Can I make a pie chart based on indexes in Python? - python

Could you please help me if you know how to make a pie chart in Python from it?
This is a reproducible example how the df looks like. However, I have way more rows over there.
import pandas as pd
data = [["70%"], ["20%"], ["10%"]]
example = pd.DataFrame(data, columns = ['percentage'])
example.index = ['Lasiogl', 'Centella', 'Osmia']
example

You can use matplotlib to plot the pie chart using dataframe and its indexes as labels of the chart:
import matplotlib.pyplot as plt
import pandas as pd
data = ['percentage':["70%"], ["20%"], ["10%"]]
example = pd.DataFrame(data, columns = ['percentage'])
my_labels = 'Lasiogl', 'Centella', 'Osmia'
plt.pie(example,labels=my_labels,autopct='%1.1f%%')
plt.show()

Related

Bar plot and coloured categorical variable

I have a dataframe with 3 variables:
data= [["2019/oct",10,"Approved"],["2019/oct",20,"Approved"],["2019/oct",30,"Approved"],["2019/oct",40,"Approved"],["2019/nov",20,"Under evaluation"],["2019/dec",30,"Aproved"]]
df = pd.DataFrame(data, columns=['Period', 'Observations', 'Result'])
I want a barplot grouped by the Period column, showing all the values ​​contained in the Observations column and colored with the Result column.
How can I do this?
I tried the sns.barplot, but it joined the values in Observations column in just one bar(mean of the values).
sns.barplot(x='Period',y='Observations',hue='Result',data=df,ci=None)
Plot output
Assuming that you want one bar for each row, you can do as follows:
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
result_cat = df["Result"].astype("category")
result_codes = result_cat.cat.codes.values
cmap = plt.cm.Dark2(range(df["Result"].unique().shape[0]))
patches = []
for code in result_cat.cat.codes.unique():
cat = result_cat.cat.categories[code]
patches.append(mpatches.Patch(color=cmap[code], label=cat))
df.plot.bar(x='Period',
y='Observations',
color=cmap[result_codes],
legend=False)
plt.ylabel("Observations")
plt.legend(handles=patches)
If you would like it grouped by the months, and then stacked, please use the following (note I updated your code to make sure one month had more than one status), but not sure I completely understood your question correctly:
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
data= [["2019/oct",10,"Approved"],["2019/oct",20,"Approved"],["2019/oct",30,"Approved"],["2019/oct",40,"Under evaluation"],["2019/nov",20,"Under evaluation"],["2019/dec",30,"Aproved"]]
df = pd.DataFrame(data, columns=['Period', 'Observations', 'Result'])
df.groupby(['Period', 'Result'])['Observations'].sum().unstack('Result').plot(kind='bar', stacked=True)

how to create a pie chart from csv file using python

I have this CSV data file, I'm trying to make a pie chart using this data
I'm a beginner in python and don't understand how to create a pie chart using the three columns, please help!
working solution code would be more helpful!
My code:
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv ('chart_work.csv')
product_data = df["Product Name;"]
bug_data = df["Number Of Bugs"]
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#8c564b"]
plt.pie(bug_data , labels=product_data , colors=colors,
autopct='%1.1f%%', shadow=True, startangle=140)
plt.show()
the pie chart which is outputed by this code is distorted, any help?
Chart I'm getting:
This is very simple.
import pandas as pd
from matplotlib.pyplot import pie, axis, show
%matplotlib inline
df = pd.read_csv ('chart_work.csv')
sums = df.groupby(df["Product Name;"])["Number Of Bugs"].sum()
axis('equal');
pie(sums, labels=sums.index);
show()
The pie chart does not 'know' that you want all items with same product name grouped and summed over in your chart. so you have to do that first:
df = df.groupby(["Product Name;"]).sum()
This sets the product name column as index of the df so change your product_data column selection to this:
product_data = df.index
import matplotlib.pyplot as plt
sizes=[89,80,90,100,75]
lables=["swetha","yokesh","iswarya","ranjeeth","deepika"]
plt.pie(sizes,lables=lables,autopct="%.2f")
plt.axes().set_aspect("equal")
plt.show()

