Python: Recursion not iterating all elements of the list - python

I have below method where self contains a data structure as below
self.place = "India"
self.children = ["Tamil Nadu", "Karnataka"]
self.parent
Method
def get_node(self, value):
if value is None:
return self
if self.place == value:
return self
for node in self.children:
if node.place == value:
return node
elif len(node.children) > 0:
return node.get_node(value)
So via recursion, I am iterating on all possible child nodes to find the node I am looking for via return node.get_node(value) but I observed that, iteration happening via "Tamil Nadu" but not via "Karnataka".
I understood that, it took the first element of the list and then continued from there, but not coming back to 2nd element of the list.
is this expected behavior from recursion or am I doing something wrong ?
Full code( In case needed for testing)
class TreeNode:
def __init__(self, place):
self.place = place
self.children = []
self.parent = None
def add_child(self, child):
child.parent = self
self.children.append(child)
def print_tree(self):
prefix = ""
if self.parent is None:
print(self.place)
else:
prefix = prefix + (" " * self.get_level() * 3)
prefix = prefix + "|__"
print(prefix + self.place)
for child in self.children:
child.print_tree()
def get_level(self):
level = 0
p = self.parent
while p:
level = level + 1
p = p.parent
return level
def get_node(self, value):
if value is None:
return self
if self.place == value:
return self
for node in self.children:
if node.place == value:
return node
elif len(node.children) > 0:
return node.get_node(value)
def tree_map(self, nodes):
for node in nodes:
self.add_child(TreeNode(node))
def build_places():
root = TreeNode("Global")
india = TreeNode("India")
usa = TreeNode("USA")
root.add_child(india)
root.add_child(usa)
india_nodes = ["Gujarat" ,"Karnataka"]
gujarath_nodes = [ "Ahmedabad", "Baroda"]
karnataka_nodes = ["Bangalore", "Mysore"]
usa_nodes = ["New Jersey", "California"]
newjersey_nodes = ["Princeton", "Trenton"]
california_nodes = ["San Franciso", "Mountain View", "Palo Alto"]
for node in india_nodes:
india.add_child(TreeNode(node))
for node in usa_nodes:
usa.add_child(TreeNode(node))
gujarath_node = root.get_node("Gujarat")
print(gujarath_node.place)
for node in gujarath_nodes:
gujarath_node.add_child(TreeNode(node))
karnataka_node = root.get_node("Karnataka")
print(karnataka_node.place)
return root
if __name__ == "__main__":
root = build_places()
root.print_tree()

The problem is that in your loop you are always exiting the loop in its first iteration (when the node has at least some children). You should only exit on success, not when the recursive call comes back without success.
So change the loop to this:
for node in self.children:
if node.place == value:
return node
elif len(node.children) > 0:
result = node.get_node(value)
if result:
return result
Secondly, there is a strange base case you have at the start of this function. I would replace this:
if value is None:
return self
With:
if value is None:
return None
...since you didn't look for the value in that case: so then (in my opinion) it is not right to return a node instance (which might have any value -- you didn't verify it). It seems more consistent to return None or to remove this whole if block and not treat None in a special way.

Related

Delete a branch in Binary tree( Linked List implementation)

I am trying to create a binary tree using a linked list. I want to delete a node in a binary tree, the way I implemented is to set the address(pointer) to the branch that I want to delete as None, but when I run the traversal methods, the branch still shows up.
here is my code
class tree:
def __init__(self,val):
self.val=val
self.left=None
self.right=None
def preorder(root):
if root is None:
return
print(root.val)
tree.preorder(root.left)
tree.preorder(root.right)
def inorder(root):
if root is None:
return
tree.inorder(root.left)
print(root.val)
tree.inorder(root.right)
def postorder(root):
if root is None:
return
tree.postorder(root.left)
tree.postorder(root.right)
print(root.val)
def levelorder(root):
if root is None:
return
Q=[]
Q.append(root)
while Q!=[]:
l=len(Q)
for i in range(l):
print(Q[i].val)
temp=[]
for i in Q:
if i.left is not None:
temp.append(i.left)
if i.right is not None:
temp.append(i.right)
Q.clear()
Q=temp.copy()
def search(root,value):
o=[]
o.append(tree.levelorder(root))
if value in o:
return "Found"
else:
return "Not Found"
def insert(root,value,where):
if root is None:
return
Q=[]
Q.append(root)
value=tree(value)
while Q!=[]:
for i in Q:
if i.val==where:
if i.left is not None:
i.right=value
else:
i.left=value
return
temp=[]
for i in Q:
if i.left is not None:
temp.append(i.left)
if i.right is not None:
temp.append(i.right)
Q.clear()
Q=temp.copy()
def delete(root,value):
if root is None:
return
Q=[]
Q.append(root)
value=tree(value)
while Q!=[]:
for i in Q:
if i.left is not None and i.left.val==value:
i.left.val=None
i.left=None
if i.right is not None and i.right.val==value:
i.right.val=None
i.right=None
return
temp=[]
for i in Q:
if i.left is not None:
temp.append(i.left)
if i.right is not None:
temp.append(i.right)
Q.clear()
Q=temp.copy()
and here is how I created the tree
base=tree("drinks")
L=tree("hot")
R=tree("cold")
LL=tree("coffe")
LR=tree("tea")
LRL=tree("w milk")
LRR=tree("wo milk")
base.left=L
base.right=R
L.left=LL
L.right=LR
LR.left=LRL
LR.right=LRR
Now when I run the delete method, the object that is supposed to be deleted still shows up.
tree.delete(base,"w milk")
tree.levelorder(base)
drinks
hot
cold
coffe
tea
ice cream
w milk
wo milk <=== the node i am trying to delete
The main issues:
delete method's while loop will exit immediately, because of the return statement
The value to compare with should not be turned into a node with value=tree(value)
Some remarks on your code:
You'll not be able to ever delete the root node of the tree, since you only check the values of child nodes. In order to allow the root to be deleted, and to represent an empty tree, you should really consider creating a second class. The current class could then be renamed to Node and the new class could become Tree.
It is a common habit to use a capital first letter for class names, while for variable names you would always start with a lower case letter. So not Q, but q.
It is not such good practice to print inside methods of such classes: these methods should just provide tools to iterate over nodes, but they should not print them. Use yield instead.
For instance, search should return the node when it is found and None otherwise. Don't print the result.
The insert method may actually delete node(s) when both the left and right child of the where node are already occupied. It would be better to reject such an insert.
In the OOP pattern, it is widely accepted to call the first argument of instance methods self. In OOP, you would call these methods with the dot notation: so instead of tree.postorder(root.left) you would do root.left.postorder().
You have quite some code repetition: mainly for traversals, and where you use the queue algorithm twice. Try to avoid that.
Here is how you could modify your code to align to these suggestions:
class Node:
def __init__(self, val):
self.val = val
self.left = None
self.right = None
def traverse(self, kind=0, parent=None):
if kind == 0: # pre-order
yield (self, parent) # don't print in methods
if self.left:
yield from self.left.traverse(kind, self)
if kind == 1: # in-order
yield (self, parent)
if self.right:
yield from self.right.traverse(kind, self)
if kind == 2: # post-order
yield (self, parent)
class Tree:
def __init__(self):
self.root = None # Representing an empty tree
def traversevalues(self, kind=0):
if self.root:
for node, parent in self.root.traverse(kind):
yield node.val
def preorder(self):
yield from self.traversevalues(0)
def inorder(self):
yield from self.traversevalues(1)
def postorder(self):
yield from self.traversevalues(2)
def levelorder(self):
if self.root:
q = [self.root]
while q:
temp = []
for node in q:
yield node.val
if node.left:
temp.append(node.left)
if node.right:
temp.append(node.right)
q = temp
def search(self, value):
if self.root:
return next((edge for edge in self.root.traverse() if edge[0].val == value), None)
def insert(self, value, where=None):
if not where:
if self.root:
raise ValueError("Must call insert with second argument")
else:
self.root = Node(value)
else:
edge = self.search(where)
if edge:
parent = edge[0]
if not parent.left:
parent.left = Node(value)
elif not parent.right:
parent.right = Node(value)
else:
raise ValueError(f"Node {where} already has 2 children")
else:
raise ValueError(f"Node {where} not found")
def deletesubtree(self, value):
edge = self.search(value)
if edge:
node, parent = edge
if parent.left == node:
parent.left = None
else:
parent.right = None
else:
raise ValueError(f"Node {value} not found")
tree = Tree()
tree.insert("drinks")
tree.insert("hot", "drinks")
tree.insert("cold", "drinks")
tree.insert("coffee", "hot")
tree.insert("tea", "hot")
tree.insert("with milk", "tea")
tree.insert("without milk", "tea")
print(*tree.levelorder())
tree.deletesubtree("without milk")
print(*tree.levelorder())

