I am looking to use a shared memory array as a buffer for images in numpy format.
So far the videos have been black screens as im unsure of how to update the shared memory array in the child process.
The queue is loaded with the index of the buffers and the child process "vid_writer" uses that to write out the frame to the video.
So far the assignment in the add_frame_obj method is not actually updating the shared memory.
Do I need to tell the the child process to "update" the buffer var or am I missing something?
class VidWriterArray:
def __init__(self, directory, vid_name='outvid.avi', fps=30, framesize=(1280, 720)):
# Control---
print(f'Creating {__class__.__name__} object...', end='')
self.stop_req = Event()
self.stop_ack = Event()
self.started = False
# Data Objects---
self.filename = directory + '/' + vid_name
self.vid_fps = fps
self.vid_framesize = framesize
arrayshape = (framesize[1], framesize[0], 3)
self.queue = Manager().Queue()
self.mp_arrays = ((Array('I', int(np.prod(arrayshape)), lock=Lock())) for _ in range(5)) # create 5 buffers
self.buffer = [(m, np.frombuffer(m.get_obj(), dtype='I').reshape(arrayshape), Event()) for m in self.mp_arrays]
self.process = Process(name='VidWriter', target=self.vid_writer,
args=(self.queue, self.buffer, self.filename, self.vid_framesize, self.vid_fps,
self.stop_req, self.stop_ack,))
self.process.daemon = True # Set process to daemon to force process closed if calling thread is terminated.
print(f'\rCreating {__class__.__name__} object...Done')
def add_frame_obj(self, img):
for buff_index in range(len(self.buffer)):
m_arr, buff, buff_rdy = self.buffer[buff_index]
if m_arr.acquire(block=False) and not buff_rdy.is_set(): # aquired lock
buff = img
buff_rdy.set()
m_arr.release()
self.queue.put(buff_index)
print(f'Placed image in {buff_index}')
return
def start(self):
"""
Call to start parallel process object
:return: nothing
"""
self.stop_req.clear() # Reset Flag
self.stop_ack.clear() # Reset Flag
print(f'Starting {__class__.__name__} on parallel process...')
self.process.start()
print(f'{__class__.__name__} process started...PID: {self.process.pid}')
if self.process.is_alive():
self.started = True # set a fast property to check
def stop(self):
try:
self.stop_req.set()
print(f'Stop request sent to {__class__.__name__}...', end='')
if self.started:
self.stop_ack.wait(5) # Wait up to 5 second for reply
self.stop_req.clear()
wait_false(self.stop_req, 5)
self.process.join(5) # Join the thread
except Exception as e:
print(e)
if self.process.is_alive():
print(f'\rStop request sent to {__class__.__name__}...Failed! Process has failed to terminate!')
else:
print(f'\rStop request sent to {__class__.__name__}...Done! Exited successfully with code: '
f'{self.process.exitcode}')
#staticmethod
def vid_writer(q, buffer, filename, framesize, fps, stop_req, stop_ack):
import queue
# create VideoWriter with opencv
output = cv2.VideoWriter(filename, cv2.VideoWriter_fourcc(*'DIVX'), fps, framesize)
while not stop_req.is_set():
# grab videoFrame Object from the buffer, timeout 2s to ensure no deadlock
try:
img_rdy_index = q.get(timeout=1)
m, img, buff_rdy = buffer[img_rdy_index]
if m.acquire(timeout=1):
buff_rdy.clear()
vid_shape = (framesize[0], framesize[1])
output.write(img) # Append image into the video
m.release()
except queue.Empty:
# catch empty queue exception and do nothing to allow thread to continue
pass
stop_ack.set() # Set ack flag
output.release() # Finish video writing
wait_false(stop_req, 5) # Handshake stop_req flag with timeout
stop_ack.clear()
Related
I'm after constantly reading images from an OpenCV camera in Python and reading from the main program the latest image. This is needed because of problematic HW.
After messing around with threads and getting a very low efficiency (duh!), I'd like to switch to multiprocessing.
