Compute angle between two objects in an image - python

I have some specific images of two objects (a phone and a TV remote) and I want to calculate the angle between two edges that intersect of these. I used Canny to detect the edges and Hough line for the angle, but the hough_line() function found too many angles that doesnt match the requirement.
Original image:
This is the requirement:
And this is which I made:
My code:
import cv2
from skimage.transform import hough_line, hough_line_peaks
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
def edge_detection(img, blur_ksize=5, threshold1=100, threshold2=200):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_gaussian = cv2.GaussianBlur(gray, (blur_ksize, blur_ksize), 0)
img_canny = cv2.Canny(img_gaussian, threshold1, threshold2)
return img_canny
image = edge_detection(cv2.imread('img1.png'))
h, theta, d = hough_line(image)
fig, axes = plt.subplots(1, 2, figsize=(14, 6))
ax = axes.ravel()
ax[0].imshow(image)
ax[0].set_title('Input image')
ax[0].set_axis_off()
ax[1].imshow(image, cmap=cm.gray)
for _, angle, dist in zip(*hough_line_peaks(h, theta, d)):
y0 = (dist - 0 * np.cos(angle)) / np.sin(angle)
y1 = (dist - image.shape[1] * np.cos(angle)) / np.sin(angle)
ax[1].plot((0, image.shape[1]), (y0, y1), '-r')
ax[1].set_xlim((0, image.shape[1]))
ax[1].set_ylim((image.shape[0], 0))
ax[1].set_axis_off()
ax[1].set_title('Detected lines')
plt.tight_layout()
plt.show()
angle = []
dist = []
for _, a , d in zip(*hough_line_peaks(h, theta, d)):
angle.append(a)
dist.append(d)
angle = [a*180/np.pi for a in angle]
print(angle)
Are there any ways to detect and calculate exactly one angle I need in opencv? Thanks a lot
Update
I tried different values of blur_ksize, threshold1 and threshold2 in Canny detection, it's seem like I could remove redundant lines, but now the angles those hough_line_peaks() return are negative. Can anyone explain this for me? And I also want to put the angle values to the peaks in plot, to see which angle has which value

here is a sample solution, but I don't know whether it works for all images. You have to tune the hough transform parameters.
import cv2
import numpy as np
import matplotlib.pyplot as plt
def edge_detection(img, blur_ksize=5, threshold1=70, threshold2=200):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_gaussian = cv2.GaussianBlur(gray, (blur_ksize, blur_ksize), 0)
img_canny = cv2.Canny(img_gaussian, threshold1, threshold2)
return img_canny
img = cv2.imread('stack.png')
image = edge_detection(img)
minLineLength = 300
maxLineGap = 80
lines = cv2.HoughLinesP(image,1,np.pi/180,50,minLineLength,maxLineGap)
equations = []
for line in lines:
x1,y1,x2,y2 = line[0]
equations.append(np.cross([x1,y1,1],[x2,y2,1]))
cv2.line(img,(x1,y1),(x2,y2),(255,0,0),2)
font = cv2.FONT_HERSHEY_SIMPLEX
thetas = []
N = len(equations)
for ii in range(1,N):
a1,b1,c1 = equations[0]
a2,b2,c2 = equations[ii]
# intersection point
pt = np.cross([a1,b1,c1],[a2,b2,c2])
pt = np.int16(pt/pt[-1])
# angle between two lines
num = a1*b2 - b1*a2
den = a1*a2 + b1*b2
if den != 0:
theta = abs(np.arctan(num/den))*180/3.1416
# show angle and intersection point
cv2.circle(img, (pt[0],pt[1]), 5, (255,0,0), -1)
cv2.putText(img, str(round(theta, 1)), (pt[0]-20,pt[1]-20), font, 0.8, (255,0,0), 2, 0)
thetas.append(theta)
plt.imshow(img)
plt.show()

