
formatter = fmt, display_all = False):
"""Create the data cursor and connect it to the relevant figure.
"artists" is the matplotlib artist or sequence of artists that will be
selected.
"tolerance" is the radius (in points) that the mouse click must be
within to select the artist.
"offsets" is a tuple of (x,y) offsets in points from the selected
point to the displayed annotation box
"formatter" is a callback function which takes 2 numeric arguments and
returns a string
"display_all" controls whether more than one annotation box will
be shown if there are multiple axes. Only one will be shown
per-axis, regardless.
"""
self._points = np.column_stack((x,y))
self.formatter = formatter
self.offsets = offsets
self.display_all = display_all
if not cbook.iterable(artists):
artists = [artists]
self.artists = artists
self.axes = tuple(set(art.axes for art in self.artists))
self.figures = tuple(set(ax.figure for ax in self.axes))
self.annotations = {}
for ax in self.axes:
self.annotations[ax] = self.annotate(ax)
for artist in self.artists:
artist.set_picker(tolerance)
for fig in self.figures:
fig.canvas.mpl_connect('pick_event', self)
def annotate(self, ax):
"""Draws and hides the annotation box for the given axis "ax"."""
annotation = ax.annotate(self.formatter, xy = (0, 0), ha = 'right',
xytext = self.offsets, textcoords = 'offset points', va = 'bottom',
bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.5),
arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0')
)
annotation.set_visible(False)
return annotation
def snap(self, x, y):
"""Return the value in self._points closest to (x, y).
"""
idx = np.nanargmin(((self._points - (x,y))**2).sum(axis = -1))
return self._points[idx]
def __call__(self, event):
"""Intended to be called through "mpl_connect"."""
# Rather than trying to interpolate, just display the clicked coords
# This will only be called if it's within "tolerance", anyway.
x, y = event.mouseevent.xdata, event.mouseevent.ydata
annotation = self.annotations[event.artist.axes]
if x is not None:
if not self.display_all:
# Hide any other annotation boxes...
for ann in self.annotations.values():
ann.set_visible(False)
# Update the annotation in the current axis..
x, y = self.snap(x, y)
annotation.xy = x, y
annotation.set_text(self.formatter(x, y))
annotation.set_visible(True)
event.canvas.draw()
x=[1,2,3,4,5]
y=[6,7,8,9,10]
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
scat = ax.scatter(x, y)
DataCursor(scat, x, y)
plt.show()
yields
You can click on any of the points and the balloon will show the underlying data values.
My slight modification to the DataCursor was to add the snap method, which ensures that the data point displayed came from the original data set, rather than the location where the mouse actually clicked.
If you have scipy installed, you might prefer this version of the Cursor, which makes the balloon follow the mouse (without clicking):
import datetime as DT
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import numpy as np
import scipy.spatial as spatial
def fmt(x, y, is_date):
if is_date:
x = mdates.num2date(x).strftime("%Y-%m-%d")
return 'x: {x}\ny: {y}'.format(x=x, y=y)
else:
return 'x: {x:0.2f}\ny: {y:0.2f}'.format(x=x, y=y)
class FollowDotCursor(object):
"""Display the x,y location of the nearest data point."""
def __init__(self, ax, x, y, tolerance=5, formatter=fmt, offsets=(-20, 20)):
try:
x = np.asarray(x, dtype='float')
self.is_date = False
except (TypeError, ValueError):
x = np.asarray(mdates.date2num(x), dtype='float')
self.is_date = True
y = np.asarray(y, dtype='float')
self._points = np.column_stack((x, y))
self.offsets = offsets
self.scale = x.ptp()
self.scale = y.ptp() / self.scale if self.scale else 1
self.tree = spatial.cKDTree(self.scaled(self._points))
self.formatter = formatter
self.tolerance = tolerance
self.ax = ax
self.fig = ax.figure
self.ax.xaxis.set_label_position('top')
self.dot = ax.scatter(
[x.min()], [y.min()], s=130, color='green', alpha=0.7)
self.annotation = self.setup_annotation()
plt.connect('motion_notify_event', self)
def scaled(self, points):
points = np.asarray(points)
return points * (self.scale, 1)
def __call__(self, event):
ax = self.ax
# event.inaxes is always the current axis. If you use twinx, ax could be
# a different axis.
if event.inaxes == ax:
x, y = event.xdata, event.ydata
elif event.inaxes is None:
return
else:
inv = ax.transData.inverted()
x, y = inv.transform([(event.x, event.y)]).ravel()
annotation = self.annotation
x, y = self.snap(x, y)
annotation.xy = x, y
annotation.set_text(self.formatter(x, y, self.is_date))
self.dot.set_offsets((x, y))
bbox = ax.viewLim
event.canvas.draw()
def setup_annotation(self):
"""Draw and hide the annotation box."""
annotation = self.ax.annotate(
'', xy=(0, 0), ha = 'right',
xytext = self.offsets, textcoords = 'offset points', va = 'bottom',
bbox = dict(
boxstyle='round,pad=0.5', fc='yellow', alpha=0.75),
arrowprops = dict(
arrowstyle='->', connectionstyle='arc3,rad=0'))
return annotation
def snap(self, x, y):
"""Return the value in self.tree closest to x, y."""
dist, idx = self.tree.query(self.scaled((x, y)), k=1, p=1)
try:
return self._points[idx]
except IndexError:
# IndexError: index out of bounds
return self._points[0]
x = [DT.date.today()+DT.timedelta(days=i) for i in [10,20,30,40,50]]
y = [6,7,8,9,10]
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x, y)
cursor = FollowDotCursor(ax, x, y)
fig.autofmt_xdate()
plt.show()

Categories

Resources