I have a multiprocessing code, and each process have to analyse same data differently.
The input data is always the same, it is not changeable.
Input data is a data frame 20 columns and 60k rows.
How to efficiently 'put' this data to each process?
On single process application I have used global variable, but in multiprocessing it's not working.
When I try to transfer this as a function argument, I have only the first element of the table
Welcome to Stack Overflow. You need to take the time and give reproducible minimal working examples to get specific answers and help the society in general.
Anyway, you shouldn't use global variables if you need to change them with each iteration/process/etc.
Multiprocessing works like that in rough easily-digestible terms:
import concurrent.futures
import glob
def manipulate_data_function(data):
result = torture_data(data)
return result
# ProcessPoolExecutor for CPU bound stuff
with concurrent.futures.ThreadPoolExecutor(max_workers = None) as executor:
futures = []
for file in glob.glob('*txt'):
futures.append(executor.submit(manipulate_data_function, data))
thank you for the answer, I don't change this date each iteration. I use the same data to each process, data how to change the data is given throw function argument
with concurrent.futures.ProcessPoolExecutor() as executor:
res = executor.map(goal_fcn, p)
for f in concurrent.futures.as_completed(res):
fp = res
and next
def goal_fcn(x):
return heavy_calculation(x, global_DataFrame, global_String)
EDIT:
it work with:
with concurrent.futures.ProcessPoolExecutor() as executor:
res = executor.map(goal_fcn, p, [global_DataFrame], [global_String])
for f in concurrent.futures.as_completed(res):
fp = res
def goal_fcn(x, DataFrame, String):
return heavy_calculation(x, DataFrame, String)
Related
I doing 100 iterations of the function model so, i tried using multiprocessing to distribute the tasks and for getting the final output I tried using queue but it takes too much time, failing the purpose of multiprocessing. How to solve this problem?
def model(X,Y):
ada_clf={}
pred1={}
auc_final=[]
for iteration in range(100):
ada_clf[iteration] = AdaBoostClassifier(DecisionTreeClassifier(),n_estimators=1000,learning_rate=0.001)
ada_clf[iteration].fit(X,Y)
pred1[iteration]=ada_clf[iteration].predict(test1)
individuallabelsfromada1=[]
for i in range(len(test1)):
individuallabelsfromada1.append([])
for j in range(100):
individuallabelsfromada1[i].append(pred1[j][i])
final_labels_ada1=[]
for each in individuallabelsfromada1:
final_labels_ada1.append(find_majority(each))
final=pd.Series(final_labels_ada1)
temp_arr=np.array(final)
total_labels2=pd.Series(temp_arr)
fpr, tpr, thresholds = roc_curve(y_test, total_labels2, pos_label=1)
auc_final.append(auc(fpr,tpr))
q.put(total_labels2)
q1.put(auc_final)
q2.put(ada_clf)
print('done')
overall_labels={}
final_auc={}
final_ada_clf={}
processes=[]
q=Queue()
q1=Queue()
q2=Queue()
for iteration in range(100):
if __name__=='__main__':
p=multiprocessing.Process(target=model,args=(x_train,y_labels,q,q1,q2,))
overall_labels[iteration]=q.get()
final_auc[iteration]=q1.get()
final_ada_clf[iteration]=q2.get()
p.start()
processes.append(p)
for each in processes:
each.join()
Below is my edited version, but returns only single output, i tried using multiple output but could not get it, so settled for only single output i.e. total_labels2:-
##code before this is same as before, only thing changed is arguments of model from def model(X,Y) to def model(repeat,X,Y)
total_labels2 = pd.Series(temp_arr)
return (repeat,total_labels2)
def get_result(total_labels2):
global testover_forall
testover_forall.append(total_labels2)
if __name__ == '__main__':
import multiprocessing as mp
testover_forall = []
pool = mp.Pool(40)
for repeat in range(100):
pool.apply_async(bound_model, args= repeat, x_train, y_train), callback= get_result)
pool.close()
pool.join()
repetations_index=[]
for i in range(100):
repetations_index.append(testover_forall[i][0])
final_last_labels = {}
for i in range(100):
temp = str(i)
final_last_labels[temp] = testover_forall[repetations_index[i]][1]
totally_last_labels=[]
for each in final_last_labels:
temp=np.array(final_last_labels[each])
totally_last_labels.append(temp)
See my comments (actually questions) to your post.