Related

How can I find the center the hole with hough circles

For this image, I tried to use hough cirlce to find the center of the "black hole".
After playing with the parameters of cv2.HoughCircles for a long time, the following is the best I can get.
raw image:
# reproducible code for stackoverflow
import cv2
import os
import sys
from matplotlib import pyplot as plt
import numpy as np
# read image can turn it gray
img = cv2.imread(FILE)
cimg = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_gray = dst = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
plt.figure(figsize = (18,18))
plt.imshow(cimg, cmap = "gray")
# removing noises
element = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
closing = cv2.morphologyEx(y, cv2.MORPH_CLOSE, element, iterations = 7)
plt.figure(figsize = (12,12))
plt.imshow(closing, cmap = "gray")
# try to find the circles
circles = cv2.HoughCircles(closing,cv2.HOUGH_GRADIENT,3,50,
param1=50,param2=30,minRadius=20,maxRadius=50)
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
# draw the outer circle
cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
# draw the center of the circle
cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
plt.figure(figsize = (12,12))
plt.imshow(cimg)
Update::
The one with Canny:
edges = cv2.Canny(closing, 100, 300)
plt.figure(figsize = (12,12))
plt.imshow(edges, cmap = "gray")
circles = cv2.HoughCircles(edges,cv2.HOUGH_GRADIENT,2,50,
param1=50,param2=30,minRadius=20,maxRadius=60)
circles = np.uint16(np.around(circles))
cimg = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
for i in circles[0,:]:
# draw the outer circle
cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
# draw the center of the circle
cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
plt.figure(figsize = (12,12))
plt.imshow(cimg)
Still not the right circle that is wanted.
Update:
#crackanddie
Sometimes there is 6 or 9 in the identity number.
The circle in 6 or 9 is not very round.
Is there any way to filter that out?
This is an alternative method if you do not want to implement or fiddle with Hough's parameters. You must be sure there's at least one circle visible in your picture. The idea is to create a segmentation mask based on the CMYK color space and filter the blobs of interest by circularity and area. These are the steps:
Convert the image from BGR to CMYK
Threshold the K channel to get a binary mask
Filter blobs by circularity and area
Approximate the filtered blobs as circles
I'm choosing the CMYK color space because the circle is mostly black. The K (key) channel (in this case - black) should do a good job of representing the blob of interest, albeit, with some noise - as usual. Let's see the code:
# Imports:
import cv2
import numpy as np
# image path
path = "D://opencvImages//"
fileName = "dyj3O.jpg"
# load image
bgr = cv2.imread(path + fileName)
Alright, we need to convert the image from BGR to CMYK. OpenCV does not offer the conversion, so we need to do it manually. The formula is very straightforward. I'm just interested on the K channel, so I just calculate it like this:
# Make float and divide by 255:
bgrFloat = bgr.astype(np.float) / 255.
# Calculate K as (1 - whatever is biggest out of bgrFloat)
kChannel = 1 - np.max(bgrFloat, axis=2)
# Convert back to uint 8:
kChannel = 255 * kChannel
kChannel = kChannel.astype(np.uint8)
Gotta keep en eye on the data types, because there are float operations going on. This is the result:
As you see, the hole is almost 100% white, that's cool, we can threshold this image via Otsu like this:
# Compute binary mask of the hole via Otsu:
_, binaryImage = cv2.threshold(kChannel, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
Which gives you this nice binary mask:
Now, here comes the laborious part. Let's find contours on this image. For every contour/blob compute circularity and area. Use this info to filter noise and get the contour of interest, keep in mind that a perfect circle should have circularity close to 1.0. Once you get a contour of interest, approximate a circle to it. This is the process:
# Find the big contours/blobs on the filtered image:
contours, hierarchy = cv2.findContours(binaryImage, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
# Store the detected circles here:
detectedCircles = []
# Look for the potential contours of interest:
for _, c in enumerate(contours):
# Get the blob's area and perimeter:
contourArea = cv2.contourArea(c)
contourPerimeter = cv2.arcLength(c, True)
# Compute circularity:
if contourPerimeter > 0:
circularity = (4 * 3.1416 * contourArea) / (pow(contourPerimeter, 2))
else:
circularity = 0.0
# Set the min threshold values to identify the
# blob of interest:
minCircularity = 0.7
minArea = 2000
if circularity >= minCircularity and contourArea >= minArea:
# Approximate the contour to a circle:
(x, y), radius = cv2.minEnclosingCircle(c)
# Compute the center and radius:
center = (int(x), int(y))
# Cast radius to in:
radius = int(radius)
# Store the center and radius:
detectedCircles.append([center, radius])
# Draw the circles:
cv2.circle(bgr, center, radius, (0, 255, 0), 2)
cv2.imshow("Detected Circles", bgr)
print("Circles Found: " + str(len(detectedCircles)))
Additionally, I have stored the circle (center and radius) in the detectedCircles list. This is the final result:
Circles Found: 1
Here it is:
import numpy as np
import cv2
def threshold_gray_const(image_, rang: tuple):
return cv2.inRange(image_, rang[0], rang[1])
def binary_or(image_1, image_2):
return cv2.bitwise_or(image_1, image_2)
def negate_image(image_):
return cv2.bitwise_not(image_)
def particle_filter(image_, power):
# Abdrakov's particle filter
nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image_, connectivity=8)
sizes = stats[1:, -1]
nb_components = nb_components - 1
min_size = power
img2 = np.zeros(output.shape, dtype=np.uint8)
for i in range(0, nb_components):
if sizes[i] >= min_size:
img_to_compare = threshold_gray_const(output, (i + 1, i + 1))
img2 = binary_or(img2, img_to_compare)
img2 = img2.astype(np.uint8)
return img2
def reject_borders(image_):
# Abdrakov's border rejecter
out_image = image_.copy()
h, w = image_.shape[:2]
for row in range(h):
if out_image[row, 0] == 255:
cv2.floodFill(out_image, None, (0, row), 0)
if out_image[row, w - 1] == 255:
cv2.floodFill(out_image, None, (w - 1, row), 0)
for col in range(w):
if out_image[0, col] == 255:
cv2.floodFill(out_image, None, (col, 0), 0)
if out_image[h - 1, col] == 255:
cv2.floodFill(out_image, None, (col, h - 1), 0)
return out_image
src = cv2.imread("your_image")
img_gray = dst = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
element = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
closing = cv2.morphologyEx(img_gray, cv2.MORPH_CLOSE, element, iterations=2)
tv, thresh = cv2.threshold(closing, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
neg = negate_image(thresh)
rej = reject_borders(neg)
filtered = particle_filter(rej, 300)
edges = cv2.Canny(filtered, 100, 200)
circles = cv2.HoughCircles(edges, cv2.HOUGH_GRADIENT, 3, 50, param1=50, param2=30, minRadius=20, maxRadius=50)
circles = np.uint16(np.around(circles))
for i in circles[0, :]:
# draw the outer circle
cv2.circle(src, (i[0], i[1]), i[2], (0, 255, 0), 2)
# draw the center of the circle
cv2.circle(src, (i[0], i[1]), 2, (0, 0, 255), 3)
cv2.imshow("closing", closing)
cv2.imshow("edges", edges)
cv2.imshow("out", src)
cv2.waitKey(0)
I changed cv2.morphologyEx parameters a bit, because they were too strong. And after this noise removing I made a binary image using cv2.THRESH_OTSU parameter, negated it, rejected borders and filtered a bit. Then I used cv2.Canny to find edges and this 'cannied' image I passed into cv2.HoughCircles. If any questions - ask me :)
If you want to use a "thinking out of the box" solution then check this solution out. Remember this might have a few false positives in some cases and would only work in cases where circle contour is complete or joined.
import numpy as np
import cv2
import matplotlib.pyplot as plt
from math import pi
pi_eps = 0.1
rgb = cv2.imread('/path/to/your/image/find_circle.jpg')
gray = cv2.cvtColor(rgb, cv2.COLOR_BGR2GRAY)
th = cv2.adaptiveThreshold(gray,255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY_INV,21,5)
contours, hier = cv2.findContours(th.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
out_img = rgb.copy()
for i in range(len(contours)):
x,y,w,h = cv2.boundingRect(contours[i])
ar = min(w,h)/max(w,h)
# For a circle aspect ratio is close to 1.0
# In your use case circle diameter is between 40px-100px
if ar < 0.9 or \
w < 40 or w > 100:
continue
# P = 2 * PI * r
perimeter = cv2.arcLength(contours[i], True)
if perimeter == 0:
continue
# Second level confirmation could be done using PI = P * P / (4 * A)
# A = PI * r * r
area = cv2.contourArea(contours[i])
if area == 0:
continue
# d = (w+h) / 2 average diameter
# A contour is a circle if (P / d) = PI
ctr_pi = perimeter / ((w+h) / 2)
if abs(ctr_pi - pi) < pi_eps * pi:
cv2.circle(out_img, (int(x+w/2), int(y+h/2)), int(max(w,h)/2), (0, 255, 0), 1)
print("Center of the circle: ", x + w/2, y+h/2)
plt.imshow(out_img)

