R to Python translation problem in element wise logical condition - python

I have the following code in R :
N = 100 # number of data points
unifvec = runif(N)
d1 = rpois(sum(unifvec < 0.5),la1);d1
[1] 3 1 1 0 0 0 0 2 1 1 1 0 2 1 0 1 2 0 1 0 1 1 0 0 1 1 0 1 1 3 0
[32] 2 2 1 4 0 1 0 1 1 1 1 3 0 0 2 0 1 1 1 1 3
Trying to translate it in Python I am doing :
la1 = 1
N = 100 # number of data points
unifvec = np.random.uniform(0,1,N)
d1 = np.random.poisson(la1,sum(la1,unifvec < 0.5))
but I receive an error :
TypeError: 'int' object is not iterable
How I can reproduce the same result in Python ?

The sum function receives arguments in the wrong order.
After changing sum(la1,unifvec < 0.5) to sum(unifvec < 0.5, la1) it works fine.
import numpy as np
la1 = 1
N = 100 # number of data points
unifvec = np.random.uniform(0, 1, N)
d1 = np.random.poisson(la1, sum(unifvec < 0.5, la1))

Related

Counting repeated sequences in transition table

I'm using the following function to generate a transition table:
import numpy as np
import pandas as pd
def make_table(allSeq):
n = max([ max(s) for s in allSeq ]) + 1
arr = np.zeros((n,n), dtype=int)
for seq in allSeq:
ind = (seq[1:], seq[:-1])
arr[ind] += 1
return pd.DataFrame(arr).rename_axis(index='Next', columns='Current')
However, my result is incorrect:
list1 = [1,2,3,4,5,4,5,4,5]
list2 = [4,5,4,5]
make_table([list1, list2])
Current 0 1 2 3 4 5
Next
0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 2
5 0 0 0 0 2 0
For example, the transition 4->5 should be counted 5 times, but it's only counted once per sequence (2). I know the issue is the arr[ind] += 1 line, but I just can't figure it out! Do I nest another loop, or is there a slick way to add the total number of instances at once? Thanks!
Figured it out! Switched to the following:
def make_table(allSeq):
n = max([ max(s) for s in allSeq ]) + 1
arr = np.zeros((n,n), dtype=int)
for seq in allSeq:
for i,j in zip(seq[1:],seq[:-1]):
ind = (i,j)
arr[ind] += 1
return pd.DataFrame(arr).rename_axis(index='Next', columns='Current')
Another loop seems like the easiest solution, with a bit of a twist of using zip:
import numpy as np
import pandas as pd
def make_table(allSeq):
n = max([ max(s) for s in allSeq ]) + 1
arr = np.zeros((n,n), dtype=int)
for seq in allSeq:
ind = zip(seq[1:], seq[:-1])
for i in ind:
arr[i] += 1
return pd.DataFrame(arr).rename_axis(index='Next', columns='Current')
list1 = [1,2,3,4,5,4,5,4,5]
list2 = [4,5,4,5]
make_table([list1, list2])
returns
Next 0 1 2 3 4 5
------ --- --- --- --- --- ---
0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 3
5 0 0 0 0 5 0

