Related
How can I fix my code to pass the test case for Delete occurrences of an element if it occurs more than n times?
My current code pass one test case and I'm sure that the problem is caused by order.remove(check_list[i]).
However, there is no way to delete the specific element with pop() because it is required to put an index number rather than the element in pop().
Test case
Test.assert_equals(delete_nth([20,37,20,21], 1), [20,37,21])
Test.assert_equals(delete_nth([1,1,3,3,7,2,2,2,2], 3), [1, 1, 3, 3, 7, 2, 2, 2])
Program
def delete_nth(order, max_e):
# code here
check_list = [x for x in dict.fromkeys(order) if order.count(x) > 1]
print(check_list)
print(order)
for i in range(len(check_list)):
while(order.count(check_list[i]) > max_e):
order.remove(check_list[i])
#order.pop(index)
return order
Your assertions fails, because the order is not preserved. Here is a simple example of how this could be done without doing redundant internal loops to count the occurrences for each number:
def delete_nth(order, max_e):
# Get a new list that we will return
result = []
# Get a dictionary to count the occurences
occurrences = {}
# Loop through all provided numbers
for n in order:
# Get the count of the current number, or assign it to 0
count = occurrences.setdefault(n, 0)
# If we reached the max occurence for that number, skip it
if count >= max_e:
continue
# Add the current number to the list
result.append(n)
# Increase the
occurrences[n] += 1
# We are done, return the list
return result
assert delete_nth([20,37,20,21], 1) == [20, 37, 21]
assert delete_nth([1, 1, 1, 1], 2) == [1, 1]
assert delete_nth([1, 1, 3, 3, 7, 2, 2, 2, 2], 3) == [1, 1, 3, 3, 7, 2, 2, 2]
assert delete_nth([1, 1, 2, 2], 1) == [1, 2]
A version which maintains the order:
from collections import defaultdict
def delete_nth(order, max_e):
count = defaultdict(int)
delet = []
for i, v in enumerate(order):
count[v] += 1
if count[v] > max_e:
delet.append(i)
for i in reversed(delet): # start deleting from the end
order.pop(i)
return order
print(delete_nth([1,1,2,2], 1))
print(delete_nth([20,37,20,21], 1))
print(delete_nth([1,1,3,3,7,2,2,2,2], 3))
This should do the trick:
from itertools import groupby
import numpy as np
def delete_nth(order, max_e):
if(len(order)<=max_e):
return order
elif(max_e<=0):
return []
return np.array(
sorted(
np.concatenate(
[list(v)[:max_e]
for k,v in groupby(
sorted(
zip(order, list(range(len(order)))),
key=lambda k: k[0]),
key=lambda k: k[0])
]
),
key=lambda k: k[1])
)[:,0].tolist()
Outputs:
print(delete_nth([2,3,4,5,3,2,3,2,1], 2))
[2, 3, 4, 5, 3, 2, 1]
print(delete_nth([2,3,4,5,5,3,2,3,2,1], 1))
[2, 3, 4, 5, 1]
print(delete_nth([2,3,4,5,3,2,3,2,1], 3))
[2, 3, 4, 5, 3, 2, 3, 2, 1]
print(delete_nth([2,2,1,1], 1))
[2, 1]
Originally my answer only worked for one test case, this is quick (not the prettiest) but works for both:
def delete_nth(x, e):
x = x[::-1]
for i in x:
while x.count(i) > e:
x.remove(i)
return x[::-1]
Here is what I am trying to do. Given a number and a set of numbers, I want to partition that number into the numbers given in the set (with repetitions).
For example :
take the number 9, and the set of numbers = {1, 4, 9}.
It will yield the following partitions :
{ (1, 1, 1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 4), (1, 4, 4), (9,)}
No other possible partitions using the set {1, 4, 9} cannot be formed to sum the number 9.
I wrote a function in Python which do the task :
S = [ 1, 4, 9, 16 ]
def partition_nr_into_given_set_of_nrs(nr , S):
lst = set()
# Build the base case :
M = [1]*(nr%S[0]) + [S[0]] * (nr //S[0])
if set(M).difference(S) == 0 :
lst.add(M)
else :
for x in S :
for j in range(1, len(M)+1):
for k in range(1, nr//x +1 ) :
if k*x == sum(M[:j]) :
lst.add( tuple(sorted([x]*k + M[j:])) )
return lst
It works correctly but I want to see some opinions about it. I'm not satisfied about the fact that it uses 3 loops and I guess that it can be improved in a more elegant way. Maybe recursion is more suited in this case. Any suggestions or corrections would be appreciated. Thanks in advance.
