Pandas: select column with most unique values - python

I have a pandas DataFrame and want to find select the column with the most unique values.
I already filtered the unique values with nunique(). How can I now choose the column with the highest nunique()?
This is my code so far:
numeric_columns = df.select_dtypes(include = (int or float))
unique = []
for column in numeric_columns:
unique.append(numeric_columns[column].nunique())
I later need to filter all the columns of my dataframe depending on this column(most uniques)

Use DataFrame.select_dtypes with np.number, then get DataFrame.nunique with column by maximal value by Series.idxmax:
df = pd.DataFrame({'a':[1,2,3,4],'b':[1,2,2,2], 'c':list('abcd')})
print (df)
a b c
0 1 1 a
1 2 2 b
2 3 2 c
3 4 2 d
numeric = df.select_dtypes(include = np.number)
nu = numeric.nunique().idxmax()
print (nu)
a

Related

add/combine columns after searching in a DataFrame

I'm trying to copy data from different columns to a particular column in the same DataFrame.
Index
col1A
col2A
colB
list
CT
CW
CH
0
1
:
1
b
2
2
3
3d
But prior to that I wanted to search if those columns(col1A,col2A,colB) exist in the DataFrame and group those columns which are present and move the grouped data to relevant columns(CT,CH,etc) like,
CH
CW
CT
0
1
1
1
b
b
2
2
2
3
3d
3d
I did,
col_list1 = ['ColA','ColB','ColC']
test1 = any([ i in df.columns for i in col_list1 ])
if test1==True:
df['CH'] = df['Col1A'] +df['Col2A']
df['CT'] = df['ColB']
this code is throwing me a keyerror
.
I want it to ignore columns that are not present and add only those that are present
IIUC, you can use Python set or Series.isin to find the common columns
cols = list(set(col_list1) & set(df.columns))
# or
cols = df.columns[df.columns.isin(col_list1)]
df['CH'] = df[cols].sum(axis=1)
Instead of just concatenating the columns with +, collect them into a list and use sum with axis=1:
df['CH'] = np.sum([df[c] for c in cl if c in df], axis=1)

Can you print a column using its index values instead of its name? [duplicate]

I have a pandas dataframe and a numpy array of values of that dataframe.
I have the index of a specific column and I already have the row index of an important value. Now I need to get the column name of that particular value from my dataframe.
After searching through the documentations, I found out that I can do the opposite but not what I want.
I think you need index columns names by position (python counts from 0, so for fourth column need 3):
colname = df.columns[pos]
Sample:
df = pd.DataFrame({'A':[1,2,3],
'B':[4,5,6],
'C':[7,8,9],
'D':[1,3,5],
'E':[5,3,6],
'F':[7,4,3]})
print (df)
A B C D E F
0 1 4 7 1 5 7
1 2 5 8 3 3 4
2 3 6 9 5 6 3
pos = 3
colname = df.columns[pos]
print (colname)
D
pos = [3,5]
colname = df.columns[pos]
print (colname)
Index(['D', 'F'], dtype='object')
Column.name
It works wonders, especially when iterating!
Eg
Third_Column=DF.iloc[:,2] # where its name is "Third"
Third_Column=='Third' Returns True
for i in DF:
i.name
# this returns the name of each column and can be used in a condition
# to apply a different rule such as a different scale when plotting a
# certain column

Pandas-iterate through a dataframe column and concatenate corresponding row values that contain a list