Here's the threading version:
class WebcamStream:
# initialization method
def __init__(self, stream_id=0):
self.stream_id = stream_id # default is 0 for main camera
# opening video capture stream
self.camera = cv2.VideoCapture(self.stream_id)
self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, 3840)
self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, 2880)
if self.camera.isOpened() is False:
print("[Exiting]: Error accessing webcam stream.")
exit(0)
# reading a single frame from camera stream for initializing
_, self.frame = self.camera.read()
# self.stopped is initialized to False
self.stopped = True
# thread instantiation
self.t = Thread(target=self.update, args=())
self.t.daemon = True # daemon threads run in background
# method to start thread
def start(self):
self.stopped = False
self.t.start()
# method passed to thread to read next available frame
def update(self):
while True:
if self.stopped is True:
break
_, self.frame = self.camera.read()
self.camera.release()
# method to return latest read frame
def read(self):
return self.frame
# method to stop reading frames
def stop(self):
self.stopped = True
And -
if __name__ == "__main__":
main_camera_stream = WebcamStream(stream_id=0)
main_camera_stream.start()
frame = main_camera_stream.read()
Can someone please help me translate this to multiprocess land ?
Thanks!
I've written several solutions to similar problems, but it's been a little while so here we go:
I would use shared_memory as a buffer to read frames into, which can then be read by another process. My first inclination is to initialize the camera and read frames in the child process, because that seems like it would be a "set it and forget it" kind of thing.
import numpy as np
import cv2
from multiprocessing import Process, Queue
from multiprocessing.shared_memory import SharedMemory
def produce_frames(q):
#get the first frame to calculate size of buffer
cap = cv2.VideoCapture(0)
success, frame = cap.read()
shm = SharedMemory(create=True, size=frame.nbytes)
framebuffer = np.ndarray(frame.shape, frame.dtype, buffer=shm.buf) #could also maybe use array.array instead of numpy, but I'm familiar with numpy
framebuffer[:] = frame #in case you need to send the first frame to the main process
q.put(shm) #send the buffer back to main
q.put(frame.shape) #send the array details
q.put(frame.dtype)
try:
while True:
cap.read(framebuffer)
except KeyboardInterrupt:
pass
finally:
shm.close() #call this in all processes where the shm exists
shm.unlink() #call from only one process
def consume_frames(q):
shm = q.get() #get the shared buffer
shape = q.get()
dtype = q.get()
framebuffer = np.ndarray(shape, dtype, buffer=shm.buf) #reconstruct the array
try:
while True:
cv2.imshow("window title", framebuffer)
cv2.waitKey(100)
except KeyboardInterrupt:
pass
finally:
shm.close()
if __name__ == "__main__":
q = Queue()
producer = Process(target=produce_frames, args=(q,))
producer.start()
consume_frames(q)
I am working on a script that reads a rtps stream from a camera. The problem is that sometimes the connection is not perfect and the frames take a while to arrive.
From what I have found the read function from cv2.VideoCapture does not have a timeout that we can modify without recompiling, and the default (30 seconds) is way too much for what I need.
I tried two approaches, one using threading and the other using multiprocessing.
The former didn't work as expected since I cannot kill the thread fast enough and the script dies. the latter means that I am creating and destroying processes at a rate of 1/fps when everything is working, which I don't think is a good idea.