Find all the blocks

I am very new to python and coding. I have this homework that I have to do:
You will receive on the first line the rows of the matrix (n) and on the next n lines you will get each row of the matrix as a string (zeros and ones separated by a single space). You have to calculate how many blocks you have (connected ones horizontally or diagonally) Here are examples:
Input:
5
1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 1 1
Output:
2
Input:
6
1 1 0 1 0 1
0 1 1 1 1 1
0 1 0 0 0 0
0 1 1 0 0 0
0 1 1 1 1 0
0 0 0 1 1 0
Output:
1
Input:
4
0 1 0 1 1 0
1 0 1 1 0 1
1 0 0 0 0 0
0 0 0 1 0 0
Output:
5
the code I came up with for now is :
n = int(input())
blocks = 0
matrix = [[int(i) for i in input().split()] for j in range(n)]
#loop or something to find the blocks in the matrix
print(blocks)
Any help will be greatly appreciated.
def valid(y,x):
if y>=0 and x>=0 and y<N and x<horizontal_len:
return True
def find_blocks(y,x):
Q.append(y)
Q.append(x)
#search around 4 directions (up, right, left, down)
dy = [0,1,0,-1]
dx = [1,0,-1,0]
# if nothing is in Q then terminate counting block
while Q:
y = Q.pop(0)
x = Q.pop(0)
for dir in range(len(dy)):
next_y = y + dy[dir]
next_x = x + dx[dir]
#if around component is valid range(inside the matrix) and it is 1(not 0) then include it as a part of block
if valid(next_y,next_x) and matrix[next_y][next_x] == 1:
Q.append(next_y)
Q.append(next_x)
matrix[next_y][next_x] = -1
N = int(input())
matrix = []
for rows in range(N):
row = list(map(int, input().split()))
matrix.append(row)
#row length
horizontal_len = len(matrix[0])
blocks = 0
#search from matrix[0][0] to matrix[N][horizontal_len]
for start_y in range(N):
for start_x in range(horizontal_len):
#if a number is 1 then start calculating
if matrix[start_y][start_x] == 1:
#make 1s to -1 for not to calculate again
matrix[start_y][start_x] = -1
Q=[]
#start function
find_blocks(start_y, start_x)
blocks +=1
print(blocks)
I used BFS algorithm to solve this question. The quotations are may not enough to understand the logic.
If you have questions about this solution, let me know!