I would solve this using a recursive function, starting with the largest number and recursively finding solutions for the remaining value, using smaller and smaller numbers.
def partition_nr_into_given_set_of_nrs(nr, S):
nrs = sorted(S, reverse=True)
def inner(n, i):
if n == 0:
yield []
for k in range(i, len(nrs)):
if nrs[k] <= n:
for rest in inner(n - nrs[k], k):
yield [nrs[k]] + rest
return list(inner(nr, 0))
S = [ 1, 4, 9, 16 ]
print(partition_nr_into_given_set_of_nrs(9, S))
# [[9], [4, 4, 1], [4, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1]]
Of course you could also do without the inner function by changing the parameters of the function and assuming that the list is already sorted in reverse order.
If you want to limit the number of parts for large numbers, you can add an aditional parameter indicating the remaining allowed number of elements and only yield result if that number is still greater than zero.
def partition_nr_into_given_set_of_nrs(nr, S, m=10):
nrs = sorted(S, reverse=True)
def inner(n, i, m):
if m > 0:
if n == 0:
yield []
for k in range(i, len(nrs)):
if nrs[k] <= n:
for rest in inner(n - nrs[k], k, m - 1):
yield [nrs[k]] + rest
return list(inner(nr, 0, m))
Here is a solution using itertools and has two for loops so time complexity is about O(n*n) (roughly)
A little memoization applied to reshape list by removing any element that is greater than max sum needed.
Assuming you are taking sum to be max of your set (9 in this case).
sourceCode
import itertools
x = [ 1, 4, 9, 16 ]
s = []
n = 9
#Remove elements >9
x = [ i for i in x if i <= n]
for i in xrange(1,n + 1):
for j in itertools.product(x,repeat = i):
if sum(j) == n:
s.append(list(j))
#Sort each combo
s =[sorted(i) for i in s]
#group by unique combo
print list(k for k,_ in itertools.groupby(s))
Result
>>>
>>>
[[9], [1, 4, 4], [1, 1, 1, 1, 1, 4], [1, 1, 1, 1, 1, 1, 1, 1, 1]]
EDIT
You can further optimize speed (if needed) by stopping finding combo's after sum of product is > 9
e.g.
if sum(j) > n + 2:
break
I'm new to Python, and have some problems with creating random lists.
I'm using random.sample(range(x, x), y).
I want to get 4 lists with unique numbers, from 1-4, so I have been using this
a = random.sample(range(1, 5), 4)
b = random.sample(range(1, 5), 4)
c = random.sample(range(1, 5), 4)
d = random.sample(range(1, 5), 4)
So I get for example
a = 1, 3, 2, 4
b = 1, 4, 3, 2
c = 2, 3, 1, 4
d = 4, 2, 3, 1
How can I make it that the column are also unique?
Absent a clear mathematical theory, I distrust anything other than a somewhat hit-and-miss approach. In particular, backtracking approaches can introduce a subtle bias:
from random import shuffle
def isLatin(square):
#assumes that square is an nxn list
#where each row is a permutation of 1..n
n = len(square[0])
return all(len(set(col)) == n for col in zip(*square))
def randSquare(n):
row = [i for i in range(1,1+n)]
square = []
for i in range(n):
shuffle(row)
square.append(row[:])
return square
def randLatin(n):
#uses a hit and miss approach
while True:
square = randSquare(n)
if isLatin(square): return square
Typical output:
>>> s = randLatin(4)
>>> for r in s: print(r)
[4, 1, 3, 2]
[2, 3, 4, 1]
[1, 4, 2, 3]
[3, 2, 1, 4]
Totally random then:
def gen_matrix():
first_row = random.sample(range(1, 5), 4)
tmp = first_row + first_row
rows = []
for i in range(4):
rows.append(tmp[i:i+4])
return random.sample(rows, 4)
Create a list of all the elements, and as will filling the line, remove the used element.
import random
def fill_line(length):
my_list = list(range(length))
to_return = []
for i in range(length):
x = random.choice(my_list)
to_return.append(x)
my_list.remove(x)
return to_return
x = [fill_line(4)
for i in range(4)]
print(x)
Probably the simplest way is to create a valid matrix, and then shuffle the rows, and then shuffle the columns:
import random
def random_square(U):
U = list(U)
rows = [U[i:] + U[:i] for i in range(len(U))]
random.shuffle(rows)
rows_t = [list(i) for i in zip(*rows)]
random.shuffle(rows_t)
return rows_t
Usage:
>>> random_square(range(1, 1+4))
[[2, 3, 4, 1], [4, 1, 2, 3], [3, 4, 1, 2], [1, 2, 3, 4]]
This should be able to create any valid matrix with equal probability. After doing some reading it seems that this still has bias, although I don't fully comprehend why yet.