Pyhon matplotlib - plot box plots from 2 different data frames

Hello,
I'm trying to plot a box plot combining columns from two different data frames. Help please :)
This is the code:
import pandas as pd
from numpy import random
#Generating the data frame
df1 = pd.DataFrame(data = random.randn(5,2), columns = ['W','Y'])
df2 = pd.DataFrame(data = random.randn(5,2), columns = ['X','Y'])
print(df1.head())
print('\n')
print(df2.head())
This is the output:
This is what I want to get:
The following will give you what you desire:
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 1)
ax.boxplot([df1['Y'], df2['Y']], positions=[1, 2])
ax.set_xticklabels(['W', 'X'])
ax.set_ylabel('Y')
This gave me the plot below (which I think is what you were aiming for):

Python Change axis on Multi Histogram plot

I have a pandas dataframe df for which I plot a multi-histogram as follow :
df.hist(bins=20)
This give me a result that look like this (Yes this exemple is ugly since there is only one data per histogram, sorry) :
I have a subplot for each numerical column of my dataframe.
Now I want all my histograms to have an X-axis between 0 and 1. I saw that the hist() function take a ax parameter, but I cannot manage to make it work.
How is it possible to do that ?
EDIT :
Here is a minmal example :
import pandas as pd
import matplotlib.pyplot as plt
myArray = [(0,0,0,0,0.5,0,0,0,1),(0,0,0,0,0.5,0,0,0,1)]
myColumns = ['col1','col2','col3','co4','col5','col6','col7','col8','col9']
df = pd.DataFrame(myArray,columns=myColumns)
print(df)
df.hist(bins=20)
plt.show()
Here is a solution that works, but for sure is not ideal:
import pandas as pd
import matplotlib.pyplot as plt
myArray = [(0,0,0,0,0.5,0,0,0,1),(0,0,0,0,0.5,0,0,0,1)]
myColumns = ['col1','col2','col3','co4','col5','col6','col7','col8','col9']
df = pd.DataFrame(myArray,columns=myColumns)
print(df)
ax = df.hist(bins=20)
for x in ax:
for y in x:
y.set_xlim(0,1)
plt.show()

How to plot DataFrames? in Python

I'm trying to plot a DataFrame, but I'm not getting the results I need. This is an example of what I'm trying to do and what I'm currently getting. (I'm new in Python)
import pandas as pd
import matplotlib.pyplot as plt
my_data = {1965:{'a':52, 'b':54, 'c':67, 'd':45},
1966:{'a':34, 'b':34, 'c':35, 'd':76},
1967:{'a':56, 'b':56, 'c':54, 'd':34}}
df = pd.DataFrame(my_data)
df.plot( style=[])
plt.show()
I'm getting the following graph, but what I need is: the years in the X axis and each line must be what is currently in X axis (a,b,c,d). Thanks for your help!!.
import pandas as pd
import matplotlib.pyplot as plt
my_data = {1965:{'a':52, 'b':54, 'c':67, 'd':45},
1966:{'a':34, 'b':34, 'c':35, 'd':76},
1967:{'a':56, 'b':56, 'c':54, 'd':34}}
df = pd.DataFrame(my_data)
df.T.plot( kind='bar') # or df.T.plot.bar()
plt.show()
Updates:
If this is what you want:
df = pd.DataFrame(my_data)
df.columns=[str(x) for x in df.columns] # convert year numerical values to str
df.T.plot()
plt.show()
you can do it this way:
ax = df.T.plot(linewidth=2.5)
plt.locator_params(nbins=len(df.columns))
ax.xaxis.set_major_formatter(mtick.FormatStrFormatter('%4d'))

Categories

Resources