Passing matplotlib objects to functions - python

I've wrote some functions to draw circles in the space, using matplotlib. Basically, I pass a 3D Axes object into the function, compute some data, and call the plot method. HereĀ“s my code:
import numpy as np
from numpy import sin, cos
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
t = np.linspace(0, 2*np.pi, 50)
def plot_circ(axes, color='black', alpha=0.8, **kwargs):
"""
Parameters
----------
axes : mpl_toolkits.mplot3d.axes3D.Axes3D
Where the sphere is plot.
**kwargs :
Arguments forwarded to "plot" method.
Returns
-------
None.
"""
x = cos(t) # Data to draw the circle
y = sin(t)
z = np.zeros(t.size)
axes.plot(x, y, z, color, alpha, **kwargs)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_box_aspect((1,1,1))
plot_circ(ax)
plt.show()
I get the following error when executing:
in plot_circ
axes.plot(x_hor, y_hor, z_hor, color, alpha, **kwargs)
in set_3d_properties
zs = np.broadcast_to(zs, xs.shape)
ValueError: operands could not be broadcast together with remapped shapes [original->remapped]: (50,) and requested shape (1,)
Now, if I remove the function and type everything directly, the code works:
import numpy as np
from numpy import sin, cos
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
t = np.linspace(0, 2*np.pi, 50)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_box_aspect((1,1,1))
x = cos(t)
y = sin(t)
z = np.zeros(t.size)
ax.plot(x, y, z, color='black', alpha=0.8)
plt.show()
I've read the error log, and it seems to be related with np.broadcast_to, and makes no sense since x and z have the same shape.
Thanks.

Related

Plotting a curve on the mesh surface along only a determined axis

I'm very new in Python and trying to plot a single curve on a surface.
Here is where I came so far and plotted a surface in s domain:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import cmath
x = np.linspace(-400, 0, 100)
y = np.linspace(-100, 100, 100)
X, Y = np.meshgrid(x,y)
fc=50
wc=2*np.pi*fc
s = X + Y*1j
Z= abs(1/(1+s/wc))
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z)
ax.plot(X, Y, Z)
plt.ylabel('Im')
plt.show()
I now need to plot the curve for X = 0 in different color which means the curve on the same surface along the imaginary axis. surf = ax.plot_surface(0, Y, Z) did not work. Does anybody have experience with such plot?
I'm assuming you meant you wanted to plot y=0 instead of x=0 (since x=0 would be pretty boring).
Since you want to plot a single slice of your data, you can't use the meshgrid format (or if you can, it would require some weird indexing that I don't want to figure out).
Here's how I would plot the y=0 slice:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import cmath
x = np.linspace(-400, 0, 100)
y = np.linspace(-100, 100, 100)
X, Y = np.meshgrid(x,y)
fc=50
wc=2*np.pi*fc
s = X + Y*1j
Z= abs(1/(1+s/wc))
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z)
# create data for y=0
z = abs(1/(1+x/wc))
ax.plot(x,np.zeros(np.shape(x)),z)
plt.ylabel('Im')
plt.show()

Way of plotting data into boxes instead of pyramids using mplot3d

So I have an array of values that I am trying to plot using the plot_surface command. Specifically I have a 30x30 array with one in the middle and zeros elsewhere. When I plot it this is what I obtain:
I would like however for the value to be represented as a cuboid. Is that possible?
Thank you
edit: Code that shows the figure
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
N=30
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = y = np.arange(0, N)
z = np.zeros((N,N))
z[15,15] = 1
X, Y = np.meshgrid(x, y)
ax.plot_surface(X, Y, z, cmap='YlOrBr')
plt.show(block=False)
I think a 3D bar plot will give what you're looking for.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
N=30
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = y = np.arange(0, N)
z_bottom = np.zeros((N,N))
z_top = z_bottom.copy()
z_top[15,15] = 1
X, Y = np.meshgrid(x, y)
ax.bar3d(X.ravel(), Y.ravel(), z_bottom.ravel(), 1, 1, z_top.ravel())
plt.show(block=False)
The full documentation is here if you want to play with the colors and so forth.