populate row with opposite value of the xth previous row, if condition is true

Following is the Dataframe I am starting from:
import pandas as pd
import numpy as np
d= {'PX_LAST':[1,2,3,3,3,1,2,1,1,1,3,3],'ma':[2,2,2,2,2,2,2,2,2,2,2,2],'action':[0,0,1,0,0,-1,0,1,0,0,-1,0]}
df_zinc = pd.DataFrame(data=d)
df_zinc
Now, I need to add a column called 'buy_sell', which:
when 'action'==1, populates with 1 if 'PX_LAST' >'ma', and with -1 if 'PX_LAST'<'ma'
when 'action'==-1, populates with the opposite of the previous non-zero value that was populated
FYI: in my data, the row that needs to be filled with the opposite of the previous non-zero item is always at the same distance from the previous non-zero item (i.e., 2 in the current example). This should facilitate making the code.
the code that I made so far is the following. It seems right to me. Do you have any fixes to propose?
while index < df_zinc.shape[0]:
if df_zinc['action'][index] == 1:
if df_zinc['PX_LAST'][index]<df_zinc['ma'][index]:
df_zinc.loc[index,'buy_sell'] = -1
else:
df_zinc.loc[index,'buy_sell'] = 1
elif df_zinc['action'][index] == -1:
df_zinc['buy_sell'][index] = df_zinc['buy_sell'][index-3]*-1
index=index+1
df_zinc
the resulting dataframe would look like this:
df_zinc['buy_sell'] = [0,0,1,0,0,-1,0,-1,0,0,1,0]
df_zinc
So, this would be my suggestion according to the example output (and assuming I understood the question properly:
def buy_sell(row):
if row['action'] == 0:
return 0
if row['PX_LAST'] > row['ma']:
return 1 * (-1 if row['action'] == 0 else 1)
else:
return -1 * (-1 if row['action'] == 0 else 1)
return 0
df_zinc = df_zinc.assign(buy_sell=df_zinc.apply(buy_sell, axis=1))
df_zinc
This should behave as expected by the rules. It does not take into account the possibility of 'PX_LAST' being equal to 'ma', returning 0 by default, as it was not clear what rule to follow in that scenario.
EDIT
Ok, after the new logic explained, I think this should do the trick:
def assign_buysell(df):
last_nonzero = None
def buy_sell(row):
nonlocal last_nonzero
if row['action'] == 0:
return 0
if row['action'] == 1:
if row['PX_LAST'] < row['ma']:
last_nonzero = -1
elif row['PX_LAST'] > row['ma']:
last_nonzero = 1
elif row['action'] == -1:
last_nonzero = last_nonzero * -1
return last_nonzero
return df.assign(buy_sell=df.apply(buy_sell, axis=1))
df_zinc = assign_buysell(df_zinc)
This solution is independent of how long ago the nonzero value was seen, it simply remembers the last nonzero value and pipes the opposite wen action is -1.
You can use np.select, and use np.nan as a label for the rows that satisfy the third condition:
c1 = df_zinc.action.eq(1) & df_zinc.PX_LAST.gt(df_zinc.ma)
c2 = df_zinc.action.eq(1) & df_zinc.PX_LAST.lt(df_zinc.ma)
c3 = df_zinc.action.eq(-1)
df_zinc['buy_sell'] = np.select([c1,c2, c3], [1, -1, np.nan])
Now in order to fill NaNs with the value from n rows above (in this case 3), you can fillna with a shifted version of the dataframe:
df_zinc['buy_sell'] = df_zinc.buy_sell.fillna(df_zinc.buy_sell.shift(3)*-1)
Output
PX_LAST ma action buy_sell
0 1 2 0 0.0
1 2 2 0 0.0
2 3 2 1 1.0
3 3 2 0 0.0
4 3 2 0 0.0
5 1 2 -1 -1.0
6 2 2 0 0.0
7 1 2 1 -1.0
8 1 2 0 0.0
9 1 2 0 0.0
10 3 2 -1 1.0
11 3 2 0 0.0
I would use np.select for this, since you have multiple conditions:
conditions = [
(df_zinc['action'] == 1) & (df_zinc['PX_LAST'] > df_zinc['ma']),
(df_zinc['action'] == 1) & (df_zinc['PX_LAST'] < df_zinc['ma']),
(df_zinc['action'] == -1) & (df_zinc['PX_LAST'] > df_zinc['ma']),
(df_zinc['action'] == -1) & (df_zinc['PX_LAST'] < df_zinc['ma'])
]
choices = [1, -1, 1, -1]
df_zinc['buy_sell'] = np.select(conditions, choices, default=0)
result
print(df_zinc)
PX_LAST ma action buy_sell
0 1 2 0 0
1 2 2 0 0
2 3 2 1 1
3 3 2 0 0
4 3 2 0 0
5 1 2 -1 -1
6 2 2 0 0
7 1 2 1 -1
8 1 2 0 0
9 1 2 0 0
10 3 2 -1 1
11 3 2 0 0
here my solution using the function shift() to trap the data of 3th up row:
df_zinc['buy_sell'] = 0
df_zinc.loc[(df_zinc['action'] == 1) & (df_zinc['PX_LAST'] < df_zinc['ma']), 'buy_sell'] = -1
df_zinc.loc[(df_zinc['action'] == 1) & (df_zinc['PX_LAST'] > df_zinc['ma']), 'buy_sell'] = 1
df_zinc.loc[df_zinc['action'] == -1, 'buy_sell'] = -df_zinc['buy_sell'].shift(3)
df_zinc['buy_sell'] = df_zinc['buy_sell'].astype(int)
print(df_zinc)
output:
PX_LAST ma action buy_sell
0 1 2 0 0
1 2 2 0 0
2 3 2 1 1
3 3 2 0 0
4 3 2 0 0
5 1 2 -1 -1
6 2 2 0 0
7 1 2 1 -1
8 1 2 0 0
9 1 2 0 0
10 3 2 -1 1
11 3 2 0 0