You should be using a multiprocessing pool to limit the number of processes that you create to the number of CPU cores that you have. This will also make it easier to get return values back from your model function instead of writing results to 3 different queues (and you could have written a tuple of 3 values to just one queue). You will, of course, require other import statements and code. Given your use of numpy and other libraries, which may be implemented in C Language, you could also retry running this using threading to see if that helps or hurts performance. Do this by replacing ProcessPoolExecutor with ThreadPoolExecutor in the two places it is referenced.
Note
Any changes that model makes to passed arguments X and Y will not be reflected back to the main process. So if model is called repeatedly with the same arguments over and over, as it appears to be, it's not clear whether each call will return different values, especially if the calls are being done in parallel.
from concurrent.futures import ProcessPoolExecutor
def model(X,Y):
ada_clf={}
pred1={}
auc_final=[]
for iteration in range(100):
ada_clf[iteration] = AdaBoostClassifier(DecisionTreeClassifier(),n_estimators=1000,learning_rate=0.001)
ada_clf[iteration].fit(X,Y)
pred1[iteration]=ada_clf[iteration].predict(test1)
individuallabelsfromada1=[]
for i in range(len(test1)):
individuallabelsfromada1.append([])
for j in range(100):
individuallabelsfromada1[i].append(pred1[j][i])
final_labels_ada1=[]
for each in individuallabelsfromada1:
final_labels_ada1.append(find_majority(each))
final=pd.Series(final_labels_ada1)
temp_arr=np.array(final)
total_labels2=pd.Series(temp_arr)
fpr, tpr, thresholds = roc_curve(y_test, total_labels2, pos_label=1)
auc_final.append(auc(fpr,tpr))
#q.put(total_labels2)
#q1.put(auc_final)
#q2.put(ada_clf)
return total_labels2, auc_final, ada_clf
#print('done')
if __name__ == '__main__':
with ProcessPoolExecutor() as executor:
futures = [executor.submit(model, x_train, y_labels) for iteration in range(100)]
# simple lists will suffice:
overall_labels = []
final_auc = []
final_ada_clf = []
for future in futures:
# get return value and store
total_labels2, auc_final, ada_clf = future.result()
overall_labels.append(total_labels2)
final_auc.append(auc_final)
final_ada_clf.append(ada_clf)
Update
It wasn't clear from the problem specification that the returned results are based on a random number generator and if successive calls to the worker function, model, do not employ a single random number generator across all processes in the multiprocessing pool, then the multiprocessing implementation will clearly return different results than the non-multiprocessing version. And it is not clear from the code provided where the random number generator is being used; it may be in library code that you have no access to. If that is the case, you have two options: (1) Use multithreading instead by changing the import statement as I have indicated in the code below; you may still achieve performance benefits as I have already mentioned or (2) Update the signature to model as follows. You will be passed a new argument, random_generator, that currently supports two methods, randint (like random.randint and random (like random.random), although it should be easy enough to modify the code if you need a different method from module random. You will use this random number generator in place of module random if you are able to. But note that this random generator will run much more slowly than the standard one; this is the price you pay.
Since we are also adding a repetition argument to model (it now has to be the final argument -- note the updated signature below), we can now use method map (no need to use a callback):
def model(X,Y, random_generator, repetition):
...
etc.
from multiprocessing import Pool
# or use the following import instead to use multithreading (but then use standard random generator):
# from multiprocessing.dummy import Pool
import random
from functools import partial
from multiprocessing.managers import BaseManager
class RandomGeneratorManager(BaseManager):
pass
class RandomGenerator:
def __init__(self):
random.seed(0)
def randint(self, a, b):
return random.randint(a, b)
def random(self):
return random.random()
# add other functions if needed
if __name__ == '__main__':
RandomGeneratorManager.register('RandomGenerator', RandomGenerator)
with RandomGeneratorManager() as manager:
random_generator = manager.RandomGenerator()
# why 40? why not use default, which is the number of cpu cores you have?:
pool = Pool(40):
worker = partial(model, x_train, y_labels, random_generator)
results = pool.map(worker, range(100))
I want to run two different function in parallel in python, I have used the below code :
def remove_special_char(data):
data['Description'] = data['Description'].apply(lambda val: re.sub(r'^=', "'=", str(val))) # Change cell values which start with '=' sign leading to Excel formula issues
return(data)
file_path1 = '.\file1.xlsx'
file_path2 = '.\file2.xlsx'
def method1(file_path1):
data = pd.read_excel(file_path1)
data= remove_special_char(data)
return data
def method2(file_path2):
data = pd.read_excel(file_path2)
data= remove_special_char(data)
return data
I am using the below Pool process , but its not working.