Dividing a circle into 12 equal parts using OpenCV and Python

I have this image
Using Hough Transform, I am drawing circles on the target, here is the code and the result
import cv2
import numpy as np
from matplotlib import pyplot as plt
import math
bgr_img = cv2.imread('16-Bit_ID-00001.jpg') # read as it is
if bgr_img.shape[-1] == 3: # color image
b,g,r = cv2.split(bgr_img) # get b,g,r
rgb_img = cv2.merge([r,g,b]) # switch it to rgb
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
else:
gray_img = bgr_img
img = cv2.medianBlur(gray_img, 95) # blur value acts as a filter
cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)
circles = cv2.HoughCircles(img,cv2.HOUGH_GRADIENT,1,30,
param1=50,param2=50,minRadius=60,maxRadius=0)
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
# draw the outer circle
cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
# draw the center of the circle
cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
#sliceno = np.int32((math.pi + np.arctan2(Y, X)) * (N / (2 * math.pi)))
plt.subplot(121),plt.imshow(rgb_img)
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(cimg)
plt.title('Hough Transform'), plt.xticks([]), plt.yticks([])
plt.show()
The result I get is
Now I want to divide the circle made by the hough transform into 12 equal parts.
Anyone knows how to do it?
I did an attempt but it is far from perfect and not what I wanted to do but still here it is
import cv2
import numpy as np
from matplotlib import pyplot as plt
import math
bgr_img = cv2.imread('16-Bit_ID-00001.jpg') # read as it is
if bgr_img.shape[-1] == 3: # color image
b,g,r = cv2.split(bgr_img) # get b,g,r
rgb_img = cv2.merge([r,g,b]) # switch it to rgb
gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)
else:
gray_img = bgr_img
img = cv2.medianBlur(gray_img, 95) # blur value acts as a filter
cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)
circles = cv2.HoughCircles(img,cv2.HOUGH_GRADIENT,1,30,
param1=50,param2=50,minRadius=60,maxRadius=0)
circles = np.uint16(np.around(circles))
angle = 0
for i in circles[0,:]:
# draw the outer circle
cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
# draw the center of the circle
cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
# dividing the circle into 12 equal parts
(x, y), radius = (i[0],i[1]),i[2]
radius = int(radius)
angle = angle +30
x_2 = int(round(x + radius * math.cos(angle * math.pi / 180.0)));
y_2 = int(round(y + radius * math.sin(angle * math.pi / 180.0)));
cv2.line(cimg, (i[0],i[1]),(x_2,y_2),(255,127,0),3,cv2.LINE_AA)
angle = angle +30
x_2 = int(round(x + radius * math.cos(angle * math.pi / 180.0)));
y_2 = int(round(y + radius * math.sin(angle * math.pi / 180.0)));
cv2.line(cimg, (i[0],i[1]),(x_2,y_2),(255,127,0),3,cv2.LINE_AA)
plt.subplot(121),plt.imshow(rgb_img)
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(cimg)
plt.title('Hough Transform'), plt.xticks([]), plt.yticks([])
plt.show()
and here is the result