Delete min binary search tree Python

I am trying to delete the minimum node from a BST, so I search through the tree until I get the min (when root.leftnode is None) and then set root.rightnode to the root itself to continue the BST.
The issue is when I check the tree after doing this it does not show the deletion ever occurred.
Could someone point me in the right direction please, any advice is appreciated.
class node():
def __init__(self, key, data):
self.data = data
self.key = key
self.leftnode = None
self.rightnode = None
self.count = 1
class binarysearch():
def __init__(self):
self.size = 0
self.rootnode = None
def insert(self, key, data):
if self.rootnode is None:
self.rootnode = node(key, data)
else:
self.insertnode(self.rootnode, key, data)
def getroot(self):
return self.rootnode
def insertnode(self, root, key, data):
if root.key == key:
root.data = data
elif key < root.key:
if root.leftnode is None:
root.leftnode = node(key, data)
else:
self.insertnode(root.leftnode, key, data)
else:
if root.rightnode is None:
root.rightnode = node(key, data)
else:
self.insertnode(root.rightnode, key, data)
root.count = 1 + self.sizenode(root.leftnode) + self.sizenode(root.rightnode)
def inorder(self, root):
if root is not None:
self.inorder(root.leftnode)
print(root.key)
self.inorder(root.rightnode)
def deletemin(self):
if self.rootnode is None:
print("No nodes exist")
else:
self.deleteminnode(self.rootnode.leftnode)
def deleteminnode(self, root):
if root.leftnode is not None:
self.deleteminnode(root.leftnode)
else:
print (root.key, "deleted")
root = root.rightnode
if __name__ == '__main__':
a = binarysearch()
a.insert(7,7)
a.insert(1,1)
a.insert(8,8)
a.insert(3,3)
a.insert(9,9)
a.insert(2,2)
a.insert(4,4)
a.insert(11,11)
a.insert(10,10)
a.deletemin()
a.getnodes()
The issue you have is that root = root.rightnode only rebinds the local variable root. It doesn't change the other places you have references to that node (such as its parent in the tree).
To fix this, you need to change how your recursive function works. Rather than expecting it to do all the work in the last call, it should instead return the value that should be the left node of its parent. Of then that will be the node itself, but for the minimum node, it will be its right child instead.
def deletemin(self):
if self.rootnode is None:
print("No nodes exist")
else:
self.rootnode = self.deleteminnode(self.rootnode)
def deleteminnode(self, root):
if root.leftnode is not None:
root.leftnode = self.deleteminnode(root.leftnode)
return root
else:
return root.rightnode
A final note regarding names: It's a bit weird to use root as the name of a random node within the tree. Usually a tree has just the one root node, and others nodes aren't called root since they have parents. Unfortunately, the most conventional name node is already being used for your node class. Normally classes should be given CapitalizedNames, so that lowercase_names can exclusively refer to instances and other variables. This is just convention though (and builtin types like list break the rules). It might be easier for others to understand your code if you use standard name styles, but Python doesn't enforce them. It will allow you to use whatever names you want. Even the name self is not a requirement, though it would be very confusing if you used something different for the first argument of a method without a good reason (an example of a good reason: classmethods and methods of metaclasses often use cls as the name of their first arguments, since the object will be a class).
You can find all the nodes in the tree, along with the path to the node, find the minimum of the results, and then traverse the generated path to delete the node:
class Tree:
def __init__(self, **kwargs):
self.__dict__ = {i:kwargs.get(i) for i in ['val', 'left', 'right']}
def get_nodes(self, current = []):
yield [''.join(current), self.val]
yield from getattr(self.right, 'get_nodes', lambda _:[])(current+['1'])
yield from getattr(self.left, 'get_nodes', lambda _:[])(current+['0'])
def __iter__(self):
yield self.val
yield from [[], self.left][bool(self.left)]
yield from [[], self.right][bool(self.right)]
def _insert_back(self, _v):
if not self.val:
self.val = _v
else:
if _v < self.val:
getattr(self.left, '_insert_back', lambda x:setattr(x, 'left', Tree(val=x)))(_v)
else:
getattr(self.right, '_insert_back', lambda x:setattr(x, 'right', Tree(val=x)))(_v)
def remove(self, _path, _to_val, last=None):
'''_to_val: if _to_val is None, then the item is removed. If not, the node value is set to _to_val'''
if _path:
getattr(self, ['left', 'right'][int(_path[0])]).remove(_path[1:], _to_val, last = self)
else:
if _to_val is None:
last.left = None
last.right = None
for i in [[], self.left][bool(self.left)]:
last._insert_back(i)
for i in [[], self.right][bool(self.right)]:
last._insert_back(i)
else:
self.val = _to_val
Creating:
7
5 9
4 6 8 10
12
t = Tree(val = 7, left=Tree(val = 5, left=Tree(val=4), right=Tree(val=6)), right=Tree(val=9, left=Tree(val=8), right=Tree(val=10, right=Tree(val=12))))
path, _to_remove = min(t.get_nodes(), key=lambda x:x[-1])
print(f'Removing {_to_remove}')
t.remove(path, None)
print([i for i in t])
Output:
4
[7, 5, 9, 8, 10, 12]

Binary seach tree, remove node, need help here (reposting)

My code is looking like this:
class Treenode:
def __init__(self,data,left=None,right=None):
self.data=data
self.left=left
self.right=right
def __str__(self):
return str(self.data)
def delete(self):
child=self.left
grandchild=child.right
print(grandchild)
if self.left == self.right==None:
return None
if self.left==None:
return self.right
if self.right==None:
return self.left
if grandchild:
while grandchild.right:
child = grandchild
grandchild = child.right
self.data = grandchild.data
child.right = grandchild.left
else:
self.left = child.left
self.data = child.data
return self
class Bintree:
def __init__(self):
self.root = None
def put(self,data):
if self.root == None:
self.root = Treenode(data)
return
p = self.root
while True:
if data < p.data:
if p.left == None:
p.left = Treenode(data)
return
else:
p = p.left
elif data > p.data:
if p.right == None:
p.right = Treenode(data)
return
else:
p = p.right
elif data == p.data:
return False
else:
return
def exists(self, data):
return finns(self.root, data)
def isempty(self):
return self.root == None
def height(self):
def hp(tree):
if tree is None:
return 0
else:
return 1 + max(hp(tree.left), hp(tree.right))
return hp(self.root)
def printTree(self):
skriv(self.root)
def remove(self, data):
if self.root and self.root.data == data: #self.root kanske inte behövs, undersök
self.root = self.root.delete()
return
else:
parent = self.root
while parent:
if data < parent.data:
child = parent.left
if child and child.data== data:
parent.left = child.delete()
return
parent = child
else:
child = parent.right
if child and child.data == data:
parent.right = child.delete()
return
parent = child
def skriv(tree):
if tree == None:
return
skriv(tree.left)
print(tree.data)
skriv(tree.right)
def finns(roten, key):
if roten == None:
return False
if key == roten.data:
return True
elif key < roten.data:
return finns(roten.left, key)
else:
return finns(roten.right, key)
Everything about my code is working, and I've simply added (see copied) the delete method and the remove method. Im desperately trying to understand the delete-method but I cannot understand it. I use this code to run the thing and see how the tree is implemented:
from labb8test import Bintree
from labb8test import Treenode
tree = Bintree()
tree.put(8)
tree.put(3)
tree.put(1)
tree.put(6)
tree.put(4)
tree.put(7)
tree.put(10)
tree.put(14)
tree.put(13)
tree.remove(6)
tree.printTree()
I'm trying to draw it on a paper and see, especially how the while-loop is working. According to my above code, I would think it is like this:
child = self.left (child=3) grandchild= child.right=self,left.right=6. If grandchild (yes, 6) while grandchild.right (yes, 7) child = grandchild, 3-->6 grandchild = child.right (is this even needed, 6--->6?) self.data=grandchild.data (8--->6) child.right = grandchild.left (6---->4) ??
But it cannot be like this, because then the while-loop would never end. Is there anyone who can help me understanding where I lose myself?
I recommend you this material from algorithm Princeton:
http://algs4.cs.princeton.edu/32bst/
The delete method is using this approach to delete a node from a bst.
Delete. We can proceed in a similar manner to delete any node that has
one child (or no children), but what can we do to delete a node that
has two children? We are left with two links, but have a place in the
parent node for only one of them. An answer to this dilemma, first
proposed by T. Hibbard in 1962, is to delete a node x by replacing it
with its successor. Because x has a right child, its successor is the
node with the smallest key in its right subtree. The replacement
preserves order in the tree because there are no keys between x.key
and the successor's key. We accomplish the task of replacing x by its
successor
in four (!) easy steps:
Save a link to the node to be deleted in t
Set x to point to its successor min(t.right)
Set the right link of x (which is supposed to point to the BST containing all the keys larger than x.key) to deleteMin(t.right), the
link to the BST containing all the keys that are larger than x.key
after the deletion.
Set the left link of x (which was null) to t.left (all the keys that are less than both the deleted key and its successor).