from multiprocessing import Pool
p = Pool(3)
result1 = p.map(method1(file_path1), args=file_path1)
result2 = p.map(method2(file_path1), args=file_path2)
I want to run both these methods in parallel to save execution time and at the same time get the return value as well.
I don't know why you are defining the same method twice with different parameter names, but anyway the map method of Pools is taking as its first argument a function, and the second argument is an iterable. What map does is call the function on each item of the iterable, and return a list with all the results. So what you want to do is more something like:
from multiprocessing import Pool
file_paths = ('.\file1.xlsx', '.\file2.xlsx')
def method(file_path):
data = pd.read_excel(file_path)
data= remove_special_char(data)
return data
with Pool(3) as p:
result = p.map(method, file_paths)
I'm performing analyses of time-series of simulations. Basically, it's doing the same tasks for every time steps. As there is a very high number of time steps, and as the analyze of each of them is independant, I wanted to create a function that can multiprocess another function. The latter will have arguments, and return a result.
Using a shared dictionnary and the lib concurrent.futures, I managed to write this :
import concurrent.futures as Cfut
def multiprocess_loop_grouped(function, param_list, group_size, Nworkers, *args):
# function : function that is running in parallel
# param_list : list of items
# group_size : size of the groups
# Nworkers : number of group/items running in the same time
# **param_fixed : passing parameters
manager = mlp.Manager()
dic = manager.dict()
executor = Cfut.ProcessPoolExecutor(Nworkers)
futures = [executor.submit(function, param, dic, *args)
for param in grouper(param_list, group_size)]
Cfut.wait(futures)
return [dic[i] for i in sorted(dic.keys())]
Typically, I can use it like this :
def read_file(files, dictionnary):
for file in files:
i = int(file[4:9])
#print(str(i))
if 'bz2' in file:
os.system('bunzip2 ' + file)
file = file[:-4]
dictionnary[i] = np.loadtxt(file)
os.system('bzip2 ' + file)
Map = np.array(multiprocess_loop_grouped(read_file, list_alti, Group_size, N_thread))
or like this :
def autocorr(x):
result = np.correlate(x, x, mode='full')
return result[result.size//2:]
def find_lambda_finger(indexes, dic, Deviation):
for i in indexes :
#print(str(i))
# Beach = Deviation[i,:] - np.mean(Deviation[i,:])
dic[i] = Anls.find_first_max(autocorr(Deviation[i,:]), valmax = True)
args = [Deviation]
Temp = Rescal.multiprocess_loop_grouped(find_lambda_finger, range(Nalti), Group_size, N_thread, *args)
Basically, it is working. But it is not working well. Sometimes it crashes. Sometimes it actually launches a number of python processes equal to Nworkers, and sometimes there is only 2 or 3 of them running at a time while I specified Nworkers = 15.
For example, a classic error I obtain is described in the following topic I raised : Calling matplotlib AFTER multiprocessing sometimes results in error : main thread not in main loop
What is the more Pythonic way to achieve what I want ? How can I improve the control this function ? How can I control more the number of running python process ?
One of the basic concepts for Python multi-processing is using queues. It works quite well when you have an input list that can be iterated and which does not need to be altered by the sub-processes. It also gives you a good control over all the processes, because you spawn the number you want, you can run them idle or stop them.
It is also a lot easier to debug. Sharing data explicitly is usually an approach that is much more difficult to setup correctly.
Queues can hold anything as they are iterables by definition. So you can fill them with filepath strings for reading files, non-iterable numbers for doing calculations or even images for drawing.