Corner detection with Hughlines transformation

I need to detect corner of a paper on given image. It will always be a cropped part of whole picture containing only one of the corners. My idea was to transform image by bluring and Canny edge detection to get outlines and then aplying Houghlines to get coordinates of corner.
However i get some problem to actualy detect anything consistently and precisly by Hough lines and I'm running out of ideas what can be the cause here.
I've tried tresholding instead of Canny, but it's not gonna work due to many variations in applicable images. I've downcaled whole image to make it easier to see just edges of paper, but still no improvement. Increasing line tresholds make lines from paper content diapear, but at the same time edge lines disapear from time to time
Input
Edges
Results
Code to reproduce
import cv2
import numpy as np
img = cv2.imread('inv_0001-01.1_0_corner.jpg')
resized = cv2.resize(img, (250,250), interpolation = cv2.INTER_AREA)
gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)
kernel_size = 5
blur_gray = cv2.GaussianBlur(gray,(kernel_size, kernel_size),0)
edges = cv2.Canny(blur_gray,50,150,apertureSize = 3)
cv2.imshow('edges', edges)
cv2.waitKey()
min_line_length = 50
max_line_gap = 20
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, 5, np.array([]), min_line_length, max_line_gap)
for line in lines:
for x1,y1,x2,y2 in line:
cv2.line(resized,(x1,y1),(x2,y2),(255,0,0),5)
cv2.imshow('hough', resized)
cv2.waitKey()
My go-to result would be coordinate of paper corner in given image, but in this post I'm rather looking for some help in understanding how to use Houglines for such tasks
This answer explains how to find the corner. Finding the corner requires a two part solution. First, the image needs to be segmented in to two regions: paper and background. Second, you can look for corners in the segmented image.
After you find the edges, floodfill the image to segment the paper from the background (this is the floodfill image):
mask = np.zeros((h+2, w+2), np.uint8)
# Floodfill from point (0, 0)
cv2.floodFill(edges, mask, (0,0), 123);
Now that you have segmented the image, get rid of the text on the paper using a mask (this is the image titled 'Masking'):
bg = np.zeros_like(edges)
bg[edges == 123] = 255
After you get the mask, appl the canny edge filter again to get the out line of the paper (HoughLines needs an outline not a mask...this is the 'Edges after masking' image):
bg = cv2.blur(bg, (3,3))
edges = cv2.Canny(bg,50,150,apertureSize = 3)