The following is a minimum working example. When proc = True, it uses multiprocessing, and when proc = False, it uses threading. the delay of the read function can be mimicked using TIMESLEEP > 0
import cv2
import time
import queue
import psutil
import threading
import multiprocessing as mp
TIMESLEEP = 0
class FrameThread(threading.Thread):
def __init__(self, func, res):
super().__init__()
self.daemon = True
self.res = res
self.func = func
def run(self):
time.sleep(TIMESLEEP)
self.res.put(self.func)
def putframe(func, res):
time.sleep(TIMESLEEP)
res.put(func)
class Test(object):
def __init__(self, url, proc = True):
self.url = url
self.black = [1, 2, 3]
self.fps = 10
self.proc = proc
self._rq = mp.Queue() if self.proc else queue.Queue()
def _timeout_func(self, func, timeout = 10):
if self.proc:
_proc = mp.Process(target = putframe, args = (func, self._rq))
_proc.start()
else:
FrameThread(func, self._rq).start()
try:
t1 = time.time()
ret, frame = self._rq.get(block = True, timeout = timeout)
diff_fps = 1 / self.fps - (time.time() - t1)
time.sleep(diff_fps if diff_fps > 0 else 0)
if self.proc:
_proc.terminate()
frame = frame if ret else self.black.copy()
except queue.Empty:
diff_fps = 1 / self.fps - timeout
time.sleep(diff_fps if diff_fps > 0 else 0)
if self.proc:
_proc.terminate()
ret, frame = True, self.black.copy()
return ret, frame
def run(self):
cap = cv2.VideoCapture(self.url)
while True:
ret, frame = self._timeout_func(cap.read(), timeout = 0.1)
if not ret:
break
print(self.proc if self.proc else len(psutil.Process().threads()), end='\r')
proc = False
test = Test('./video.mp4', proc = proc)
test.run()
Do you guys have any other idea or approach to do this? or any improvement on the above code?
Thanks!
Not tried this sort of script but I saw a similar kind of question and I would suggest you to use the e VLC python bindings (you can install it with pip install python-vlc) and play the stream:
import vlc
player=vlc.MediaPlayer('rtsp://:8554/output.h264')
player.play()
Then take a snapshot every second or so:
while 1:
time.sleep(1)
player.video_take_snapshot(0, '.snapshot.tmp.png', 0, 0)
And then you can use SimpleCV or something for processing (just load the image file '.snapshot.tmp.png' into your processing library).
at the moment I am reading an ip cameras live image by using the following code:
def livestream(self):
print("start")
stream = urlopen('http://192.168.4.1:81/stream')
bytes = b''
while True:
try:
bytes += stream.read(1024)
a = bytes.find(b'\xff\xd8')
b = bytes.find(b'\xff\xd9')
if a != -1 and b != -1:
jpg = bytes[a:b+2]
bytes = bytes[b+2:]
getliveimage = cv2.imdecode(np.frombuffer(jpg, dtype=np.uint8), cv2.IMREAD_COLOR)
livestreamrotated1 = cv2.rotate(getliveimage, cv2.ROTATE_90_CLOCKWISE) #here I am rotating the image
print(type(livestreamrotated1)) #type at this point is <class 'numpy.ndarray'>
cv2.imshow('video',livestreamrotated1)
if cv2.waitKey(1) ==27: # if user hit esc
exit(0) # exit program
except Exception as e:
print(e)
print("failed at this point")
Now I want to integrate the result-image into Kivy-GUI and want to get rid of the while-loop since it freezes my GUI. Unfortunately the loop is necessary to recreate the image byte-by-byte. I would like to use cv2.VideoCapture instead and schedule this multiple times per second. This is not working at all, I am not able to capture the image from the live stream this way...where am I wrong?
cap = cv2.VideoCapture('http://192.168.4.1:81/stream?dummy.jpg')
ret, frame = cap.read()
cv2.imshow('stream',frame)
I read in some other post that a file-ending like "dummy.jpg" would be necessary at this point, but it is still not working, the program freezes.
Please help. Thank you in advance!
If you want to decouple your reading loop from your GUI loop you can use multithreading to separate the code. You can have a thread running your livestream function and dumping the image out to a global image variable where your GUI loop can pick it up and do whatever to it.