Depth first search not returning correct object type

I have the following code that traverses a tree object, but I can't get it to return the node object when the key is found. it gives me NoneType instead. the objects are simple and included below.
class StructureTree:
def __init__(self, issueID, depth):
self.issueID = issueID
self.depth = depth
self.children = []
self.worklog_data_rows = []
self.structure_data_row = [] #contains issue data for any issue found in the global structure
def addChild(self, elem):
self.children += [elem]
def __repr__(self):
return "<%d : %d>" % (self.issueID, self.depth)
class StructureForest:
def __init__(self):
self.trees = []
self.roots =[]
def addRoot(self, root):
self.roots += [root]
def DFS(node, key):
'''
Depth First Traversal (In-order).
#node -- int
#key -- int
'''
if node.issueID == key:
print "Found!"
return node
else:
for child in node.children:
print "here"
return DFS(child, key)
def search_node(n_tree_forest, key):
'''
Traverses entire forest.
#key -- int
'''
for root in n_tree_forest.roots:
val = DFS(root, key)
return val
You never return a value either in the main function or in any of the recursive steps. Both times you call DFS you need to do return DFS(..., ...).
Hi I think I see the issue doesn't look like you are returning anything when you go into the else statement which you have to do for proper recursion. Modify your DFS method...
def DFS(node, key):
if node.issueID == key:
print "Found!"
return node.issueID
else:
for child in node.children:
print "here"
val = DFS(child, key)
if val: return val
return False

How can I use a Linked List in Python?

