CCC'2020 J5/S2 Escape Room Solution (Python) - python

I am trying to solve the J5/S2 Escape Room Problem from the CCC'2020. I can't figure out why the recursion does not stop at a return statement.
Here is the link to the problems:
https://cemc.uwaterloo.ca/contests/computing/2020/ccc/juniorEF.pdf
def find_route(start_num, grid, visited=[]):
factors = []
result = 'no'
for num in range(1, start_num + 1):
if start_num % num == 0:
paired_factor = int(start_num/num)
if num <= len(grid) and paired_factor <= len(grid[0]):
factors.append((int(num), paired_factor))
print('xxxx', factors, start_num)
for m, n in factors:
x = m - 1
y = n - 1
if m == len(grid) and n == len(grid[0]):
return 'yes'
raise SystemExit(0)
else:
if (x, y) in visited:
continue
else:
visited.append((x, y))
start_num = grid[x][y]
find_route(start_num, grid, visited=visited)
print('why continue')
return result
def main():
grid = [[3, 10, 8, 14],
[1, 11, 12, 12],
[6, 2, 3, 9]]
start_num = grid[0][0]
result = find_route(start_num, grid)
print(result)
if __name__ == "__main__":
main()

You need to return your recursion.
This is the relevant snippet:
else:
visited.append((x, y))
start_num = grid[x][y]
> return find_route(start_num, grid, visited=visited)
Personally I would consider starting from the end, as it would be more deterministic to find the right product than the right factors.

Related

Unable to use recursion

Problem link = https://leetcode.com/problems/minimum-operations-to-reduce-x-to-zero/
Was practicing on leetcode and came around the above the Q. Wrote the code written below, no idea why it is not running!
def min_num(nums,x):
f_ele = nums[0]
l_ele = nums[-1]
count = 0
if min(x - f_ele, x - l_ele ) >= 0:
count += 1
#modifying x and nums
if x - f_ele == min(x - f_ele, x - l_ele ):
x = x - f_ele
nums.remove(f_ele)
else:
x = x - l_ele
nums.remove(l_ele)
#Comparing x to use recursion or return the count
if x != 0:
min_num(nums,x)
else:
return count
elif x == 0:
return count
else:
return -1
Please help!!
When you do recursion and want to return something you need to also return the result from the recursion itself.
You also can't set the count to zero in the min_num function because then the count will constantly be set to zero when you run the recursion.
Here is your code with these two small changes:
def min_num(nums, x, count=0):
f_ele = nums[0]
l_ele = nums[-1]
if min(x - f_ele, x - l_ele) >= 0:
count += 1
# modifying x and nums
if x - f_ele == min(x - f_ele, x - l_ele):
x = x - f_ele
nums.remove(f_ele)
else:
x = x - l_ele
nums.remove(l_ele)
# Comparing x to use recursion or return the count
if x != 0:
return min_num(nums, x, count)
else:
return count
elif x == 0:
return count
else:
return -1
nums = [1, 1, 4, 2, 3]
x = 5
print(min_num(nums, x))
This returns 2
def find_min(x,arrayin):
if (len(arrayin)==0 or x==-1):
return -1
elif x==0:
return len(arrayin)
left=arrayin[0]
right=arrayin[len(arrayin)-1]
if x-min(left,right)<0:
return find_min(-1,arrayin)
if x-max(left,right)>=0:
if left>right: ##Remove left
return find_min(x-left,arrayin[1:len(arrayin)])
else:##Remove right
return find_min(x-right,arrayin[0:len(arrayin)-1])
elif x-min(left,right)>=0:
if left>right: ##Remove left
return find_min(x-right,arrayin[0:len(arrayin)-1])
else:
return find_min(x-left,arrayin[1:len(arrayin)])
nums = [3,2,20,1,1,3]
x = 10
res=find_min(x,nums)
if res==-1:
print("-1")
else:
Answer=len(nums)-res
print(str(Answer))