In your case a layout could look like that:
import multiprocessing as mp
import numpy as np
import itertools as it
def worker1(in_queue, out_queue):
#holds when nothing is available, stops when 'STOP' is seen
for a in iter(in_queue.get, 'STOP'):
#do something
out_queue.put({a: result}) #return your result linked to the input
def worker2(in_queue, out_queue):
for a in iter(in_queue.get, 'STOP'):
#do something differently
out_queue.put({a: result}) //return your result linked to the input
def multiprocess_loop_grouped(function, param_list, group_size, Nworkers, *args):
# your final result
result = {}
in_queue = mp.Queue()
out_queue = mp.Queue()
# fill your input
for a in param_list:
in_queue.put(a)
# stop command at end of input
for n in range(Nworkers):
in_queue.put('STOP')
# setup your worker process doing task as specified
process = [mp.Process(target=function,
args=(in_queue, out_queue), daemon=True) for x in range(Nworkers)]
# run processes
for p in process:
p.start()
# wait for processes to finish
for p in process:
p.join()
# collect your results from the calculations
for a in param_list:
result.update(out_queue.get())
return result
temp = multiprocess_loop_grouped(worker1, param_list, group_size, Nworkers, *args)
map = multiprocess_loop_grouped(worker2, param_list, group_size, Nworkers, *args)
It can be made a bit more dynamic when you are afraid that your queues will run out of memory. Than you need to fill and empty the queues while the processes are running. See this example here.
Final words: it is not more Pythonic as you requested. But it is easier to understand for a newbie ;-)
I am wondering if there is a way to do a pandas dataframe apply function in parallel. I have looked around and haven't found anything. At least in theory I think it should be fairly simple to implement but haven't seen anything. This is practically the textbook definition of parallel after all.. Has anyone else tried this or know of a way? If no one has any ideas I think I might just try writing it myself.
The code I am working with is below. Sorry for the lack of import statements. They are mixed in with a lot of other things.
def apply_extract_entities(row):
names=[]
counter=0
print row
for sent in nltk.sent_tokenize(open(row['file_name'], "r+b").read()):
for chunk in nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(sent))):
if hasattr(chunk, 'node'):
names+= [chunk.node, ' '.join(c[0] for c in chunk.leaves())]
counter+=1
print counter
return names
data9_2['proper_nouns']=data9_2.apply(apply_extract_entities, axis=1)
EDIT:
So here is what I tried. I tried running it with just the first five element of my iterable and it is taking longer than it would if I ran it serially so I assume it is not working.
os.chdir(str(home))
data9_2=pd.read_csv('edgarsdc3.csv')
os.chdir(str(home)+str('//defmtest'))
#import stuff
from nltk import pos_tag, ne_chunk
from nltk.tokenize import SpaceTokenizer
#define apply function and apply it
os.chdir(str(home)+str('//defmtest'))
####
#this is our apply function
def apply_extract_entities(row):
names=[]
counter=0
print row
for sent in nltk.sent_tokenize(open(row['file_name'], "r+b").read()):
for chunk in nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(sent))):
if hasattr(chunk, 'node'):
names+= [chunk.node, ' '.join(c[0] for c in chunk.leaves())]
counter+=1
print counter
return names
#need something that populates a list of sections of a dataframe
def dataframe_splitter(df):
df_list=range(len(df))
for i in xrange(len(df)):
sliced=df.ix[i]
df_list[i]=sliced
return df_list
df_list=dataframe_splitter(data9_2)
#df_list=range(len(data9_2))
print df_list
#the multiprocessing section
import multiprocessing
def worker(arg):
print arg
(arg)['proper_nouns']=arg.apply(apply_extract_entities, axis=1)
return arg
pool = multiprocessing.Pool(processes=10)
# get list of pieces
res = pool.imap_unordered(worker, df_list[:5])
res2= list(itertools.chain(*res))
pool.close()
pool.join()
# re-assemble pieces into the final output
output = data9_2.head(1).concatenate(res)
print output.head()
With multiprocessing, it's best to generate several large blocks of data, then re-assemble them to produce the final output.