Now you can run your HoughLines algorithm on the cleaner image. I used a different HoughLines algorithm than you did, but yours should work too. Here is the full code that I used:
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Create a multi plot
f, axarr = plt.subplots(2,3, sharex=True)
img = cv2.imread('/home/stephen/Desktop/IRcCAWL.png')
resized = cv2.resize(img, (250,250), interpolation = cv2.INTER_AREA)
# Show source image
axarr[0,0].imshow(resized)
gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)
kernel_size = 5
blur_gray = cv2.GaussianBlur(gray,(kernel_size, kernel_size),0)
edges = cv2.Canny(blur_gray,50,150,apertureSize = 3)
# Show first edges image
axarr[0,1].imshow(edges)
h, w = edges.shape[:2]
mask = np.zeros((h+2, w+2), np.uint8)
# Floodfill from point (0, 0)
cv2.floodFill(edges, mask, (0,0), 123);
# Show the flood fill image
axarr[0,2].imshow(edges)
floodfill = edges.copy()
bg = np.zeros_like(edges)
bg[edges == 123] = 255
# Show the masked image
axarr[1,0].imshow(bg)
bg = cv2.blur(bg, (3,3))
edges = cv2.Canny(bg,50,150,apertureSize = 3)
# Show the edges after masking
axarr[1,1].imshow(edges)
min_line_length = 50
max_line_gap = 20
def intersection(line1, line2):
"""Finds the intersection of two lines given in Hesse normal form.
Returns closest integer pixel locations.
See https://stackoverflow.com/a/383527/5087436
"""
rho1, theta1 = line1[0]
rho2, theta2 = line2[0]
A = np.array([
[np.cos(theta1), np.sin(theta1)],
[np.cos(theta2), np.sin(theta2)]
])
b = np.array([[rho1], [rho2]])
x0, y0 = np.linalg.solve(A, b)
x0, y0 = int(np.round(x0)), int(np.round(y0))
return [[x0, y0]]
import math
lines = cv2.HoughLines(edges, 1, np.pi / 180, 100, None, 0, 0)
# Draw the lines
if lines is not None:
for i in range(0, len(lines)):
rho = lines[i][0][0]
theta = lines[i][0][1]
a = math.cos(theta)
b = math.sin(theta)
x0 = a * rho
y0 = b * rho
pt1 = (int(x0 + 1000*(-b)), int(y0 + 1000*(a)))
pt2 = (int(x0 - 1000*(-b)), int(y0 - 1000*(a)))
cv2.line(resized, pt1, pt2, (123,234,123), 2, cv2.LINE_AA)
xy = tuple(intersection(lines[0], lines[1])[0])
resized = cv2.circle(resized, xy, 5, 255, 2)
# Show the image with the corner
axarr[1,2].imshow(resized)
# Add titles
axarr[0,0].set_title('Source Image')
axarr[0,1].set_title('Edges')
axarr[0,2].set_title('Floodfill')
axarr[1,0].set_title('Masking')
axarr[1,1].set_title('Edges after masking')
axarr[1,2].set_title('Hough Lines')
# Clean up
axarr[0,0].axis('off')
axarr[0,1].axis('off')
axarr[1,0].axis('off')
axarr[1,1].axis('off')
axarr[1,2].axis('off')
axarr[0,2].axis('off')
plt.show()