I can't really test out the livestream part of the code, but something like this should work. The read function is an example of how to write a generic looping function that will work with this code.
import cv2
import time
import threading
import numpy as np
# generic threading class
class Reader(threading.Thread):
def __init__(self, func, *args):
threading.Thread.__init__(self, target = func, args = args);
self.start();
# globals for managing shared data
g_stop_threads = False;
g_lock = threading.Lock();
g_frame = None;
# reads frames from vidcap and stores them in g_frame
def read():
# grab globals
global g_stop_threads;
global g_lock;
global g_frame;
# open vidcap
cap = cv2.VideoCapture(0);
# loop
while not g_stop_threads:
# get a frame from camera
ret, frame = cap.read();
# replace the global frame
if ret:
with g_lock:
# copy so that we can quickly drop the lock
g_frame = np.copy(frame);
# sleep so that someone else can use the lock
time.sleep(0.03); # in seconds
# your livestream func
def livestream():
# grab globals
global g_stop_threads;
global g_lock;
global g_frame;
# open stream
stream = urlopen('http://192.168.4.1:81/stream')
bytes = b''
# process stream into opencv image
while not g_stop_threads:
try:
bytes += stream.read(1024)
a = bytes.find(b'\xff\xd8')
b = bytes.find(b'\xff\xd9')
if a != -1 and b != -1:
jpg = bytes[a:b+2]
bytes = bytes[b+2:]
getliveimage = cv2.imdecode(np.frombuffer(jpg, dtype=np.uint8), cv2.IMREAD_COLOR)
livestreamrotated1 = cv2.rotate(getliveimage, cv2.ROTATE_90_CLOCKWISE) #here I am rotating the image
# acquire lock and replace image
with g_lock:
g_frame = livestreamrotated1;
# sleep to allow other threads to get the lock
time.sleep(0.03); # in seconds
except Exception as e:
print(e)
print("failed at this point")
def main():
# grab globals
global g_stop_threads;
global g_lock;
global g_frame;
# start a thread
# reader = Reader(read);
reader = Reader(livestream);
# show frames from g_frame
my_frame = None;
while True:
# grab lock
with g_lock:
# show
if not g_frame is None:
# copy # we copy here to dump the lock as fast as possible
my_frame = np.copy(g_frame);
# now we can do all the slow manipulation / gui stuff here without the lock
if my_frame is not None:
cv2.imshow("Frame", my_frame);
# break out if 'q' is pressed
if cv2.waitKey(1) == ord('q'):
break;
# stop the threads
g_stop_threads = True;
if __name__ == "__main__":
main();
I am new to Google API and web services. I only tried GoogleTransateAPI once but that one works fine. Now, I want to use Google Media Translation API to translate voice input. I followed the tutorial from https://cloud.google.com/translate/media/docs/streaming.
However, I cannot make it work. There is no error at the run time so I don't know where to look at. Could you please help me identify the problem?
# [START media_translation_translate_from_mic]
from __future__ import division
import itertools
from google.cloud import mediatranslation as media
import pyaudio
from six.moves import queue
import os
os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="/Users/Me/GoogleMT/TranslationAPI/MediaKey.json"
# Audio recording parametersss
RATE = 16000
CHUNK = int(RATE / 10) # 100ms
SpeechEventType = media.StreamingTranslateSpeechResponse.SpeechEventType
class MicrophoneStream:
"""Opens a recording stream as a generator yielding the audio chunks."""
def __init__(self, rate, chunk):
self._rate = rate
self._chunk = chunk
# Create a thread-safe buffer of audio data
self._buff = queue.Queue()
self.closed = True
def __enter__(self):
self._audio_interface = pyaudio.PyAudio()
self._audio_stream = self._audio_interface.open(
format=pyaudio.paInt16,
channels=1, rate=self._rate,
input=True, frames_per_buffer=self._chunk,
# Run the audio stream asynchronously to fill the buffer object.
# This is necessary so that the input device's buffer doesn't
# overflow while the calling thread makes network requests, etc.
stream_callback=self._fill_buffer,
)
self.closed = False
return self
def __exit__(self, type=None, value=None, traceback=None):
self._audio_stream.stop_stream()
self._audio_stream.close()
self.closed = True
# Signal the generator to terminate so that the client's
# streaming_recognize method will not block the process termination.
self._buff.put(None)
self._audio_interface.terminate()
def _fill_buffer(self, in_data, frame_count, time_info, status_flags):
"""Continuously collect data from the audio stream, into the buffer."""
self._buff.put(in_data)
return None, pyaudio.paContinue
def exit(self):
self.__exit__()
def generator(self):
while not self.closed:
# Use a blocking get() to ensure there's at least one chunk of
# data, and stop iteration if the chunk is None, indicating the
# end of the audio stream.
chunk = self._buff.get()
if chunk is None:
return
data = [chunk]
# Now consume whatever other data's still buffered.
while True:
try:
chunk = self._buff.get(block=False)
if chunk is None:
return
data.append(chunk)
except queue.Empty:
break
yield b''.join(data)
def listen_print_loop(responses):
"""Iterates through server responses and prints them.