source
import multiprocessing
def worker(arg):
return arg*2
pool = multiprocessing.Pool()
# get list of pieces
res = pool.map(worker, [1,2,3])
pool.close()
pool.join()
# re-assemble pieces into the final output
output = sum(res)
print 'got:',output
output
got: 12
I have a code like this
def plotFrame(n):
a = data[n, :]
do_something_with(a)
data = loadtxt(filename)
ids = data[:,0] # some numbers from the first column of data
map(plotFrame, ids)
That worked fine for me. Now I want to try replacing map() with pool.map() as follows:
pools = multiprocessing.Pool(processes=1)
pools.map(plotFrame, ids)
But that won't work, saying:
NameError: global name 'data' is not defined
The questions is: What is going on? Why map() does not complain about the data variable that is not passed to the function, but pool.map() does?
EDIT:
I' m using Linux.
EDIT 2:
Based on #Bill 's second suggestion, I now have the following code:
def plotFrame_v2(line):
plot_with(line)
if __name__ == "__main__":
ff = np.loadtxt(filename)
m = int( max(ff[:,-1]) ) # max id
l = ff.shape[0]
nfig = 0
pool = Pool(processes=1)
for i in range(0, l/m, 50):
data = ff[i*m:(i+1)*m, :] # data of one frame contains several ids
pool.map(plotFrame_v2, data)
nfig += 1
plt.savefig("figs_bot/%.3d.png"%nfig)
plt.clf()
That works just as expected. However, now I have another unexpected problem: The produced figures are blank, whereas the above code with map() produces figures with the content of data.
Using multiprocessing.pool, you are spawning individual processes to work with the shared (global) resource data. Typically, you can allow the processes to work with a shared resource in the parent process by make that resource explicitly global. However, it is better practice to explicitly pass all needed resources to the child processes as function arguments. This is required if you are working on Windows. Check out the multiprocessing guidelines here.
So you could try doing
data = loadtxt(filename)
def plotFrame(n):
global data
a = data[n, :]
do_something_with(a)
ids = data[:,0] # some numbers from the first column of data
pools = multiprocessing.Pool(processes=1)
pools.map(plotFrame, ids)
or even better see this thread about feeding multiple arguments to a function with multiprocessing.pool. A simple way could be
def plotFrameWrapper(args):
return plotFrame(*args)
def plotFrame(n, data):
a = data[n, :]
do_something_with(a)
if __name__ == "__main__":
from multiprocessing import Pool
data = loadtxt(filename)
pools = Pool(1)
ids = data[:,0]
pools.map(plotFrameWrapper, zip([data]*len(inds), inds))
print results
One last thing: since it looks like the only thing you are doing from your example is slicing the array, you can simply slice first then pass the sliced arrays to your function:
def plotFrame(sliced_data):
do_something_with(sliced_data)
if __name__ == "__main__":
from multiprocessing import Pool
data = loadtxt(filename)
pools = Pool(1)
ids = data[:,0]
pools.map(plotFrame, data[ids])
print results
To avoid "unexpected" problems, avoid globals.
To reproduce your first code example with builtin map that calls plotFrame:
def plotFrame(n):
a = data[n, :]
do_something_with(a)
using multiprocessing.Pool.map, the first thing is to deal with the global data. If do_something_with(a) also uses some global data then it should also be changed.
To see how to pass a numpy array to a child process, see Use numpy array in shared memory for multiprocessing. If you don't need to modify the array then it is even simpler:
import numpy as np
def init(data_): # inherit data
global data #NOTE: no other globals in the program
data = data_
def main():
data = np.loadtxt(filename)
ids = data[:,0] # some numbers from the first column of data
pool = Pool(initializer=init, initargs=[data])
pool.map(plotFrame, ids)
if __name__=="__main__":
main()
All arguments either should be explicitly passed as arguments to plotFrame or inherited via init().
Your second code example tries to manipulate global data again (via plt calls):
import matplotlib.pyplot as plt
#XXX BROKEN, DO NOT USE
pool.map(plotFrame_v2, data)
nfig += 1
plt.savefig("figs_bot/%.3d.png"%nfig)
plt.clf()
Unless you draw something in the main process this code saves blank figures. Either plot in the child processes or send data to be plotted to the parent processes explicitly e.g., by returning it from plotFrame and using pool.map() returned value. Here's a code example: how to plot in child processes.