Changing position of axes in Axes3D

I am using mplot3d from the mpl_toolkits library. When displaying the 3D surface on the figure I'm realized the axis were not positioned as I wished they would.
Let me show, I have added to the following screenshot the position of each axis:
Is there a way to change the position of the axes in order to get this result:
Here's the working code:
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
ax = Axes3D(plt.figure())
def f(x,y) :
return -x**2 - y**2
X = np.arange(-1, 1, 0.02)
Y = np.arange(-1, 1, 0.02)
X, Y = np.meshgrid(X, Y)
Z = f(X, Y)
ax.plot_surface(X, Y, Z, alpha=0.5)
# Hide axes ticks
ax.set_xticks([-1,1])
ax.set_yticks([-1,1])
ax.set_zticks([-2,0])
ax.set_yticklabels([-1,1],rotation=-15, va='center', ha='right')
plt.show()
I have tried using xaxis.set_ticks_position('left') statement, but it doesn't work.
No documented methods, but with some hacking ideas from https://stackoverflow.com/a/15048653/1149007 you can.
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = ax = fig.add_subplot(111, projection='3d')
ax.view_init(30, 30)
def f(x,y) :
return -x**2 - y**2
X = np.arange(-1, 1, 0.02)
Y = np.arange(-1, 1, 0.02)
X, Y = np.meshgrid(X, Y)
Z = f(X, Y)
ax.plot_surface(X, Y, Z, alpha=0.5)
# Hide axes ticks
ax.set_xticks([-1,1])
ax.set_yticks([-1,1])
ax.set_zticks([-2,0])
ax.xaxis._axinfo['juggled'] = (0,0,0)
ax.yaxis._axinfo['juggled'] = (1,1,1)
ax.zaxis._axinfo['juggled'] = (2,2,2)
plt.show()
I can no idea of the meaning of the third number in triples. If set zeros nothing changes in the figure. So should look in the code for further tuning.
You can also look at related question Changing position of vertical (z) axis of 3D plot (Matplotlib)? with low level hacking of _PLANES property.
Something changed, code blow doesn't work, all axis hide...
ax.xaxis._axinfo['juggled'] = (0,0,0)
ax.yaxis._axinfo['juggled'] = (1,1,1)
ax.zaxis._axinfo['juggled'] = (2,2,2)
I suggest using the plot function to create a graph

How to make a 3D data surface plot using matplotlib in python

I am trying to make a 3d surface plot of experimental data using matplotlib. I would like to plot different Z values against the same X and Y axes. When I try the simple code below, I get the error
"plot_surface() missing 1 required positional argument: 'Z' ".
It seems that the Axes3D package only work if Z is given as a function of X and Y, rather than an actual data matrix. Does anybody know a way around this?
Please note that the Zmatrix that I need is actual data, but I just used a random matrix for illustration here.
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig = plt.figure()
X=[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
Y= [0,2500,5000,7500,10000,15000,20000,25000,30000,35000,40000,45000,50000,55000,60000,65000,70000]
Zmatrix=np.random.rand(len(X),len(Y))
Axes3D.plot_surface(X,Y,Zmatrix)
There were sone issues with your code:
First you have to get a meshgrid of X and Y (all combinations as matrices). Next swap len(X) and len(Y) inside the Zmatrix. And first define ax = Axes3D(plt.gcf()) and plot_surface afterwards on ax.
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig = plt.figure()
X=[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
Y= [0,2500,5000,7500,10000,15000,20000,25000,30000,35000,40000,45000,50000,55000,60000,65000,70000]
Xm, Ym = np.meshgrid(X, Y)
Zmatrix=np.random.rand(len(Y),len(X))
ax = Axes3D(plt.gcf())
ax.plot_surface(Xm, Ym, Zmatrix)
Here is an example of surface plot.
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import random
def fun(x, y):
return x**2 + y
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = y = np.arange(-3.0, 3.0, 0.05)
X, Y = np.meshgrid(x, y)
zs = np.array([fun(x,y) for x,y in zip(np.ravel(X), np.ravel(Y))])
Z = zs.reshape(X.shape)
ax.plot_surface(X, Y, Z)
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()

matplotlib plot_surface 3D plot with non-linear color map

I have this following python code, which displays the following 3D plot.
My code is:
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np
# Generate data example
X,Y = np.meshgrid(np.arange(-99,-90), np.arange(-200,250,50))
Z = np.zeros_like(X)
Z[:,0] = 100.
Z[4][7] = 10
# Normalize to [0,1]
Z = (Z-Z.min())/(Z.max()-Z.min())
colors = cm.viridis(Z)
rcount, ccount, _ = colors.shape
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z, rcount=rcount, ccount=ccount,
facecolors=colors, shade=False)
surf.set_facecolor((0,0,0,0))
plt.show()
I want to color the irregularities on the XY plane in a different color. I want to be able to highlight the bumps on the XY plane.
How do I do that?
The problem is that the grid is not very dense. The bump consist of a single pixel. So there are 4 cells in the grid, 3 of which have their lower left corner at 0, and would hence not receive a different color according to their value. Only the one pixel which actually is the bump gets colorized.
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np
X,Y = np.meshgrid(np.arange(-99,-90), np.arange(-200,250,50))
Z = np.zeros_like(X)
Z[:,0] = 100.
Z[4][7] = 10
norm = plt.Normalize(Z.min(),Z.min()+10 )
colors = cm.viridis(norm(Z))
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z, facecolors=colors, shade=False)
surf.set_facecolor((0,0,0,0))
plt.show()
Now you may expand the colorized part of the plot, e.g. using scipy.ndimage.grey_dilation, such that all pixels that are adjacent also become yellow.
from scipy import ndimage
C = ndimage.grey_dilation(Z, size=(2,2), structure=np.ones((2, 2)))
norm = plt.Normalize(Z.min(),Z.min()+10 )
colors = cm.viridis(norm(C))

Categories

Resources