I would build a random latin square by 1) start with a single random permutation, 2) populate the rows with rotations 3) shuffle the rows 4) transpose the square 5) shuffle the rows again:
from collections import deque
from random import shuffle
def random_latin_square(elements):
elements = list(elements)
shuffle(elements)
square = []
for i in range(len(elements)):
square.append(list(elements))
elements = elements[1:] + [elements[0]]
shuffle(square)
square[:] = zip(*square)
shuffle(square)
return square
if __name__ == '__main__':
from pprint import pprint
square = random_latin_square('ABCD')
pprint(square)
Q: A run is a sequence of adjacent repeated values. Given a list, write a function to
determine the length of the longest run. For example, for the sequence [1, 2, 5, 5, 3, 1, 2, 4, 3, 2, 2, 2, 2, 3, 6, 5, 5, 6, 3, 1], the longest run is 4.
I am having trouble with this, I've written a code that finds the longest run consist of the number '2' but have yet to get the length of the run which is 4.
Here is my code so far (i've commented out a part that i was working on but don't pay attention to it):
# longestrun.py
# A function to determine the length of the longest run
# A run is a sequence of adjacent repeated values.
def longestrun(myList):
result = None
prev = None
size = 0
max_size = 0
for i in myList:
if i == prev:
size += 1
if size > max_size:
result = i
max_size = size
else:
size = 0
prev = i
return result
def main():
print("This program finds the length of the longest run within a given list.")
print("A run is a sequence of adjacent repeated values.")
myString = input("Please enter a list of objects (numbers, words, etc.) separated by
commas: ")
myList = myString.split(',')
longest_run = longestrun(myList)
print(">>>", longest_run, "<<<")
main()
Help please!!! :(((
You can do this in one line using itertools.groupby:
import itertools
max(sum(1 for _ in l) for n, l in itertools.groupby(lst))
This should work if you do not want to use itertools and imports.
a=[1, 2, 5, 5, 3, 1, 2, 4, 3, 2, 2, 2, 2, 3, 6, 5, 5, 6, 3, 1]
def longestrun(myList):
result = None
prev = None
size = 0
max_size = 0
for i in myList:
if i == prev:
print (i)
size += 1
if size > max_size:
print ('******* '+ str(max_size))
max_size = size
else:
size = 0
prev = i
print (max_size+1)
return max_size+1
longestrun(a)
Just another way of doing it:
def longestrun(myList):
sett = set()
size = 1
for ind, elm in enumerate(myList):
if ind > 0:
if elm == myList[ind - 1]:
size += 1
else:
sett.update([size])
size = 1
sett.update([size])
return max(sett)
myList = [1, 2, 5, 5, 3, 1, 2, 4, 3, 2, 2, 2, 2, 3, 6, 5, 5, 6, 3, 1]
print longestrun(myList)
def getSublists(L,n):
outL=[]
for i in range(0,len(L)-n+1):
outL.append(L[i:i+n])
return outL
def longestRun(L):
for n in range(len(L), 0, -1):
temp=getSublists(L,n)
for subL in temp:
if subL==sorted(subL):
return len(subL)
def longestrun(myList):
size = 1
max_size = 0
for i in range(len(myList)-1):
if myList[i+1] = myList[i]:
size += 1
else:
size = 1
if max_size<size:
max_size = size
return size
Remove the .split() from myList in main() and you're good to go with this.
As an update to David Robinson's answer, it is now (Python 3.4) possible to return 0 on an empty sequence (instead of raising ValueError):
import itertools
max((sum(1 for _ in l) for n, l in itertools.groupby(lst)), default=0)
Given a list of data as follows:
input = [1,1,1,1,5,5,3,3,3,3,3,3,2,2,2,5,5]
I would like to create an algorithm that is able to offset the list of certain number of steps. For example, if the offset = -1:
def offsetFunc(inputList, offsetList):
#make something
return output
where:
output = [0,0,0,0,1,1,5,5,5,5,5,5,3,3,3,2,2]
Important Note: The elements of the list are float numbers and they are not in any progression. So I actually need to shift them, I cannot use any work-around for getting the result.