What's the easiest way to use a linked list in Python? In Scheme, a linked list is defined simply by '(1 2 3 4 5).
Python's lists, [1, 2, 3, 4, 5], and tuples, (1, 2, 3, 4, 5), are not, in fact, linked lists, and linked lists have some nice properties such as constant-time concatenation, and being able to reference separate parts of them. Make them immutable and they are really easy to work with!
For some needs, a deque may also be useful. You can add and remove items on both ends of a deque at O(1) cost.
from collections import deque
d = deque([1,2,3,4])
print d
for x in d:
print x
print d.pop(), d
I wrote this up the other day
#! /usr/bin/env python
class Node(object):
def __init__(self):
self.data = None # contains the data
self.next = None # contains the reference to the next node
class LinkedList:
def __init__(self):
self.cur_node = None
def add_node(self, data):
new_node = Node() # create a new node
new_node.data = data
new_node.next = self.cur_node # link the new node to the 'previous' node.
self.cur_node = new_node # set the current node to the new one.
def list_print(self):
node = self.cur_node # cant point to ll!
while node:
print node.data
node = node.next
ll = LinkedList()
ll.add_node(1)
ll.add_node(2)
ll.add_node(3)
ll.list_print()
Here is some list functions based on Martin v. Löwis's representation:
cons = lambda el, lst: (el, lst)
mklist = lambda *args: reduce(lambda lst, el: cons(el, lst), reversed(args), None)
car = lambda lst: lst[0] if lst else lst
cdr = lambda lst: lst[1] if lst else lst
nth = lambda n, lst: nth(n-1, cdr(lst)) if n > 0 else car(lst)
length = lambda lst, count=0: length(cdr(lst), count+1) if lst else count
begin = lambda *args: args[-1]
display = lambda lst: begin(w("%s " % car(lst)), display(cdr(lst))) if lst else w("nil\n")
where w = sys.stdout.write
Although doubly linked lists are famously used in Raymond Hettinger's ordered set recipe, singly linked lists have no practical value in Python.
I've never used a singly linked list in Python for any problem except educational.
Thomas Watnedal suggested a good educational resource How to Think Like a Computer Scientist, Chapter 17: Linked lists:
A linked list is either:
the empty list, represented by None, or
a node that contains a cargo object and a reference to a linked list.
class Node:
def __init__(self, cargo=None, next=None):
self.car = cargo
self.cdr = next
def __str__(self):
return str(self.car)
def display(lst):
if lst:
w("%s " % lst)
display(lst.cdr)
else:
w("nil\n")
The accepted answer is rather complicated. Here is a more standard design:
L = LinkedList()
L.insert(1)
L.insert(1)
L.insert(2)
L.insert(4)
print L
L.clear()
print L
It is a simple LinkedList class based on the straightforward C++ design and Chapter 17: Linked lists, as recommended by Thomas Watnedal.
class Node:
def __init__(self, value = None, next = None):
self.value = value
self.next = next
def __str__(self):
return 'Node ['+str(self.value)+']'
class LinkedList:
def __init__(self):
self.first = None
self.last = None
def insert(self, x):
if self.first == None:
self.first = Node(x, None)
self.last = self.first
elif self.last == self.first:
self.last = Node(x, None)
self.first.next = self.last
else:
current = Node(x, None)
self.last.next = current
self.last = current
def __str__(self):
if self.first != None:
current = self.first
out = 'LinkedList [\n' +str(current.value) +'\n'
while current.next != None:
current = current.next
out += str(current.value) + '\n'
return out + ']'
return 'LinkedList []'
def clear(self):
self.__init__()
Immutable lists are best represented through two-tuples, with None representing NIL. To allow simple formulation of such lists, you can use this function:
def mklist(*args):
result = None
for element in reversed(args):
result = (element, result)
return result
To work with such lists, I'd rather provide the whole collection of LISP functions (i.e. first, second, nth, etc), than introducing methods.
Here's a slightly more complex version of a linked list class, with a similar interface to python's sequence types (ie. supports indexing, slicing, concatenation with arbitrary sequences etc). It should have O(1) prepend, doesn't copy data unless it needs to and can be used pretty interchangably with tuples.
It won't be as space or time efficient as lisp cons cells, as python classes are obviously a bit more heavyweight (You could improve things slightly with "__slots__ = '_head','_tail'" to reduce memory usage). It will have the desired big O performance characteristics however.
Example of usage:
>>> l = LinkedList([1,2,3,4])
>>> l
LinkedList([1, 2, 3, 4])
>>> l.head, l.tail
(1, LinkedList([2, 3, 4]))
# Prepending is O(1) and can be done with:
LinkedList.cons(0, l)
LinkedList([0, 1, 2, 3, 4])
# Or prepending arbitrary sequences (Still no copy of l performed):
[-1,0] + l
LinkedList([-1, 0, 1, 2, 3, 4])
# Normal list indexing and slice operations can be performed.
# Again, no copy is made unless needed.
>>> l[1], l[-1], l[2:]
(2, 4, LinkedList([3, 4]))
>>> assert l[2:] is l.next.next
# For cases where the slice stops before the end, or uses a
# non-contiguous range, we do need to create a copy. However
# this should be transparent to the user.
>>> LinkedList(range(100))[-10::2]
LinkedList([90, 92, 94, 96, 98])
Implementation:
import itertools
class LinkedList(object):
"""Immutable linked list class."""
def __new__(cls, l=[]):
if isinstance(l, LinkedList): return l # Immutable, so no copy needed.
i = iter(l)
try:
head = i.next()
except StopIteration:
return cls.EmptyList # Return empty list singleton.
tail = LinkedList(i)
obj = super(LinkedList, cls).__new__(cls)
obj._head = head
obj._tail = tail
return obj
#classmethod
def cons(cls, head, tail):
ll = cls([head])
if not isinstance(tail, cls):
tail = cls(tail)
ll._tail = tail
return ll
# head and tail are not modifiable
#property
def head(self): return self._head
#property
def tail(self): return self._tail
def __nonzero__(self): return True
def __len__(self):
return sum(1 for _ in self)
def __add__(self, other):
other = LinkedList(other)
if not self: return other # () + l = l
start=l = LinkedList(iter(self)) # Create copy, as we'll mutate
while l:
if not l._tail: # Last element?
l._tail = other
break
l = l._tail
return start
def __radd__(self, other):
return LinkedList(other) + self
def __iter__(self):
x=self
while x:
yield x.head
x=x.tail
def __getitem__(self, idx):
"""Get item at specified index"""
if isinstance(idx, slice):
# Special case: Avoid constructing a new list, or performing O(n) length
# calculation for slices like l[3:]. Since we're immutable, just return
# the appropriate node. This becomes O(start) rather than O(n).
# We can't do this for more complicated slices however (eg [l:4]
start = idx.start or 0
if (start >= 0) and (idx.stop is None) and (idx.step is None or idx.step == 1):
no_copy_needed=True
else:
length = len(self) # Need to calc length.
start, stop, step = idx.indices(length)
no_copy_needed = (stop == length) and (step == 1)
if no_copy_needed:
l = self
for i in range(start):
if not l: break # End of list.
l=l.tail
return l
else:
# We need to construct a new list.
if step < 1: # Need to instantiate list to deal with -ve step
return LinkedList(list(self)[start:stop:step])
else:
return LinkedList(itertools.islice(iter(self), start, stop, step))
else:
# Non-slice index.
if idx < 0: idx = len(self)+idx
if not self: raise IndexError("list index out of range")
if idx == 0: return self.head
return self.tail[idx-1]
def __mul__(self, n):
if n <= 0: return Nil
l=self
for i in range(n-1): l += self
return l
def __rmul__(self, n): return self * n
# Ideally we should compute the has ourselves rather than construct
# a temporary tuple as below. I haven't impemented this here
def __hash__(self): return hash(tuple(self))
def __eq__(self, other): return self._cmp(other) == 0
def __ne__(self, other): return not self == other
def __lt__(self, other): return self._cmp(other) < 0
def __gt__(self, other): return self._cmp(other) > 0
def __le__(self, other): return self._cmp(other) <= 0
def __ge__(self, other): return self._cmp(other) >= 0
def _cmp(self, other):
"""Acts as cmp(): -1 for self<other, 0 for equal, 1 for greater"""
if not isinstance(other, LinkedList):
return cmp(LinkedList,type(other)) # Arbitrary ordering.
A, B = iter(self), iter(other)
for a,b in itertools.izip(A,B):
if a<b: return -1
elif a > b: return 1
try:
A.next()
return 1 # a has more items.
except StopIteration: pass
try:
B.next()
return -1 # b has more items.
except StopIteration: pass
return 0 # Lists are equal
def __repr__(self):
return "LinkedList([%s])" % ', '.join(map(repr,self))
class EmptyList(LinkedList):
"""A singleton representing an empty list."""
def __new__(cls):
return object.__new__(cls)
def __iter__(self): return iter([])
def __nonzero__(self): return False
#property
def head(self): raise IndexError("End of list")
#property
def tail(self): raise IndexError("End of list")
# Create EmptyList singleton
LinkedList.EmptyList = EmptyList()
del EmptyList
llist — Linked list datatypes for Python
llist module implements linked list data structures. It supports a doubly linked list, i.e. dllist and a singly linked data structure sllist.
dllist objects
This object represents a doubly linked list data structure.
first
First dllistnode object in the list. None if list is empty.
last
Last dllistnode object in the list. None if list is empty.
dllist objects also support the following methods:
append(x)
Add x to the right side of the list and return inserted dllistnode.
appendleft(x)
Add x to the left side of the list and return inserted dllistnode.
appendright(x)
Add x to the right side of the list and return inserted dllistnode.