Having trouble getting Miller-Rabin primality test in Python

I have been trying to implement Miller-Rabin primality test in Python. Unfortunately there seems to be a problem on some prime numbers. Any help is appreciated.
Code:
def _isPrime(n):
if n % 2 == 0:
return False
a = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]
s, d = _Apart(n) # turns it into 2^s x d
print(s, d)
basePrime = False
isPrime = True
for base in a:
if base >= n-2:
break
if isPrime == False and basePrime == False:
return False
witness = pow(base, d)
if (witness % n) == 1 or (witness % n) == (n-1):
basePrime = True
continue
else:
basePrime = False
for r in range(1, s):
witness = pow(base, pow(2, r) * d)
if (witness % n) != ( n - 1 ):
isPrime = False
return True
Test:
isPrime(17)
Expected:
True
Result:
False
I wrote a Miller Rabin test that is deterministic, no need for random numbers. This implementation is for python 3.7. In python 3.8, llinear_diophantinex can be replaced with pow(x, -1, y). Also i used gmpy2 as it's very fast, but you can just replace the gmpy2 statements with normal pow if you can't use that, and just remove the gmpy2.mpz() wrappers since those are just used to overload operators.
import gmpy2
sinn = 2110229697309202254897383305762150945330987087513434511395506048950594976569434432057019507105035289374307720719984431280856161609820548842778454256113246763860786119268583367543952735347969627478873317341364209555365064365565504232770227619462128918701942169785585423104678142850200975026619010035331023744330713985615650556129731348659986462960062760308034462660525448390420668021248422741300646552941285862310410598374242189448623917196191138254637812716211329113836605859918549332304189053950819346551095911511755911832183789503704294770046935064469435830299623205136625543859303686699678929069468518950480476841246805908501510754550017255944080874819287974625925494008373883250410775902993163965873632474224574883242826458163446781002284368017611606202344050570737818087202137703099075773680753707346415849787963446390136517016131227807076254668461445862154978026041507116570585784569893773262639243954090283224759975513502582494002154146757110676408972377044584495342170277522887809749465855954126593100747444378301829661568735873345178089061677917127496915956539418931430313218084338374827152407795095072639044306222222695685778907958272820576498682506540189586657786292950574081739269257159839589987847266550007783514316481286222515710538845836151864127815058116482680058626451349913138908040817800742009650450811565324184631847563730941344941348929727603343965091116543702880556850922077216848669966268219928808236163268726995495688157209747596437162960244538054993785127947211290438554095851924381172697827312534174244295581184309147813790451951453564726742200569263225639113681905176376701339808868274637448606821696026703034737428319530072483125495383057919894902076566679023694181381398377144302767983385253577700652358431959604517728821603076762965129019244904679015099154368058005173028200266632883632953133017055122970338782493475762548347258351148037427739052271661340801912188203749647918379812483260399614599813650518046331670764766419886619324840045611486524123102046413946014624119568013100078163986683199814025915420877588778260860713148420321896163326473203441644820182490479899368048072263481024886708136521847014624735722333931331098969321911443978386868675912141648200500219168920887757573018380579532261231821382787339600631297820996466930957801607217549420247654458172818940238337170577825003408756362106088558651381993611741503374243481167926898332728164900189941804942580426055589622673679047058619682175301326905577843405270203660160407401675700528981573327582844330828861745574031416926871562443652858767649050943181353635950301154441954046214987718582670685455252774874198771086552440702483933126644594300464549471422237478151976561680719370424626162642534252062987911763456822609569209140676822858933588602318066530038691463577379331113471591913447226829868760176810195567325921301390329055242213842898142597360121925124635965685365925901913816717677946911762631634793638450106377437599347740569467683272089859392249351406815344105961234868327316964137925419770514177021722214309784062017826024217906664090209434553785436385765927274067126192143337589109608949427467825999057058702263715338956534536892852849984934736685814891286495169007648767081688963426768409476169071460997622740467533572971356017575900999100928776382541052696124463