Get the sum of rows that contain 0 as a value

I want to know how can I make the source code of the following problem based on Python.
I have a dataframe that contain this column:
Column X
1
0
0
0
1
1
0
0
1
I want to create a list b counting the sum of successive 0 value for getting something like that :
List X
1
3
3
3
1
1
2
2
1
If I understand your question correctly, you want to replace all the zeros with the number of consecutive zeros in the current streak, but leave non-zero numbers untouched. So
1 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0
becomes
1 4 4 4 4 1 1 1 1 2 2 1 1 1 5 5 5 5 5
To do that, this should work, assuming your input column (a pandas Series) is called x.
result = []
i = 0
while i < len(x):
if x[i] != 0:
result.append(x[i])
i += 1
else:
# See how many times zero occurs in a row
j = i
n_zeros = 0
while j < len(x) and x[j] == 0:
n_zeros += 1
j += 1
result.extend([n_zeros] * n_zeros)
i += n_zeros
result
Adding screenshot below to make usage clearer

Return rows based off the most recent increase in value from other columns python

The title of this question is a little confusing to write out succinctly.
I have pandas df that contains integers and a relevant key Column. When a value is in the key Column is present I want to return the most recent increase in integers from the other Columns.
For the df below, the key Column is [Area]. When X is in [Area], I want to find the most recent increase is integers from Columns ['ST_A','PG_A','ST_B','PG_B'].
import pandas as pd
d = ({
'ST_A' : [0,0,0,0,0,1,1,1,1],
'PG_A' : [0,0,0,1,1,1,2,2,2],
'ST_B' : [0,1,1,1,1,1,1,1,1],
'PG_B' : [0,0,0,0,0,0,0,1,1],
'Area' : ['','','X','','X','','','','X'],
})
df = pd.DataFrame(data = d)
Output:
ST_A PG_A ST_B PG_B Area
0 0 0 0 0
1 0 0 1 0
2 0 0 1 0 X
3 0 1 1 0
4 0 1 1 0 X
5 1 1 1 0
6 1 2 1 0
7 1 2 1 1
8 1 2 1 1 X
I tried to use df = df.loc[(df['Area'] == 'X')] but this returns the rows where X is situated. I need something that uses X to return the most recent row where there was an increase in Columns ['ST_A','PG_A','ST_B','PG_B'].
I have also tried:
cols = ['ST_A','PG_A','ST_B','PG_B']
df[cols] = df[cols].diff()
df = df.fillna(0.)
df = df.loc[(df[cols] == 1).any(axis=1)]
This returns all rows where there was an increase in Columns ['ST_A','PG_A','ST_B','PG_B']. Not the most recent increase before X in ['Area'].
Intended Output:
ST_A PG_A ST_B PG_B Area
1 0 0 1 0
3 0 1 1 0
7 1 2 1 1
Does this question make sense or do I need to simplify it?
I believe you can use NumPy here via np.searchsorted:
import numpy as np
increases = np.where(df.iloc[:, :-1].diff().gt(0).max(1))[0]
marks = np.where(df['Area'].eq('X'))[0]
idx = increases[np.searchsorted(increases, marks) - 1]
res = df.iloc[idx]
print(res)
ST_A PG_A ST_B PG_B Area
1 0 0 1 0
3 0 1 1 0
7 1 2 1 1
Not efficient tho, but works, so big chunk of code which is kinda slow:
indexes=np.where(df['Area']=='X')[0].tolist()
indexes2=list(map((1).__add__,np.where(df[df.columns[:-1]].sum(axis=1) < df[df.columns[:-1]].shift(-1).sum(axis=1).sort_index())[0].tolist()))
l=[]
for i in indexes:
if min(indexes2,key=lambda x: abs(x-i)) in l:
l.append(min(indexes2,key=lambda x: abs(x-i))-2)
else:
l.append(min(indexes2,key=lambda x: abs(x-i)))
print(df.iloc[l].sort_index())
Output:
Area PG_A PG_B ST_A ST_B
1 0 0 0 1
3 1 0 0 1
7 2 1 1 1

Categories

Resources