clear()
Remove all nodes from the list.
extend(iterable)
Append elements from iterable to the right side of the list.
extendleft(iterable)
Append elements from iterable to the left side of the list.
extendright(iterable)
Append elements from iterable to the right side of the list.
insert(x[, before])
Add x to the right side of the list if before is not specified, or insert x to the left side of dllistnode before. Return inserted dllistnode.
nodeat(index)
Return node (of type dllistnode) at index.
pop()
Remove and return an element’s value from the right side of the list.
popleft()
Remove and return an element’s value from the left side of the list.
popright()
Remove and return an element’s value from the right side of the list
remove(node)
Remove node from the list and return the element which was stored in it.
dllistnode objects
class llist.dllistnode([value])
Return a new doubly linked list node, initialized (optionally) with value.
dllistnode objects provide the following attributes:
next
Next node in the list. This attribute is read-only.
prev
Previous node in the list. This attribute is read-only.
value
Value stored in this node.
Compiled from this reference
sllist
class llist.sllist([iterable])
Return a new singly linked list initialized with elements from iterable. If iterable is not specified, the new sllist is empty.
A similar set of attributes and operations are defined for this sllist object. See this reference for more information.
class Node(object):
def __init__(self, data=None, next=None):
self.data = data
self.next = next
def setData(self, data):
self.data = data
return self.data
def setNext(self, next):
self.next = next
def getNext(self):
return self.next
def hasNext(self):
return self.next != None
class singleLinkList(object):
def __init__(self):
self.head = None
def isEmpty(self):
return self.head == None
def insertAtBeginning(self, data):
newNode = Node()
newNode.setData(data)
if self.listLength() == 0:
self.head = newNode
else:
newNode.setNext(self.head)
self.head = newNode
def insertAtEnd(self, data):
newNode = Node()
newNode.setData(data)
current = self.head
while current.getNext() != None:
current = current.getNext()
current.setNext(newNode)
def listLength(self):
current = self.head
count = 0
while current != None:
count += 1
current = current.getNext()
return count
def print_llist(self):
current = self.head
print("List Start.")
while current != None:
print(current.getData())
current = current.getNext()
print("List End.")
if __name__ == '__main__':
ll = singleLinkList()
ll.insertAtBeginning(55)
ll.insertAtEnd(56)
ll.print_llist()
print(ll.listLength())
I based this additional function on Nick Stinemates
def add_node_at_end(self, data):
new_node = Node()
node = self.curr_node
while node:
if node.next == None:
node.next = new_node
new_node.next = None
new_node.data = data
node = node.next
The method he has adds the new node at the beginning while I have seen a lot of implementations which usually add a new node at the end but whatever, it is fun to do.
The following is what I came up with. It's similer to Riccardo C.'s, in this thread, except it prints the numbers in order instead of in reverse. I also made the LinkedList object a Python Iterator in order to print the list out like you would a normal Python list.
class Node:
def __init__(self, data=None):
self.data = data
self.next = None
def __str__(self):
return str(self.data)
class LinkedList:
def __init__(self):
self.head = None
self.curr = None
self.tail = None
def __iter__(self):
return self
def next(self):
if self.head and not self.curr:
self.curr = self.head
return self.curr
elif self.curr.next:
self.curr = self.curr.next
return self.curr
else:
raise StopIteration
def append(self, data):
n = Node(data)
if not self.head:
self.head = n
self.tail = n
else:
self.tail.next = n
self.tail = self.tail.next
# Add 5 nodes
ll = LinkedList()
for i in range(1, 6):
ll.append(i)
# print out the list
for n in ll:
print n
"""
Example output:
$ python linked_list.py
1
2
3
4
5
"""
I just did this as a fun toy. It should be immutable as long as you don't touch the underscore-prefixed methods, and it implements a bunch of Python magic like indexing and len.
Here is my solution:
Implementation
class Node:
def __init__(self, initdata):
self.data = initdata
self.next = None
def get_data(self):
return self.data
def set_data(self, data):
self.data = data
def get_next(self):
return self.next
def set_next(self, node):
self.next = node
# ------------------------ Link List class ------------------------------- #
class LinkList:
def __init__(self):
self.head = None
def is_empty(self):
return self.head == None
def traversal(self, data=None):
node = self.head
index = 0
found = False
while node is not None and not found:
if node.get_data() == data:
found = True
else:
node = node.get_next()
index += 1
return (node, index)
def size(self):
_, count = self.traversal(None)
return count
def search(self, data):
node, _ = self.traversal(data)
return node
def add(self, data):
node = Node(data)
node.set_next(self.head)
self.head = node
def remove(self, data):
previous_node = None
current_node = self.head
found = False
while current_node is not None and not found:
if current_node.get_data() == data:
found = True
if previous_node:
previous_node.set_next(current_node.get_next())
else:
self.head = current_node
else:
previous_node = current_node
current_node = current_node.get_next()
return found
Usage
link_list = LinkList()
link_list.add(10)
link_list.add(20)
link_list.add(30)
link_list.add(40)
link_list.add(50)
link_list.size()
link_list.search(30)
link_list.remove(20)
Original Implementation Idea
http://interactivepython.org/runestone/static/pythonds/BasicDS/ImplementinganUnorderedListLinkedLists.html
When using immutable linked lists, consider using Python's tuple directly.
ls = (1, 2, 3, 4, 5)
def first(ls): return ls[0]
def rest(ls): return ls[1:]
Its really that ease, and you get to keep the additional funcitons like len(ls), x in ls, etc.
class LL(object):
def __init__(self,val):
self.val = val
self.next = None
def pushNodeEnd(self,top,val):
if top is None:
top.val=val
top.next=None
else:
tmp=top
while (tmp.next != None):
tmp=tmp.next
newNode=LL(val)
newNode.next=None
tmp.next=newNode
def pushNodeFront(self,top,val):
if top is None:
top.val=val
top.next=None
else:
newNode=LL(val)
newNode.next=top
top=newNode
def popNodeFront(self,top):
if top is None:
return
else:
sav=top
top=top.next
return sav
def popNodeEnd(self,top):
if top is None:
return
else:
tmp=top
while (tmp.next != None):
prev=tmp
tmp=tmp.next
prev.next=None
return tmp
top=LL(10)
top.pushNodeEnd(top, 20)
top.pushNodeEnd(top, 30)
pop=top.popNodeEnd(top)
print (pop.val)
I've put a Python 2.x and 3.x singly-linked list class at https://pypi.python.org/pypi/linked_list_mod/
It's tested with CPython 2.7, CPython 3.4, Pypy 2.3.1, Pypy3 2.3.1, and Jython 2.7b2, and comes with a nice automated test suite.
It also includes LIFO and FIFO classes.
They aren't immutable though.
class LinkedStack:
'''LIFO Stack implementation using a singly linked list for storage.'''
_ToList = []
#---------- nested _Node class -----------------------------
class _Node:
'''Lightweight, nonpublic class for storing a singly linked node.'''
__slots__ = '_element', '_next' #streamline memory usage
def __init__(self, element, next):
self._element = element
self._next = next
#--------------- stack methods ---------------------------------
def __init__(self):
'''Create an empty stack.'''
self._head = None
self._size = 0
def __len__(self):
'''Return the number of elements in the stack.'''
return self._size
def IsEmpty(self):
'''Return True if the stack is empty'''
return self._size == 0
def Push(self,e):
'''Add element e to the top of the Stack.'''
self._head = self._Node(e, self._head) #create and link a new node
self._size +=1
self._ToList.append(e)
def Top(self):
'''Return (but do not remove) the element at the top of the stack.
Raise exception if the stack is empty
'''
if self.IsEmpty():
raise Exception('Stack is empty')
return self._head._element #top of stack is at head of list
def Pop(self):
'''Remove and return the element from the top of the stack (i.e. LIFO).
Raise exception if the stack is empty
'''
if self.IsEmpty():
raise Exception('Stack is empty')
answer = self._head._element
self._head = self._head._next #bypass the former top node
self._size -=1
self._ToList.remove(answer)
return answer
def Count(self):
'''Return how many nodes the stack has'''
return self.__len__()
def Clear(self):
'''Delete all nodes'''
for i in range(self.Count()):
self.Pop()
def ToList(self):
return self._ToList
Here is my simple implementation:
class Node:
def __init__(self):
self.data = None
self.next = None
def __str__(self):
return "Data %s: Next -> %s"%(self.data, self.next)
class LinkedList:
def __init__(self):
self.head = Node()
self.curNode = self.head
def insertNode(self, data):
node = Node()
node.data = data
node.next = None
if self.head.data == None:
self.head = node
self.curNode = node
else:
self.curNode.next = node
self.curNode = node
def printList(self):
print self.head
l = LinkedList()
l.insertNode(1)
l.insertNode(2)
l.insertNode(34)
Output:
Data 1: Next -> Data 2: Next -> Data 34: Next -> Data 4: Next -> None
I did also write a Single Linked List based on some tutorial, which has the basic two Node and Linked List classes, and some additional methods for insertion, delete, reverse, sorting, and such.
It's not the best or easiest, works OK though.
"""
🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏
Single Linked List (SLL):
A simple object-oriented implementation of Single Linked List (SLL)
with some associated methods, such as create list, count nodes, delete nodes, and such.
🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏
"""
class Node:
"""
Instantiates a node
"""
def __init__(self, value):
"""
Node class constructor which sets the value and link of the node
"""
self.info = value
self.link = None
class SingleLinkedList:
"""
Instantiates the SLL class
"""
def __init__(self):
"""
SLL class constructor which sets the value and link of the node
"""
self.start = None
def create_single_linked_list(self):
"""
Reads values from stdin and appends them to this list and creates a SLL with integer nodes
"""
try:
number_of_nodes = int(input("👉 Enter a positive integer between 1-50 for the number of nodes you wish to have in the list: "))
if number_of_nodes <= 0 or number_of_nodes > 51:
print("💛 The number of nodes though must be an integer between 1 to 50!")
self.create_single_linked_list()
except Exception as e:
print("💛 Error: ", e)
self.create_single_linked_list()
try:
for _ in range(number_of_nodes):
try:
data = int(input("👉 Enter an integer for the node to be inserted: "))
self.insert_node_at_end(data)
except Exception as e:
print("💛 Error: ", e)
except Exception as e:
print("💛 Error: ", e)
def count_sll_nodes(self):
"""
Counts the nodes of the linked list
"""
try:
p = self.start
n = 0
while p is not None:
n += 1
p = p.link
if n >= 1:
print(f"💚 The number of nodes in the linked list is {n}")
else:
print(f"💛 The SLL does not have a node!")
except Exception as e:
print("💛 Error: ", e)
def search_sll_nodes(self, x):
"""
Searches the x integer in the linked list
"""
try:
position = 1
p = self.start
while p is not None:
if p.info == x:
print(f"💚 YAAAY! We found {x} at position {position}")
return True
#Increment the position
position += 1
#Assign the next node to the current node
p = p.link
else:
print(f"💔 Sorry! We couldn't find {x} at any position. Maybe, you might want to use option 9 and try again later!")
return False
except Exception as e:
print("💛 Error: ", e)
def display_sll(self):
"""
Displays the list
"""
try:
if self.start is None:
print("💛 Single linked list is empty!")
return
display_sll = "💚 Single linked list nodes are: "
p = self.start
while p is not None:
display_sll += str(p.info) + "\t"
p = p.link
print(display_sll)
except Exception as e:
print("💛 Error: ", e)
def insert_node_in_beginning(self, data):
"""
Inserts an integer in the beginning of the linked list
"""
try:
temp = Node(data)
temp.link = self.start
self.start = temp
except Exception as e:
print("💛 Error: ", e)
def insert_node_at_end(self, data):
"""
Inserts an integer at the end of the linked list
"""
try:
temp = Node(data)
if self.start is None:
self.start = temp
return
p = self.start
while p.link is not None:
p = p.link
p.link = temp
except Exception as e:
print("💛 Error: ", e)
def insert_node_after_another(self, data, x):
"""
Inserts an integer after the x node
"""
try:
p = self.start
while p is not None:
if p.info == x:
break
p = p.link
if p is None:
print(f"💔 Sorry! {x} is not in the list.")
else:
temp = Node(data)
temp.link = p.link
p.link = temp
except Exception as e:
print("💛 Error: ", e)
def insert_node_before_another(self, data, x):
"""
Inserts an integer before the x node
"""
try:
# If list is empty
if self.start is None:
print("💔 Sorry! The list is empty.")
return
# If x is the first node, and new node should be inserted before the first node
if x == self.start.info:
temp = Node(data)
temp.link = p.link
p.link = temp
# Finding the reference to the prior node containing x
p = self.start
while p.link is not None:
if p.link.info == x:
break
p = p.link
if p.link is not None:
print(f"💔 Sorry! {x} is not in the list.")
else:
temp = Node(data)
temp.link = p.link
p.link = temp
except Exception as e:
print("💛 Error: ", e)
def insert_node_at_position(self, data, k):
"""
Inserts an integer in k position of the linked list
"""
try:
# if we wish to insert at the first node
if k == 1:
temp = Node(data)
temp.link = self.start
self.start = temp
return
p = self.start
i = 1
while i < k-1 and p is not None:
p = p.link
i += 1
if p is None:
print(f"💛 The max position is {i}")
else:
temp = Node(data)
temp.link = self.start
self.start = temp
except Exception as e:
print("💛 Error: ", e)
def delete_a_node(self, x):
"""
Deletes a node of a linked list
"""
try:
# If list is empty
if self.start is None:
print("💔 Sorry! The list is empty.")
return
# If there is only one node
if self.start.info == x:
self.start = self.start.link
# If more than one node exists
p = self.start
while p.link is not None:
if p.link.info == x:
break
p = p.link
if p.link is None:
print(f"💔 Sorry! {x} is not in the list.")
else:
p.link = p.link.link
except Exception as e:
print("💛 Error: ", e)
def delete_sll_first_node(self):
"""
Deletes the first node of a linked list
"""
try:
if self.start is None:
return
self.start = self.start.link
except Exception as e:
print("💛 Error: ", e)
def delete_sll_last_node(self):
"""
Deletes the last node of a linked list
"""
try:
# If the list is empty
if self.start is None:
return
# If there is only one node
if self.start.link is None:
self.start = None
return
# If there is more than one node
p = self.start
# Increment until we find the node prior to the last node
while p.link.link is not None:
p = p.link
p.link = None
except Exception as e:
print("💛 Error: ", e)
def reverse_sll(self):
"""
Reverses the linked list
"""
try:
prev = None
p = self.start
while p is not None:
next = p.link
p.link = prev
prev = p
p = next
self.start = prev
except Exception as e:
print("💛 Error: ", e)
def bubble_sort_sll_nodes_data(self):
"""
Bubble sorts the linked list on integer values
"""
try:
# If the list is empty or there is only one node
if self.start is None or self.start.link is None:
print("💛 The list has no or only one node and sorting is not required.")
end = None
while end != self.start.link:
p = self.start
while p.link != end:
q = p.link
if p.info > q.info:
p.info, q.info = q.info, p.info
p = p.link
end = p
except Exception as e:
print("💛 Error: ", e)
def bubble_sort_sll(self):
"""
Bubble sorts the linked list
"""
try:
# If the list is empty or there is only one node
if self.start is None or self.start.link is None:
print("💛 The list has no or only one node and sorting is not required.")
end = None
while end != self.start.link:
r = p = self.start
while p.link != end:
q = p.link
if p.info > q.info:
p.link = q.link
q.link = p
if p != self.start:
r.link = q.link
else:
self.start = q
p, q = q, p
r = p
p = p.link
end = p
except Exception as e:
print("💛 Error: ", e)
def sll_has_cycle(self):
"""
Tests the list for cycles using Tortoise and Hare Algorithm (Floyd's cycle detection algorithm)
"""
try:
if self.find_sll_cycle() is None:
return False
else:
return True
except Exception as e:
print("💛 Error: ", e)
def find_sll_cycle(self):
"""
Finds cycles in the list, if any
"""
try:
# If there is one node or none, there is no cycle
if self.start is None or self.start.link is None:
return None
# Otherwise,
slowR = self.start
fastR = self.start
while slowR is not None and fastR is not None:
slowR = slowR.link
fastR = fastR.link.link
if slowR == fastR:
return slowR
return None
except Exception as e:
print("💛 Error: ", e)
def remove_cycle_from_sll(self):
"""
Removes the cycles
"""
try:
c = self.find_sll_cycle()
# If there is no cycle
if c is None:
return
print(f"💛 There is a cycle at node: ", c.info)
p = c
q = c
len_cycles = 0
while True:
len_cycles += 1
q = q.link
if p == q:
break
print(f"💛 The cycle length is {len_cycles}")
len_rem_list = 0
p = self.start
while p != q:
len_rem_list += 1
p = p.link
q = q.link
print(f"💛 The number of nodes not included in the cycle is {len_rem_list}")
length_list = len_rem_list + len_cycles
print(f"💛 The SLL length is {length_list}")
# This for loop goes to the end of the SLL, and set the last node to None and the cycle is removed.
p = self.start
for _ in range(length_list-1):
p = p.link
p.link = None
except Exception as e:
print("💛 Error: ", e)
def insert_cycle_in_sll(self, x):
"""
Inserts a cycle at a node that contains x
"""
try:
if self.start is None:
return False
p = self.start
px = None
prev = None
while p is not None:
if p.info == x:
px = p
prev = p
p = p.link
if px is not None:
prev.link = px
else:
print(f"💔 Sorry! {x} is not in the list.")
except Exception as e:
print("💛 Error: ", e)
def merge_using_new_list(self, list2):
"""
Merges two already sorted SLLs by creating new lists
"""
merge_list = SingleLinkedList()
merge_list.start = self._merge_using_new_list(self.start, list2.start)
return merge_list
def _merge_using_new_list(self, p1, p2):
"""
Private method of merge_using_new_list
"""
if p1.info <= p2.info:
Start_merge = Node(p1.info)
p1 = p1.link
else:
Start_merge = Node(p2.info)
p2 = p2.link
pM = Start_merge
while p1 is not None and p2 is not None:
if p1.info <= p2.info:
pM.link = Node(p1.info)
p1 = p1.link
else:
pM.link = Node(p2.info)
p2 = p2.link
pM = pM.link
#If the second list is finished, yet the first list has some nodes
while p1 is not None:
pM.link = Node(p1.info)
p1 = p1.link
pM = pM.link
#If the second list is finished, yet the first list has some nodes
while p2 is not None:
pM.link = Node(p2.info)
p2 = p2.link
pM = pM.link
return Start_merge
def merge_inplace(self, list2):
"""
Merges two already sorted SLLs in place in O(1) of space
"""
merge_list = SingleLinkedList()
merge_list.start = self._merge_inplace(self.start, list2.start)
return merge_list
def _merge_inplace(self, p1, p2):
"""
Merges two already sorted SLLs in place in O(1) of space
"""
if p1.info <= p2.info:
Start_merge = p1
p1 = p1.link
else:
Start_merge = p2
p2 = p2.link
pM = Start_merge
while p1 is not None and p2 is not None:
if p1.info <= p2.info:
pM.link = p1
pM = pM.link
p1 = p1.link
else:
pM.link = p2