195981888715845688808970103527288822088031150716134784735332326775370417950625124642515148342694377095213470544739900830244879573205335578256682901821773047071352497997708791157012233232529777513203024818391621220967964874173106990772425289900446640237659116713251437567138729645677868024033209183367071421651937808005637679844370347367922676824239404492688418047080583797577102267329067247758368597488680401670673861120323439239792549053895366970423259196919428554146265587250617656401028722578111927104663315250291888502226235291264834968061065817079511872899991276288365723969841290984981957389126603952133124328219936785870274843554107325931034103072894378438818494802517594594270034007832922248742746517915210656205746338575621725899098414488628833412591266637224507533934158213117522503993423240638893845121918647788013
def llinear_diophantinex(a, b, divmodx=1, x=1, y=0, offset=0, withstats=False, pow_mod_p2=False):
origa, origb = a, gmpy2.mpz(b)
r=a
q = a//b
prevq=1
if a == 1:
return 1
if withstats == True:
print(f"a = {a}, b = {b}, q = {q}, r = {r}")
while r != 0:
prevr = r
a,r,b = b, b, r
q,r = divmod(a,b)
x, y = y, x - q * y
if withstats == True:
print(f"a = {a}, b = {b}, q = {q}, r = {r}, x = {x}, y = {y}")
y = gmpy2.mpz(1 - origb*x // origa - 1)
if withstats == True:
print(f"x = {x}, y = {y}")
x,y=y,x
modx = (-abs(x)*divmodx)%origb
if withstats == True:
print(f"x = {x}, y = {y}, modx = {modx}")
if pow_mod_p2==False:
return (x*divmodx)%origb, y, modx, (origa)%origb
else:
if x < 0: return (modx*divmodx)%origb
else: return (x*divmodx)%origb
def ffs(x):
"""Returns the index, counting from 0, of the
least significant set bit in `x`.
"""
return (x&-x).bit_length()-1
def MillerRabin(arglist):
N = arglist[0]
primetest = arglist[1]
iterx = arglist[2]
powx = arglist[3]
withstats = arglist[4]
primetest = gmpy2.powmod(primetest, powx, N)
if withstats == True:
print("first: ", primetest)
if primetest == 1 or primetest == N - 1:
return True
else:
for x in range(0, iterx):
primetest = gmpy2.powmod(primetest, 2, N)
if withstats == True:
print("else: ", primetest)
if primetest == N - 1: return True
if primetest == 1: return False
return False
def sfactorint_isprime(N, withstats=False):
N = gmpy2.mpz(N)
from multiprocessing import Pool
if N <= 1: return False
if N == 2:
return True
if N % 2 == 0:
return False
if N < 2:
return False
# Add Trial Factoring here to speed up smaller factored number testing
iterx = ffs(N-1)
""" This k test is an algorithmic test builder instead of using
random numbers. The offset of k, from -2 to +2 produces pow tests
that fail or pass instead of having to use random numbers and more
iterations. All you need are those 5 numbers from k to get a
primality answer.
"""
k = llinear_diophantinex(N, 1<<N.bit_length(), pow_mod_p2=True) - 1
t = N >> iterx
tests = [k-2, k-1, k, k+1, k+2]
for primetest in range(len(tests)):
if tests[primetest] >= N:
tests[primetest] %= N
arglist = []
for primetest in range(len(tests)):
if tests[primetest] >= 2:
arglist.append([N, tests[primetest], iterx, t, withstats])
with Pool(5) as p:
s=p.map(MillerRabin, arglist)
if s.count(True) == len(arglist): return True
else: return False
return s
Recently I also tried to implement this algorithm in the deterministic form, as shown in Miller Test, and ran into the same problem. I couldn't figure out why it failed for some numbers so I decided to implement the 'complete' Miller-Rabin Test and it worked.
I should warn that it gets slow quickly as n increases. It's advised to use some numeric library like Numpy to optimize the calculations.
With some tweaks on your code it can be achieved:
import random
def _isPrime(n):
if n % 2 == 0:
return False
rounds = 40 # Determines the accuracy of the test
s, d = _Apart(n) # Turns it into 2^s x d + 1
for _ in range(rounds):
base = random.randrange(2, n-1) # Randomly selects a base
witness = pow(base, d)
if (witness % n) == 1 or (witness % n) == (n-1):
continue
for _ in range(1, s):
witness = pow(witness, 2) % n
if witness == (n-1):
break
else: # if the for-loop is not 'broken', n is not prime
return False
return True
def is_prime(n):
"""returns True if n is prime else False"""
if n < 5 or n & 1 == 0 or n % 3 == 0:
return 2 <= n <= 3
s = ((n - 1) & (1 - n)).bit_length() - 1
d = n >> s
for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]:
p = pow(a, d, n)
if p == 1 or p == n - 1 or a % n == 0:
continue
for _ in range(s):
p = (p * p) % n
if p == n - 1:
break
else:
return False
return True