The responses passed is a generator that will block until a response
is provided by the server.
"""
translation = ''
source = ''
for response in responses:
# Once the transcription settles, the response contains the
# END_OF_SINGLE_UTTERANCE event.
if (response.speech_event_type ==
SpeechEventType.END_OF_SINGLE_UTTERANCE):
print(u'\nFinal translation: {0}'.format(translation))
print(u'Final recognition result: {0}'.format(source))
return 0
result = response.result
translation = result.text_translation_result.translation
source = result.recognition_result
print(u'\nPartial translation: {0}'.format(translation))
print(u'Partial recognition result: {0}'.format(source))
def do_translation_loop():
print('Begin speaking...')
client = media.SpeechTranslationServiceClient()
speech_config = media.TranslateSpeechConfig(
audio_encoding='linear16',
source_language_code='en-US',
target_language_code='ja')
config = media.StreamingTranslateSpeechConfig(
audio_config=speech_config, single_utterance=True)
# The first request contains the configuration.
# Note that audio_content is explicitly set to None.
first_request = media.StreamingTranslateSpeechRequest(
streaming_config=config, audio_content=None)
with MicrophoneStream(RATE, CHUNK) as stream:
audio_generator = stream.generator()
mic_requests = (media.StreamingTranslateSpeechRequest(
audio_content=content,
streaming_config=config)
for content in audio_generator)
requests = itertools.chain(iter([first_request]), mic_requests)
responses = client.streaming_translate_speech(requests)
# Print the translation responses as they arrive
result = listen_print_loop(responses)
if result == 0:
stream.exit()
def main():
while True:
print()
option = input('Press any key to translate or \'q\' to quit: ')
if option.lower() == 'q':
break
do_translation_loop()
if __name__ == '__main__':
main()
# [END media_translation_translate_from_mic]
The result is like this. No translation nor recognition result.
Result screenshot
I was not sure if the problem is with my mic so I tried a similar example code from another Google tutorial to translate an audio file. The result is the same, no recognition result nor translation.
Did I miss something?
Thank you very much.
I've been working on a project where I use a raspberry pi to send a live video feed to my server. This kinda works but not how I'd like it to.
The problem mainly is the speed. Right now I can send a 640x480 video stream with a speed of around 3.5 FPS and a 1920x1080 with around 0.5 FPS, which is terrible. Since I am not a professional I thought there should be a way of improving my code.
The sender (Raspberry pi):
def send_stream():
connection = True
while connection:
ret,frame = cap.read()
if ret:
# You might want to enable this while testing.
# cv2.imshow('camera', frame)
b_frame = pickle.dumps(frame)
b_size = len(b_frame)
try:
s.sendall(struct.pack("<L", b_size) + b_frame)
except socket.error:
print("Socket Error!")
connection = False
else:
print("Received no frame from camera, exiting.")
exit()
The Receiver (Server):
def recv_stream(self):
payload_size = struct.calcsize("<L")
data = b''
while True:
try:
start_time = datetime.datetime.now()
# keep receiving data until it gets the size of the msg.
while len(data) < payload_size:
data += self.connection.recv(4096)
# Get the frame size and remove it from the data.
frame_size = struct.unpack("<L", data[:payload_size])[0]
data = data[payload_size:]
# Keep receiving data until the frame size is reached.
while len(data) < frame_size:
data += self.connection.recv(32768)