pM = pM.link
p2 = p2.link
if p1 is None:
pM.link = p2
else:
pM.link = p1
return Start_merge
def merge_sort_sll(self):
"""
Sorts the linked list using merge sort algorithm
"""
self.start = self._merge_sort_recursive(self.start)
def _merge_sort_recursive(self, list_start):
"""
Recursively calls the merge sort algorithm for two divided lists
"""
# If the list is empty or has only one node
if list_start is None or list_start.link is None:
return list_start
# If the list has two nodes or more
start_one = list_start
start_two = self._divide_list(self_start)
start_one = self._merge_sort_recursive(start_one)
start_two = self._merge_sort_recursive(start_two)
start_merge = self._merge_inplace(start_one, start_two)
return start_merge
def _divide_list(self, p):
"""
Divides the linked list into two almost equally sized lists
"""
# Refers to the third nodes of the list
q = p.link.link
while q is not None and p is not None:
# Increments p one node at the time
p = p.link
# Increments q two nodes at the time
q = q.link.link
start_two = p.link
p.link = None
return start_two
def concat_second_list_to_sll(self, list2):
"""
Concatenates another SLL to an existing SLL
"""
# If the second SLL has no node
if list2.start is None:
return
# If the original SLL has no node
if self.start is None:
self.start = list2.start
return
# Otherwise traverse the original SLL
p = self.start
while p.link is not None:
p = p.link
# Link the last node to the first node of the second SLL
p.link = list2.start
def test_merge_using_new_list_and_inplace(self):
"""
"""
LIST_ONE = SingleLinkedList()
LIST_TWO = SingleLinkedList()
LIST_ONE.create_single_linked_list()
LIST_TWO.create_single_linked_list()
print("1️⃣ The unsorted first list is: ")
LIST_ONE.display_sll()
print("2️⃣ The unsorted second list is: ")
LIST_TWO.display_sll()
LIST_ONE.bubble_sort_sll_nodes_data()
LIST_TWO.bubble_sort_sll_nodes_data()
print("1️⃣ The sorted first list is: ")
LIST_ONE.display_sll()
print("2️⃣ The sorted second list is: ")
LIST_TWO.display_sll()
LIST_THREE = LIST_ONE.merge_using_new_list(LIST_TWO)
print("The merged list by creating a new list is: ")
LIST_THREE.display_sll()
LIST_FOUR = LIST_ONE.merge_inplace(LIST_TWO)
print("The in-place merged list is: ")
LIST_FOUR.display_sll()
def test_all_methods(self):
"""
Tests all methods of the SLL class
"""
OPTIONS_HELP = """
📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗
Select a method from 1-19:
🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒
ℹ️ (1) 👉 Create a single liked list (SLL).
ℹ️ (2) 👉 Display the SLL.
ℹ️ (3) 👉 Count the nodes of SLL.
ℹ️ (4) 👉 Search the SLL.
ℹ️ (5) 👉 Insert a node at the beginning of the SLL.
ℹ️ (6) 👉 Insert a node at the end of the SLL.
ℹ️ (7) 👉 Insert a node after a specified node of the SLL.
ℹ️ (8) 👉 Insert a node before a specified node of the SLL.
ℹ️ (9) 👉 Delete the first node of SLL.
ℹ️ (10) 👉 Delete the last node of the SLL.
ℹ️ (11) 👉 Delete a node you wish to remove.
ℹ️ (12) 👉 Reverse the SLL.
ℹ️ (13) 👉 Bubble sort the SLL by only exchanging the integer values.
ℹ️ (14) 👉 Bubble sort the SLL by exchanging links.
ℹ️ (15) 👉 Merge sort the SLL.
ℹ️ (16) 👉 Insert a cycle in the SLL.
ℹ️ (17) 👉 Detect if the SLL has a cycle.
ℹ️ (18) 👉 Remove cycle in the SLL.
ℹ️ (19) 👉 Test merging two bubble-sorted SLLs.
ℹ️ (20) 👉 Concatenate a second list to the SLL.
ℹ️ (21) 👉 Exit.
📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗
"""
self.create_single_linked_list()
while True:
print(OPTIONS_HELP)
UI_OPTION = int(input("👉 Enter an integer for the method you wish to run using the above help: "))
if UI_OPTION == 1:
data = int(input("👉 Enter an integer to be inserted at the end of the list: "))
x = int(input("👉 Enter an integer to be inserted after that: "))
self.insert_node_after_another(data, x)
elif UI_OPTION == 2:
self.display_sll()
elif UI_OPTION == 3:
self.count_sll_nodes()
elif UI_OPTION == 4:
data = int(input("👉 Enter an integer to be searched: "))
self.search_sll_nodes(data)
elif UI_OPTION == 5:
data = int(input("👉 Enter an integer to be inserted at the beginning: "))
self.insert_node_in_beginning(data)
elif UI_OPTION == 6:
data = int(input("👉 Enter an integer to be inserted at the end: "))
self.insert_node_at_end(data)
elif UI_OPTION == 7:
data = int(input("👉 Enter an integer to be inserted: "))
x = int(input("👉 Enter an integer to be inserted before that: "))
self.insert_node_before_another(data, x)
elif UI_OPTION == 8:
data = int(input("👉 Enter an integer for the node to be inserted: "))
k = int(input("👉 Enter an integer for the position at which you wish to insert the node: "))
self.insert_node_before_another(data, k)
elif UI_OPTION == 9:
self.delete_sll_first_node()
elif UI_OPTION == 10:
self.delete_sll_last_node()
elif UI_OPTION == 11:
data = int(input("👉 Enter an integer for the node you wish to remove: "))
self.delete_a_node(data)
elif UI_OPTION == 12:
self.reverse_sll()
elif UI_OPTION == 13:
self.bubble_sort_sll_nodes_data()
elif UI_OPTION == 14:
self.bubble_sort_sll()
elif UI_OPTION == 15:
self.merge_sort_sll()
elif UI_OPTION == 16:
data = int(input("👉 Enter an integer at which a cycle has to be formed: "))
self.insert_cycle_in_sll(data)
elif UI_OPTION == 17:
if self.sll_has_cycle():
print("💛 The linked list has a cycle. ")
else:
print("💚 YAAAY! The linked list does not have a cycle. ")
elif UI_OPTION == 18:
self.remove_cycle_from_sll()
elif UI_OPTION == 19:
self.test_merge_using_new_list_and_inplace()
elif UI_OPTION == 20:
list2 = self.create_single_linked_list()
self.concat_second_list_to_sll(list2)
elif UI_OPTION == 21:
break
else:
print("💛 Option must be an integer, between 1 to 21.")
print()
if __name__ == '__main__':
# Instantiates a new SLL object
SLL_OBJECT = SingleLinkedList()
SLL_OBJECT.test_all_methods()
I think the implementation below fill the bill quite gracefully.
'''singly linked lists, by Yingjie Lan, December 1st, 2011'''
class linkst:
'''Singly linked list, with pythonic features.
The list has pointers to both the first and the last node.'''
__slots__ = ['data', 'next'] #memory efficient
def __init__(self, iterable=(), data=None, next=None):
'''Provide an iterable to make a singly linked list.
Set iterable to None to make a data node for internal use.'''
if iterable is not None:
self.data, self.next = self, None
self.extend(iterable)
else: #a common node
self.data, self.next = data, next
def empty(self):
'''test if the list is empty'''
return self.next is None
def append(self, data):
'''append to the end of list.'''
last = self.data
self.data = last.next = linkst(None, data)
#self.data = last.next
def insert(self, data, index=0):
'''insert data before index.
Raise IndexError if index is out of range'''
curr, cat = self, 0
while cat < index and curr:
curr, cat = curr.next, cat+1
if index<0 or not curr:
raise IndexError(index)
new = linkst(None, data, curr.next)
if curr.next is None: self.data = new
curr.next = new
def reverse(self):
'''reverse the order of list in place'''
current, prev = self.next, None
while current: #what if list is empty?
next = current.next
current.next = prev
prev, current = current, next
if self.next: self.data = self.next
self.next = prev
def delete(self, index=0):
'''remvoe the item at index from the list'''
curr, cat = self, 0
while cat < index and curr.next:
curr, cat = curr.next, cat+1
if index<0 or not curr.next:
raise IndexError(index)
curr.next = curr.next.next
if curr.next is None: #tail
self.data = curr #current == self?
def remove(self, data):
'''remove first occurrence of data.
Raises ValueError if the data is not present.'''
current = self
while current.next: #node to be examined
if data == current.next.data: break
current = current.next #move on
else: raise ValueError(data)
current.next = current.next.next
if current.next is None: #tail
self.data = current #current == self?
def __contains__(self, data):
'''membership test using keyword 'in'.'''
current = self.next
while current:
if data == current.data:
return True
current = current.next
return False
def __iter__(self):
'''iterate through list by for-statements.
return an iterator that must define the __next__ method.'''
itr = linkst()
itr.next = self.next
return itr #invariance: itr.data == itr
def __next__(self):
'''the for-statement depends on this method
to provide items one by one in the list.
return the next data, and move on.'''
#the invariance is checked so that a linked list
#will not be mistakenly iterated over
if self.data is not self or self.next is None:
raise StopIteration()
next = self.next
self.next = next.next
return next.data
def __repr__(self):
'''string representation of the list'''
return 'linkst(%r)'%list(self)
def __str__(self):
'''converting the list to a string'''
return '->'.join(str(i) for i in self)
#note: this is NOT the class lab! see file linked.py.
def extend(self, iterable):
'''takes an iterable, and append all items in the iterable
to the end of the list self.'''
last = self.data
for i in iterable:
last.next = linkst(None, i)
last = last.next
self.data = last
def index(self, data):
'''TODO: return first index of data in the list self.
Raises ValueError if the value is not present.'''
#must not convert self to a tuple or any other containers
current, idx = self.next, 0
while current:
if current.data == data: return idx
current, idx = current.next, idx+1
raise ValueError(data)
class LinkedList:
def __init__(self, value):
self.value = value
self.next = None
def insert(self, node):
if not self.next:
self.next = node
else:
self.next.insert(node)
def __str__(self):
if self.next:
return '%s -> %s' % (self.value, str(self.next))
else:
return ' %s ' % self.value
if __name__ == "__main__":
items = ['a', 'b', 'c', 'd', 'e']
ll = None
for item in items:
if ll:
next_ll = LinkedList(item)
ll.insert(next_ll)
else:
ll = LinkedList(item)
print('[ %s ]' % ll)
First of all, I assume you want linked lists. In practice, you can use collections.deque, whose current CPython implementation is a doubly linked list of blocks (each block contains an array of 62 cargo objects). It subsumes linked list's functionality. You can also search for a C extension called llist on pypi. If you want a pure-Python and easy-to-follow implementation of the linked list ADT, you can take a look at my following minimal implementation.
class Node (object):
""" Node for a linked list. """
def __init__ (self, value, next=None):
self.value = value
self.next = next
class LinkedList (object):
""" Linked list ADT implementation using class.
A linked list is a wrapper of a head pointer
that references either None, or a node that contains
a reference to a linked list.
"""
def __init__ (self, iterable=()):
self.head = None
for x in iterable:
self.head = Node(x, self.head)
def __iter__ (self):
p = self.head
while p is not None:
yield p.value
p = p.next
def prepend (self, x): # 'appendleft'
self.head = Node(x, self.head)
def reverse (self):
""" In-place reversal. """
p = self.head
self.head = None
while p is not None:
p0, p = p, p.next
p0.next = self.head
self.head = p0
if __name__ == '__main__':
ll = LinkedList([6,5,4])
ll.prepend(3); ll.prepend(2)
print list(ll)
ll.reverse()
print list(ll)
Linked List Class
class LinkedStack:
# Nested Node Class
class Node:
def __init__(self, element, next):
self.__element = element
self.__next = next
def get_next(self):
return self.__next
def get_element(self):
return self.__element
def __init__(self):
self.head = None
self.size = 0
self.data = []
def __len__(self):
return self.size
def __str__(self):
return str(self.data)
def is_empty(self):
return self.size == 0
def push(self, e):
newest = self.Node(e, self.head)
self.head = newest
self.size += 1
self.data.append(newest)
def top(self):
if self.is_empty():
raise Empty('Stack is empty')
return self.head.__element
def pop(self):
if self.is_empty():
raise Empty('Stack is empty')
answer = self.head.element
self.head = self.head.next
self.size -= 1
return answer
Usage
from LinkedStack import LinkedStack
x = LinkedStack()
x.push(10)
x.push(25)
x.push(55)
for i in range(x.size - 1, -1, -1):
print '|', x.data[i].get_element(), '|' ,
#next object
if x.data[i].get_next() == None:
print '--> None'
else:
print x.data[i].get_next().get_element(), '-|----> ',
Output
| 55 | 25 -|----> | 25 | 10 -|----> | 10 | --> None
Sample of a doubly linked list (save as linkedlist.py):
class node:
def __init__(self, before=None, cargo=None, next=None):
self._previous = before
self._cargo = cargo
self._next = next
def __str__(self):
return str(self._cargo) or None
class linkedList:
def __init__(self):
self._head = None
self._length = 0
def add(self, cargo):
n = node(None, cargo, self._head)
if self._head:
self._head._previous = n
self._head = n
self._length += 1
def search(self,cargo):
node = self._head
while (node and node._cargo != cargo):
node = node._next
return node
def delete(self,cargo):
node = self.search(cargo)
if node:
prev = node._previous
nx = node._next
if prev:
prev._next = node._next
else:
self._head = nx
nx._previous = None
if nx:
nx._previous = prev
else:
prev._next = None
self._length -= 1
def __str__(self):
print 'Size of linked list: ',self._length
node = self._head
while node:
print node
node = node._next
Testing (save as test.py):
from linkedlist import node, linkedList
def test():
print 'Testing Linked List'
l = linkedList()
l.add(10)
l.add(20)
l.add(30)
l.add(40)
l.add(50)
l.add(60)
print 'Linked List after insert nodes:'
l.__str__()
print 'Search some value, 30:'
node = l.search(30)
print node
print 'Delete some value, 30:'
node = l.delete(30)
l.__str__()
print 'Delete first element, 60:'
node = l.delete(60)
l.__str__()
print 'Delete last element, 10:'
node = l.delete(10)
l.__str__()
if __name__ == "__main__":
test()
Output:
Testing Linked List
Linked List after insert nodes:
Size of linked list: 6
60
50
40
30
20
10
Search some value, 30:
30
Delete some value, 30:
Size of linked list: 5
60
50
40
20
10
Delete first element, 60:
Size of linked list: 4
50
40
20
10
Delete last element, 10:
Size of linked list: 3
50
40
20
Expanding Nick Stinemates's answer
class Node(object):
def __init__(self):
self.data = None
self.next = None
class LinkedList:
def __init__(self):
self.head = None
def prepend_node(self, data):
new_node = Node()
new_node.data = data
new_node.next = self.head
self.head = new_node
def append_node(self, data):
new_node = Node()
new_node.data = data
current = self.head
while current.next:
current = current.next
current.next = new_node
def reverse(self):
""" In-place reversal, modifies exiting list"""
previous = None
current_node = self.head
while current_node:
temp = current_node.next
current_node.next = previous
previous = current_node
current_node = temp
self.head = previous
def search(self, data):
current_node = self.head
try:
while current_node.data != data:
current_node = current_node.next
return True
except:
return False
def display(self):
if self.head is None:
print("Linked list is empty")
else:
current_node = self.head
while current_node:
print(current_node.data)
current_node = current_node.next
def list_length(self):
list_length = 0
current_node = self.head
while current_node:
list_length += 1
current_node = current_node.next
return list_length
def main():
linked_list = LinkedList()
linked_list.prepend_node(1)
linked_list.prepend_node(2)
linked_list.prepend_node(3)
linked_list.append_node(24)
linked_list.append_node(25)
linked_list.display()
linked_list.reverse()
linked_list.display()
print(linked_list.search(1))
linked_list.reverse()
linked_list.display()
print("Lenght of singly linked list is: " + str(linked_list.list_length()))
if __name__ == "__main__":
main()
My 2 cents
class Node:
def __init__(self, value=None, next=None):
self.value = value
self.next = next
def __str__(self):
return str(self.value)
class LinkedList:
def __init__(self):
self.first = None
self.last = None
def add(self, x):
current = Node(x, None)
try:
self.last.next = current
except AttributeError:
self.first = current
self.last = current
else:
self.last = current
def print_list(self):
node = self.first
while node:
print node.value
node = node.next
ll = LinkedList()
ll.add("1st")
ll.add("2nd")
ll.add("3rd")
ll.add("4th")
ll.add("5th")
ll.print_list()
# Result:
# 1st
# 2nd
# 3rd
# 4th
# 5th
enter code here
enter code here
class node:
def __init__(self):
self.data = None
self.next = None
class linked_list:
def __init__(self):
self.cur_node = None
self.head = None
def add_node(self,data):
new_node = node()
if self.head == None:
self.head = new_node
self.cur_node = new_node
new_node.data = data
new_node.next = None
self.cur_node.next = new_node
self.cur_node = new_node
def list_print(self):
node = self.head
while node:
print (node.data)
node = node.next
def delete(self):
node = self.head
next_node = node.next
del(node)
self.head = next_node
a = linked_list()
a.add_node(1)
a.add_node(2)
a.add_node(3)
a.add_node(4)
a.delete()
a.list_print()
my double Linked List might be understandable to noobies.
If you are familiar with DS in C, this is quite readable.
# LinkedList..
class node:
def __init__(self): ##Cluster of Nodes' properties
self.data=None
self.next=None
self.prev=None
class linkedList():
def __init__(self):
self.t = node() // for future use
self.cur_node = node() // current node
self.start=node()
def add(self,data): // appending the LL
self.new_node = node()
self.new_node.data=data
if self.cur_node.data is None:
self.start=self.new_node //For the 1st node only
self.cur_node.next=self.new_node
self.new_node.prev=self.cur_node
self.cur_node=self.new_node
def backward_display(self): //Displays LL backwards
self.t=self.cur_node
while self.t.data is not None:
print(self.t.data)
self.t=self.t.prev
def forward_display(self): //Displays LL Forward
self.t=self.start
while self.t.data is not None:
print(self.t.data)
self.t=self.t.next
if self.t.next is None:
print(self.t.data)
break
def main(self): //This is kind of the main
function in C
ch=0
while ch is not 4: //Switch-case in C
ch=int(input("Enter your choice:"))
if ch is 1:
data=int(input("Enter data to be added:"))
ll.add(data)
ll.main()
elif ch is 2:
ll.forward_display()
ll.main()
elif ch is 3:
ll.backward_display()
ll.main()
else:
print("Program ends!!")
return
ll=linkedList()
ll.main()
Though many more simplifications can be added to this code, I thought a raw implementation would me more grabbable.
Current Implementation of Linked List in Python requires for creation of a separate class, called Node, so that they can be connected using a main Linked List class. In the provided implementation, the Linked List is created without defining a separate class for a node. Using the proposed implementation, Linked Lists are easier to understand and can be simply visualized using the print function.
class Linkedlist:
def __init__(self):
self.outer = None
def add_outermost(self, dt):
self.outer = [dt, self.outer]
def add_innermost(self, dt):
p = self.outer
if not p:
self.outer = [dt, None]
return
while p[1]:
p = p[1]
p[1] = [dt, None]
def visualize(self):
p = self.outer
l = 'Linkedlist: '
while p:
l += (str(p[0])+'->')
p = p[1]
print(l + 'None')
ll = Linkedlist()
ll.add_innermost(8)
ll.add_outermost(3)
ll.add_outermost(5)
ll.add_outermost(2)
ll.add_innermost(7)
print(ll.outer)
ll.visualize()
If you want to just create a simple liked list then refer this code
l=[1,[2,[3,[4,[5,[6,[7,[8,[9,[10]]]]]]]]]]
for visualize execution for this cod Visit http://www.pythontutor.com/visualize.html#mode=edit

Categories

Resources