how to write the script for image corner degree calculation?

I have over 100 images that each of them is in different angle. I have written an basic python code to rotate each of the image one by one from any angle to zero degree ( I mean making them flat). The python code that I have attached is a simple code and unfortunately it doesn't automatically find the angle and it does not make it exact zero. Any time for any of the image I should find the angle and run the code for many time to make it zero (sometimes I am not able to make it exactly flat or what we celled zero degree). According to the images that I have attached, image1 is one of the sample image as an input and image_2 is the rotated image that I want to have at the end as an output.
I would like to ask anyone that can help me to modify the current code or provide me with the new python code (which I prefer the new code)that I can make my images rotate from any angle to zero degree.
please feel free to ask me for more explanation if you want.
my opencv-python code is:
import cv2
import numpy as np
img = cv2.imread('image1.tif')
num_rows, num_cols = img.shape[:2]
rotation_matrix = cv2.getRotationMatrix2D((num_cols/2, num_rows/2),69.4, 1)
img_rotation = cv2.warpAffine(img, rotation_matrix, (num_cols, num_rows))
cv2.imshow('Rotation', img_rotation)
cv2.imwrite('image_2.tif',img_rotation)
cv2.waitKey()
Note: input and output images deleted.
it's definitely not the most robust method, but perhaps an option would be to:
assume that the boundary is all black
identify the top-most (x0,y0) / right-most (x1,y1) corners of the image
calculate the angle of rotation as alpha = math.atan2(x1-x0,y1-y0)
I downloaded your figure (it was converted to png on imgur) and tested the procedure with:
#!/usr/bin/env python
import cv2
import math
import numpy as np
img = cv2.imread('test.png')
H, W = img.shape[:2]
x0,y0 = None,None
x1,y1 = None,None
#scan all rows starting with the first
for i in range(0, H):
row = img[i].sum(axis=1)
s = np.sum(row)
if s:
#if there is at least one non-black pixel, mark
#its position
x0 = np.max(np.where(row>0))
y0 = i
break
#scan all columns starting with the right-most one
for j in range(W-1,-1,-1):
col = img[:,j,:].sum(axis=1)
s = np.sum(col)
if s:
#mark the position of the first non-black pixel
x1 = j
y1 = np.min(np.where(col>0))
break
dx = x1 - x0
dy = y1 - y0
alpha = math.atan2(dx, dy) / math.pi * 180
rotation_matrix = cv2.getRotationMatrix2D((W/2, H/2), -alpha, 1)
img_rotation = cv2.warpAffine(img, rotation_matrix, (W, H))
cv2.imwrite('image_2.tif',img_rotation)
EDIT:
The previous method can be inaccurate in case the "corner" pixel is black as well so that the calculated angle is then biased. Slightly more accurate approach could be as follows:
determine the "upper" boundary of the rectangle (i.e., the coordinates of the pixels defining the edges)
take the edge the projection of which on the x-axis is longer
fit the coordinates in order to calculate the slope of the line defining the edge
The implementation:
#!/usr/bin/env python
import cv2
import math
import numpy as np
img = cv2.imread('test.png')
H, W = img.shape[:2]
data = []
for j in range(0, W):
col = img[:,j,:].sum(axis=1)
s = np.sum(col)
if not s:
continue
for i in range(0, H):
if col[i] > 0:
data.append((j, i))
break
y_min, min_pos = None, None
for idx, (x, y) in enumerate(data):
if y_min is None or y < y_min:
y_min = y
min_pos = idx
N = len(data)
if min_pos > N - min_pos:
data = data[:min_pos]
else:
data = data[min_pos:]
data = np.asarray(data).T
coeffs = np.polyfit(data[0], data[1], 1)
alpha = math.atan(coeffs[0]) / math.pi * 180
print(alpha)
rotation_matrix = cv2.getRotationMatrix2D((W/2, H/2), alpha, 1)
img_rotation = cv2.warpAffine(img, rotation_matrix, (W, H))
cv2.imwrite('image_2.tif',img_rotation)
another way to find the angle is (asuming that the image is over a black background):
Convert the image to grayscale
Segmentate the image using a threshold
Find the contours of the image
Find the parameters of the ellipse that fit the contour
import cv2
import numpy as np
image = cv2.imread("DlYEa.png")
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
num_rows, num_cols = image.shape[:2]
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)
img, contours, hier = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnt = contours[0]
(x, y), (Ma, ma), angle = cv2.fitEllipse(cnt)
angle = int(angle - 90)
rotation_matrix = cv2.getRotationMatrix2D((num_cols/2, num_rows/2), angle, 1)
img_rotation = cv2.warpAffine(image, rotation_matrix, (num_cols, num_rows))
cv2.imshow("rotation", img_rotation)
cv2.waitKey()
cv2.destroyAllWindows()

Detect markers in 2D Image [Python/OpenCV]