I have a data-frame with column1 containing string values and column 2 containing lists of sting values.
I want to iterate through column1 and concatenate column1 values with their corresponding row values into a new data-frame.
Say, my input is
`dfd = {'TRAINSET':['101','102','103', '104'], 'unique':[['a1','x1','b2'],['a1','b3','b2'] ,['d3','g5','x2'],['x1','b2','a1']]}`
after the operation my data will look like this
dfd2 = {'TRAINSET':['101a1','101x1','101b2', '102a1','102b3','102b2','103d3', '103g5','103x2','104x1','104b2', '104a1']}
what i tried is:
dg = pd.concat([g['TRAINSET'].map(g['unique']).apply(pd.Series)], axis = 1)
but i get KeyError:'TRAINSET' as this is probably not the proper syntax
.Also, I would like to remove the Nan values in the list
Here is possible use list comprehension with flatten values of lists, join values by + and pass to DataFrame constructor is necessary:
#if necessary
#df = df.reset_index()
#flatten values with filter out missing values
L = [(str(a) + x) for a, b in df[['TRAINSET','unique']].values for x in b if pd.notna(x)]
df1 = pd.DataFrame({'TRAINSET': L})
print (df1)
TRAINSET
0 101a1
1 101x1
2 101b2
3 102a1
4 102b3
5 102b2
6 103d3
7 103g5
8 103x2
9 104x1
10 104b2
11 104a1
Or use DataFrame.explode (pandas 0.25+), crete default index, remove missing values by DataFrame.dropna and join columns to + with Series.to_frame for one column DataFrame :
df = df.explode('unique').dropna(subset=['unique']).reset_index(drop=True)
df1 = (df['TRAINSET'].astype(str) + df['unique']).to_frame('TRAINSET')
print (df1)
TRAINSET
0 101a1
1 101x1
2 101b2
3 102a1
4 102b3
5 102b2
6 103d3
7 103g5
8 103x2
9 104x1
10 104b2
11 104a1
Coming from your original data you can do the below using explode (new in pandas -0.25+) and agg:
Input:
dfd = {'TRAINSET':['101','102','103', '104'],
'unique':[['a1','x1','b2'],['a1','b3','b2'] ,['d3','g5','x2'],['x1','b2','a1']]}
Solution:
df = pd.DataFrame(dfd)
df.explode('unique').astype(str).agg(''.join,1).to_frame('TRAINSET').to_dict('list')
{'TRAINSET': ['101a1',
'101x1',
'101b2',
'102a1',
'102b3',
'102b2',
'103d3',
'103g5',
'103x2',
'104x1',
'104b2',
'104a1']}
Another solution, just to give you some choice...
import pandas as pd
_dfd = {'TRAINSET':['101','102','103', '104'], 'unique':[['a1','x1','b2'],['a1','b3','b2'] ,['d3','g5','x2'],['x1','b2','a1']]}
dfd = pd.DataFrame.from_dict(_dfd)
dfd.set_index("TRAINSET", inplace=True)
print(dfd)
dfd2 = dfd.reset_index()
def refactor(row):
key, l = str(row["TRAINSET"]), str(row["unique"])
res = [key+i for i in l]
return res
dfd2['TRAINSET'] = dfd2.apply(refactor, axis=1)
dfd2.set_index("TRAINSET", inplace=True)
dfd2.drop("unique", inplace=True, axis=1)
print(dfd2)

Assign Label value if same as given list in dataframe

Here supposed my dataframe is here,
When comparing a column in a dataframe with a list that I have, I want to label the rows in that column if they have the same value.
for example compare with 'Name' and my 'list'(ex) list = [Y,B]
so In 'Name' Column have [Y,B] -> Labeled '0'
How Can I make this code having above condition?
(*The list length is very shorter than other column)
Use numpy.where with Series.isin:
df = pd.DataFrame({'Name':list('KYBBC')})
L = ['Y','B']
df['Label'] = np.where(df['Name'].isin(L), '0', '')
print (df)
Name Label
0 K
1 Y 0
2 B 0
3 B 0
4 C

Pandas DataFrames: Extract Information and Collapse Columns

I have a pandas DataFrame which contains information in columns which I would like to extract into a new column.
It is best explained visually:
df = pd.DataFrame({'Number Type 1':[1,2,np.nan],
'Number Type 2':[np.nan,3,4],
'Info':list('abc')})
The Table shows the initial DataFrame with Number Type 1 and NumberType 2 columns.
I would like to extract the types and create a new Type column, refactoring the DataFrame accordingly.
basically, Numbers are collapsed into the Number columns, and the types extracted into the Type column. The information in the Info column is bound to the numbers (f.e. 2 and 3 have the same information b)
What is the best way to do this in Pandas?
Use melt with dropna:
df = df.melt('Info', value_name='Number', var_name='Type').dropna(subset=['Number'])
df['Type'] = df['Type'].str.extract('(\d+)')
df['Number'] = df['Number'].astype(int)
print (df)
Info Type Number
0 a 1 1
1 b 1 2
4 b 2 3
5 c 2 4
Another solution with set_index and stack:
df = df.set_index('Info').stack().rename_axis(('Info','Type')).reset_index(name='Number')
df['Type'] = df['Type'].str.extract('(\d+)')
df['Number'] = df['Number'].astype(int)
print (df)
Info Type Number
0 a 1 1
1 b 1 2
2 b 2 3
3 c 2 4

Categories

Resources