Fibonacci that takes a list of numbers and returns their fibonacci number

I am trying to implement a function that will print a number of fibonacci numbers. For example if my input was fibonacci([0,1,2,3], the output would be 0,1,1,2.
I am not sure how to proceed.
def fibonacci(n):
if n == 0:
return 0
elif n == 1:
return 1
return fibonacci(n - 1) + fibonacci(n-2)
while True:
n.append(n)
print(fibonacci[5,10,11])
You can refactor your code a bit and get:
def fibonacci(lst):
def getTerm(n):
if n == 0:
return 0
elif n == 1:
return 1
return getTerm(n - 1) + getTerm(n-2)
return [getTerm(x) for x in lst]
Gives output:
>>> fibonacci([0,1,2,3])
[0, 1, 1, 2]
>>> fibonacci([5,10,11])
[5, 55, 89]
Avoiding redundant computations:
def fibonacci(indices):
fibs = {}
set_of_indices = set(indices)
f0 = fibs[0] = 0
f1 = fibs[1] = 1
for i in range(2,max(indices)+1):
f2 = f0+f1
if i in set_of_indices:
fibs[i] = f2
f0,f1=f1,f2
return [fibs[i] for i in indices]

Hanoi sort algirithm

How to implement Hanoi sort in python? Rules of Hanoi sort: http://www.dangermouse.net/esoteric/hanoisort.html
My code:
def hanoy_sorted(arr, x, y):
if len(arr) == 1:
print(arr[0], x, y)
elif len(arr) > 1:
hanoy_sorted(arr[1:], x, 6 - x - y)
print(arr[0], x, y)
hanoy_sorted(arr[1:], 6 - x - y, y)
def merge(arr1, x, arr2, y):
if len(arr2) == 0:
hanoy(arr1, x, y)
elif len(arr1) > 0:
n = arr1[-1]
j = len(arr2) - 1
if n < arr2[-1]:
print(arr1[-1], x, y)
j = len(arr2)
else:
for i in range(0, len(arr2)):
if n > arr2[i]:
j = i + 1
break
hanoy_sorted(arr2[j - 1:], y, x)
hanoy_sorted([n] + arr2[j - 1:], x, y)
arr2.insert(j, n)
merge(arr1[:len(arr1) - 1], x, sorted(arr2)[::-1], y)
def hanoy(arr, x, y):
if len(arr) == 1:
print(arr[0], x, y)
if len(arr) > 1:
mi = arr.index(max(arr))
up = arr[mi + 1:]
z.append(up[:])
hanoy(z[-1], x, 6 - x - y)
print(arr[mi], x, y)
merge(arr[:mi], x, sorted(up)[::-1], 6 - x - y)
arr.remove(arr[mi])
hanoy_sorted(sorted(arr)[::-1], 6 - x - y, y)
del z[-1]
n = int(input())
arr = list(map(int, input().split()))[::-1]
z = []
hanoy(arr, 1, 3)
There is an error in function merge: It sometimes puts bigger disk on smaller. How to fix that?
This programme prints what disk to move from rod1, to rod2.
Updated:
So I rewrote all my code and now I have that:
from sys import setrecursionlimit
setrecursionlimit(10000000)
def gen_moves(pos, prev_move):
moves = []
not_to_go = [prev_move[0], prev_move[2], prev_move[1]]
not_to_go2 = [prev_move[0], prev_move[2], 6 - prev_move[2] - prev_move[1]]
first, second, third = pos
if first != []:
if second != []:
if second[-1] > first[-1]:
moves.append([first[-1], 1, 2])
else:
moves.append([second[-1], 2, 1])
else:
moves.append([first[-1], 1, 2])
if third != []:
if third[-1] > first[-1]:
moves.append([first[-1], 1, 3])
else:
moves.append([third[-1], 3, 1])
else:
moves.append([first[-1], 1, 3])
else:
if second != []:
moves.append([second[-1], 2, 1])
if third != []:
moves.append([third[-1], 3, 1])
if second != []:
if third != []:
if second[-1] > third[-1]:
moves.append([third[-1], 3, 2])
else:
moves.append([second[-1], 2, 3])
else:
moves.append([second[-1], 2, 3])
else:
if third != []:
moves.append([third[-1], 3, 2])
if not_to_go in moves:
moves.remove(not_to_go)
if not_to_go2 in moves:
moves.remove(not_to_go2)
return moves
def do_move(arr, move):
pos = arr[:]
disk, from_rod, to_rod = move
pos[from_rod - 1] = pos[from_rod - 1][:-1]
pos[to_rod - 1] = pos[to_rod - 1] + [disk]
return pos
def hanoi(arr, solved, prev_move):
if not solved:
moves = gen_moves(arr, prev_move)
for move in moves:
pos = arr[:]
pos = do_move(pos, move)
sorted_arr = sorted(arr[0] + arr[1] + arr[2])[::-1]
for i in range(3):
if pos[i] == sorted_arr:
solved = True
solved = solved or hanoi(pos, solved, move)
if solved:
moves_to_solve.append(move)
break
return solved
n = int(input())
arr = [list(map(int, input().split()))[::-1], [], []]
solved = False
moves_to_solve = []
sorted_arr = sorted(arr[0] + arr[1] + arr[2])[::-1]
for i in range(3):
if arr[i] == sorted_arr:
solved = True
if n > 1 and not solved:
solved = hanoi(arr, solved, [0, 0, 0])
moves_to_solve = moves_to_solve[::-1]
for move in moves_to_solve:
print(*move)
It works right but if there are eleven disks programme prints segmentation fault. How to fix that?
You can simply use a recursive approach with a helper function to implement the tower of hanoi. Something like this;
def moveTower(height,fromPole, toPole, withPole):
if height >= 1:
moveTower(height-1,fromPole,withPole,toPole)
moveDisk(fromPole,toPole)
moveTower(height-1,withPole,toPole,fromPole)
def moveDisk(fp,tp):
print("moving disk from",fp,"to",tp)