I would like to create a script in Python (with use OpenCV library) that determines which markers are in the picture. Markers look something like this:
Markers
After loading the image, the script should print which markers are in the picture (return numbers of markers). For example, if I load this picture:
Image with markers
For this image a script should return three numbers: 1, 2 and 3. I have a script, which load image and recognize figures (circles, squares etc. - in script below only squares) but I haven't any idea to recognise whole marker, which consists of several figures. Any ideas? Please for any suggestions about algorithm or any solution.
import numpy as np
import cv2
img = cv2.imread('B.jpg')
gray = cv2.imread('B.jpg',0)
ret,thresh = cv2.threshold(gray,120,255,1)
contours,h = cv2.findContours(thresh,1,2)
for cnt in contours:
approx = cv2.approxPolyDP(cnt,0.01*cv2.arcLength(cnt,True),True)
print len(approx)
if len(approx)==4:
print "square"
cv2.drawContours(img,[cnt],0,(0,0,255))
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
But obviously it isn't what I need it only surrounds rectangulars.
Thanks for any tips and help.
Firstly I try to use feature matching (proposition by #tfv user) but it probably isn't a good solution. In many approaches it gives too many matches (but images are completely different) or too few matches (when images are the same)
Now I will try use an algorithm by #Micka but I have a problem with second and third point. The code in my post above find squares. How do I save the new rectangles as new images?
Feature matching will perform poorly because these markers have very few features (you want clusters of corners and fine details for feature matching).
These markers lend themselves better for a Template Matching scheme. The correlation between the input image and the templates will be the highest for the correct template type (given that the template is properly positioned, oriented, and scaled). The following code works for your example. It includes a lot of required preprocessing but the essence is to find the highest correlation: np.correlate(img.flatten(), templ.flatten()). The code could be improved in many ways to make it more robust against variations in marker position, scale, orientation, noise etc.
import matplotlib.pyplot as plt
import numpy as np
import cv2
# Detect and store the 6 templates (markers)
fig0, axs0 = plt.subplots(2)
imgs = cv2.imread("markers.png")
imgs_gray = cv2.cvtColor(imgs, cv2.COLOR_BGR2GRAY)
ret, imgs_th = cv2.threshold(imgs_gray, 100, 255, cv2.THRESH_BINARY)
xywh = np.zeros((0, 4), dtype=np.int32)
contours, hierarchies = cv2.findContours(
imgs_th, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
for idx, c in enumerate(contours):
if hierarchies[0, idx, 3] == 0 and cv2.contourArea(c) > 20000:
x, y, w, h = cv2.boundingRect(c)
xywh = np.vstack((xywh, np.array([x, y, w, h])))
axs0[0].set_title("thresholded markers image")
axs0[0].imshow(imgs_th, cmap="gray")
sortx_xywh = xywh[np.argsort(xywh[:, 0])]
sortyx_xywh = sortx_xywh[np.argsort(sortx_xywh[:, 1])]
max_w = np.amax(sortyx_xywh[:, 2])
max_h = np.amax(sortyx_xywh[:, 3])
templates = np.zeros((max_h, max_w, 6))
for i, xy in enumerate(sortyx_xywh[:, 0:2]):
templates[:, :, i] = imgs_th[xy[1] : xy[1] + max_h, xy[0] : xy[0] + max_w]
# Detect the marker regions in the input image
img_in = cv2.imread("input.jpg")
img_gray = cv2.cvtColor(img_in, cv2.COLOR_BGR2GRAY)
ret, img_th = cv2.threshold(img_gray, 100, 255, cv2.THRESH_BINARY)
xywh = np.zeros((0, 4), dtype=np.int32)
contours, hierarchies = cv2.findContours(img_th, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for idx, c in enumerate(contours):
if hierarchies[0, idx, 3] == 0 and cv2.contourArea(c) > 20000:
x, y, w, h = cv2.boundingRect(c)
xywh = np.vstack((xywh, np.array([x, y, w, h])))
axs0[1].set_title("thresholded input image")
axs0[1].imshow(img_th, cmap="gray")
fig0.show()
# Use simplified template matching (correlation) to determine marker type and orientation
for xy in xywh[:, 0:2]:
fig1, axs1 = plt.subplots(5, 6)
img = img_th[xy[1] : xy[1] + max_h, xy[0] : xy[0] + max_w]
axs1[0, 0].imshow(img, cmap="gray")
axs1[0, 0].set_title("input image")
corr = np.zeros((4, 6))
for t in range(6): # 6 templates
templ = templates[:, :, t]
for o in range(4): # 4 orientations
corr[o, t] = np.correlate(img.flatten(), templ.flatten())
axs1[o + 1, t].imshow(templ, cmap="gray")
axs1[o + 1, t].set_title("corr = {:.2e}".format(corr[o, t]))
templ = np.rot90(templ)
rot, typ = np.unravel_index(np.argmax(corr, axis=None), corr.shape)
print("Input marker at ({},{}) is type {}, rotated {} degrees.".format(xy[0], xy[1], typ + 1, rot * 90))
fig1.tight_layout(pad=0.001)
fig1.show()

Categories

Resources