So basically, the algorithm should replace the first set of values (the 4 "1", basically) with the 0 and then it should:
Detect the lenght of the next range of values
Create a parallel output vectors with the values delayed by one set
The way I have roughly described the algorithm above is how I would do it. However I'm a newbie to Python (and even beginner in general programming) and I have figured out time by time that Python has a lot of built-in functions that could make the algorithm less heavy and iterating. Does anyone have any suggestion to better develop a script to make this kind of job? This is the code I have written so far (assuming a static offset at -1):
input = [1,1,1,1,5,5,3,3,3,3,3,3,2,2,2,5,5]
output = []
PrevVal = 0
NextVal = input[0]
i = 0
while input[i] == NextVal:
output.append(PrevVal)
i += 1
while i < len(input):
PrevVal = NextVal
NextVal = input[i]
while input[i] == NextVal:
output.append(PrevVal)
i += 1
if i >= len(input):
break
print output
Thanks in advance for any help!
BETTER DESCRIPTION
My list will always be composed of "sets" of values. They are usually float numbers, and they take values such as this short example below:
Sample = [1.236,1.236,1.236,1.236,1.863,1.863,1.863,1.863,1.863,1.863]
In this example, the first set (the one with value "1.236") is long 4 while the second one is long 6. What I would like to get as an output, when the offset = -1, is:
The value "0.000" in the first 4 elements;
The value "1.236" in the second 6 elements.
So basically, this "offset" function is creating the list with the same "structure" (ranges of lengths) but with the values delayed by "offset" times.
I hope it's clear now, unfortunately the problem itself is still a bit silly to me (plus I don't even speak good English :) )
Please don't hesitate to ask any additional info to complete the question and make it clearer.
How about this:
def generateOutput(input, value=0, offset=-1):
values = []
for i in range(len(input)):
if i < 1 or input[i] == input[i-1]:
yield value
else: # value change in input detected
values.append(input[i-1])
if len(values) >= -offset:
value = values.pop(0)
yield value
input = [1,1,1,1,5,5,3,3,3,3,3,3,2,2,2,5,5]
print list(generateOutput(input))
It will print this:
[0, 0, 0, 0, 1, 1, 5, 5, 5, 5, 5, 5, 3, 3, 3, 2, 2]
And in case you just want to iterate, you do not even need to build the list. Just use for i in generateOutput(input): … then.
For other offsets, use this:
print list(generateOutput(input, 0, -2))
prints:
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 5, 5, 5, 3, 3]
Using deque as the queue, and using maxlen to define the shift length. Only holding unique values. pushing inn new values at the end, pushes out old values at the start of the queue, when the shift length has been reached.
from collections import deque
def shift(it, shift=1):
q = deque(maxlen=shift+1)
q.append(0)
for i in it:
if q[-1] != i:
q.append(i)
yield q[0]
Sample = [1.236,1.236,1.236,1.236,1.863,1.863,1.863,1.863,1.863,1.863]
print list(shift(Sample))
#[0, 0, 0, 0, 1.236, 1.236, 1.236, 1.236, 1.236, 1.236]
My try:
#Input
input = [1,1,1,1,5,5,3,3,3,3,3,3,2,2,2,5,5]
shift = -1
#Build service structures: for each 'set of data' store its length and its value
set_lengths = []
set_values = []
prev_value = None
set_length = 0
for value in input:
if prev_value is not None and value != prev_value:
set_lengths.append(set_length)
set_values.append(prev_value)
set_length = 0
set_length += 1
prev_value = value
else:
set_lengths.append(set_length)
set_values.append(prev_value)
#Output the result, shifting the values
output = []
for i, l in enumerate(set_lengths):
j = i + shift
if j < 0:
output += [0] * l
else:
output += [set_values[j]] * l
print input
print output
gives:
[1, 1, 1, 1, 5, 5, 3, 3, 3, 3, 3, 3, 2, 2, 2, 5, 5]
[0, 0, 0, 0, 1, 1, 5, 5, 5, 5, 5, 5, 3, 3, 3, 2, 2]
def x(list, offset):
return [el + offset for el in list]
A completely different approach than my first answer is this:
import itertools
First analyze the input:
values, amounts = zip(*((n, len(list(g))) for n, g in itertools.groupby(input)))
We now have (1, 5, 3, 2, 5) and (4, 2, 6, 3, 2). Now apply the offset:
values = (0,) * (-offset) + values # nevermind that it is longer now.
And synthesize it again:
output = sum([ [v] * a for v, a in zip(values, amounts) ], [])
This is way more elegant, way less understandable and probably way more expensive than my other answer, but I didn't want to hide it from you.