# Cut the frame to the beginning of the next frame.
frame_data = data[:frame_size]
data = data[frame_size:]
frame = pickle.loads(frame_data)
frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
end_time = datetime.datetime.now()
fps = 1/(end_time-start_time).total_seconds()
print("Fps: ",round(fps,2))
self.detect_motion(frame,fps)
self.current_frame = frame
except (socket.error,socket.timeout) as e:
# The timeout got reached or the client disconnected. Clean up the mess.
print("Cleaning up: ",e)
try:
self.connection.close()
except socket.error:
pass
self.is_connected = False
break
One potential reason could because of I/O latency when reading frames. Since cv2.VideoCapture().read() is a blocking operation, the main program is stalled until a frame is read from the camera device and returned. A method to improve performance would be to spawn another thread to handle grabbing frames in parallel instead of relying on a single thread to grab frames in sequential order. We can improve performance by creating a new thread that only polls for new frames while the main thread handles processing/graphing the most recent frame.
Your current approach (Sequential):
Thread 1: Grab frame -> Process frame -> Plot
Proposed approach (Parallel):
Thread 1: Grab frame
from threading import Thread
import time
def get_frames():
while True:
ret, frame = cap.read()
time.sleep(.01)
thread_frames = Thread(target=self.get_frames, args=())
thread_frames.daemon = True
thread_frames.start()
Thread 2: Process frame -> Plot
def process_frames():
while True:
# Grab most recent frame
# Process/plot frame
...
By having separate threads, your program will be in parallel since there will always be a frame ready to be processed instead of having to wait for a frame to be read in before processing can be done.
Note: This method will give you a performance boost based on I/O latency reduction. This isn't a true increase of FPS as it is a dramatic reduction in latency (a frame is always available for processing; we don't need to poll the camera device and wait for the I/O to complete).
After searching the internet for ages, I found a quick solution which doubled the fps (This is still way too low: 1.1 fps #1080p). What I did was I stopped using pickle and used base64 instead. apparently pickling the image just takes a while. Anyway this is my new code:
The sender (Raspberry pi):
def send_stream():
global connected
connection = True
while connection:
if last_frame is not None:
# You might want to uncomment these lines while testing.
# cv2.imshow('camera', frame)
# cv2.waitKey(1)
frame = last_frame
# The old pickling method.
#b_frame = pickle.dumps(frame)
encoded, buffer = cv2.imencode('.jpg', frame)
b_frame = base64.b64encode(buffer)
b_size = len(b_frame)
print("Frame size = ",b_size)
try:
s.sendall(struct.pack("<L", b_size) + b_frame)
except socket.error:
print("Socket Error!")
connection = False
connected = False
s.close()
return "Socket Error"
else:
return "Received no frame from camera"
The Receiver (Server):
def recv_stream(self):
payload_size = struct.calcsize("<L")
data = b''
while True:
try:
start_time = datetime.datetime.now()
# keep receiving data until it gets the size of the msg.
while len(data) < payload_size:
data += self.connection.recv(4096)
# Get the frame size and remove it from the data.
frame_size = struct.unpack("<L", data[:payload_size])[0]
data = data[payload_size:]
# Keep receiving data until the frame size is reached.
while len(data) < frame_size:
data += self.connection.recv(131072)
# Cut the frame to the beginning of the next frame.
frame_data = data[:frame_size]
data = data[frame_size:]
# using the old pickling method.
# frame = pickle.loads(frame_data)
# Converting the image to be sent.
img = base64.b64decode(frame_data)
npimg = np.fromstring(img, dtype=np.uint8)
frame = cv2.imdecode(npimg, 1)
frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
end_time = datetime.datetime.now()
fps = 1/(end_time-start_time).total_seconds()
print("Fps: ",round(fps,2))
self.detect_motion(frame,fps)
self.current_frame = frame
except (socket.error,socket.timeout) as e:
# The timeout got reached or the client disconnected. Clean up the mess.
print("Cleaning up: ",e)
try:
self.connection.close()
except socket.error:
pass
self.is_connected = False
break
I also increased the packet size which increased the fps when sending from my local machine to my local machine while testing, but this didn't change anything whatsoever when using the raspberry pi.
You can see the full code on my github: https://github.com/Ruud14/SecurityCamera