Python: represent a number as a sum of prime numbers

I need to write an algorithm, that can represent a number as a min sum of prime numbers:
For example:
8 -> [2, 2, 2, 2], [3, 5], [2, 3, 3]
and I need get min len of this => 2
I've written the code, but it takes a lot of time, because it contains recursion. How can I change it to improve time?
import sys
x = int(sys.stdin.readline())
def is_prime(n):
for i in range(2, n):
if n % i == 0:
return False
return True
def decomposition(x):
result = []
for a in range(2, int(x/2 + 1)):
if x-a >= 2:
b = x - a
pair = [a, b]
result.append(pair)
return result
def f(elem):
list_of_mins = []
if is_prime(elem) == True:
return 1
else:
pairs = decomposition(elem)
print(pairs)
for a,b in pairs:
list_of_mins.append(f(a)+f(b))
return min(list_of_mins)
if str(int(x)).isdigit() and 2 <= int(x) <= 10 ** 9:
sum = []import sys
x = int(sys.stdin.readline())
def is_prime(n):
for i in range(2, n):
if n % i == 0:
return False
return True
def decomposition(x):
result = []
for a in range(2, int(x/2 + 1)):
if x-a >= 2:
b = x - a
pair = [a, b]
result.append(pair)
return result
def f(elem):
list_of_mins = []
if is_prime(elem) == True:
return 1
else:
pairs = decomposition(elem)
print(pairs)
for a,b in pairs:
list_of_mins.append(f(a)+f(b))
return min(list_of_mins)
if str(int(x)).isdigit() and 2 <= int(x) <= 10 ** 9:
sum = []
print(f(x))
Your is_prime function only needs to test divisors up to pow(n, 0.5)+1. This means your code would be:
def is_prime(n):
for i in range(2, int(pow(n, 0.5)+1):
if n % i == 0:
return False
return True
This should speed your algorithm up significantly.
Here's a possible solution:
import math
class Foo():
def __init__(self, n):
self.n = n
self.primes = self.prime_sieve(n)
def prime_sieve(self, sieve_size):
sieve = [True] * sieve_size
sieve[0] = False
sieve[1] = False
for i in range(2, int(math.sqrt(sieve_size)) + 1):
pointer = i * 2
while pointer < sieve_size:
sieve[pointer] = False
pointer += i
primes = []
for i in range(sieve_size):
if sieve[i] == True:
primes.append(i)
return primes
def sum_to_n(self, n, size, limit=None):
if size == 1:
yield [n]
return
if limit is None:
limit = n
start = (n + size - 1) // size
stop = min(limit, n - size + 1) + 1
for i in range(start, stop):
for tail in self.sum_to_n(n - i, size - 1, i):
yield [i] + tail
def possible_sums(self):
for i in range(2, self.n):
result = list(self.sum_to_n(self.n, i))
result = (
[v for v in result if all([(p in self.primes) for p in v])])
if result:
yield result
def result(self):
for i in self.possible_sums():
return i
raise Exception("Not available result!")
if __name__ == '__main__':
obj = Foo(8)
print(list(obj.possible_sums()))
print('-' * 80)
try:
v = obj.result()
print("{} , length = {}".format(v[0], len(v[0])))
except Exception as e:
print(e)
Result:
[[[5, 3]], [[3, 3, 2]], [[2, 2, 2, 2]]]
--------------------------------------------------------------------------------
[5, 3] , length = 2

Categories

Resources