CSV File Comma Insertion - python

I'm a complete newb with Python so please excuse my ignorance. I'm trying to read items in a csv file and output the values with a comma in between (and no comma at the end).
My csv file (test.csv) is as follows:
Test
AAA
BBB
CCC
and the code I'm currently using is:
from csv import DictReader
with open('test.csv', 'r') as read_obj:
csv_dict_reader = DictReader(read_obj)
for row in csv_dict_reader:
print('`'+row['Test']+'`,')
This returns the following:
`AAA`,
`BBB`,
`CCC`,
Is there any way to have the comma remain after AAA and BBB, but not after CCC?
Thanks in advance.

import csv
from csv import DictReader
with open("test.csv") as read_obj:
csv_dict_reader = DictReader(read_obj)
for row in csv_dict_reader:
print('`'+row['Test']+'`,'[:-1])
You can try this as well, this will print till second last character. So basically every last occurrence of comma will be removed.

The easiest way to modify what you have to do what you want is to store the values and then you can use ",\n".join() on the list.
from csv import DictReader
data = []
with open('test.csv', 'r') as read_obj:
csv_dict_reader = DictReader(read_obj)
for row in csv_dict_reader:
data.append(row['Test'])
print(",\n".join([f"`{item}`" for item in data]))
If you had a long list or a more complicated CSV, then you could take advantage of print("sometext", end="") to avoid the new line character. Then you can start each subsequent row with print(',') which will also provide you with the \n character.
from csv import DictReader
first = True
with open('test.csv', 'r') as read_obj:
csv_dict_reader = DictReader(read_obj)
for row in csv_dict_reader:
if not first:
print(',')
print(f"`{row['Test']}`", end='')
first = False
If your CSV is just a single column, you could use pathlib to grab the lines, slice off the first line with [1:] and then use the same join pattern on the remainder of the data.
from pathlib import Path
data = Path("test.csv").read_text().splitlines()[1:]
print(",\n".join([f"`{item}`" for item in data]))
Finally, as previously mentioned, pandas can be used to read the CSV and then you don't have to worry about the first line.
import pandas as pd
df = pd.read_csv('test.csv')
print(",\n".join([f"`{item}`" for item in df['Test'].values]))
All of these methods yield the following:
`AAA`,
`BBB`,
`CCC`

from csv import DictReader
with open('test.csv', 'r') as read_obj:
csv_dict_reader = DictReader(read_obj)
for row in csv_dict_reader:
temp = '`'+row['Test']+'`,'
print(temp[:-1])
OR in case you like to read in as df then
import pandas as pd
df = pd.read_csv('test.csv')
Now, you run df.
pl refer: https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html

Related

How to edit a CSV file row by row in Python without using Pandas

I have a CSV file and when I read it by importing the CSV library I get as the output:
['exam', 'id_student', 'grade']`
['maths', '573834', '7']`
['biology', '573834', '8']`
['biology', '578833', '4']
['english', '581775', '7']`
# goes on...
I need to edit it by creating a 4th column called 'Passed' with two possible values: True or False depending on whether the grade of the row is >= 7 (True) or not (False), and then count how many times each student passed an exam.
If it's not possible to edit the CSV file that way, I would need to just read the CSV file and then create a dictionary of lists with the following output:
dict = {'id_student':[573834, 578833, 581775], 'passed_count': [2,0,1]}
# goes on...
Thanks
Try using importing csv as pandas dataframe
import pandas as pd
data=pd.read_csv('data.csv')
And then use:
data['passed']=(data['grades']>=7).astype(bool)
And then save dataframe to csv as:
data.to_csv('final.csv',index=False)
It is totally possible to "edit" CSV.
Assuming you have a file students.csv with the following content:
exam,id_student,grade
maths,573834,7
biology,573834,8
biology,578833,4
english,581775,7
Iterate over input rows, augment the field list of each row with an additional item, and save it back to another CSV:
import csv
with open('students.csv', 'r', newline='') as source, open('result.csv', 'w', newline='') as result:
csvreader = csv.reader(source)
csvwriter = csv.writer(result)
# Deal with the header
header = next(csvreader)
header.append('Passed')
csvwriter.writerow(header)
# Process data rows
for row in csvreader:
row.append(str(int(row[2]) >= 7))
csvwriter.writerow(row)
Now result.csv has the content you need.
If you need to replace the original content, use os.remove() and os.rename() to do that:
import os
os.remove('students.csv')
os.rename('result.csv', 'students.csv')
As for counting, it might be an independent thing, you don't need to modify CSV for that:
import csv
from collections import defaultdict
with open('students.csv', 'r', newline='') as source:
csvreader = csv.reader(source)
next(csvreader) # Skip header
stats = defaultdict(int)
for row in csvreader:
if int(row[2]) >= 7:
stats[row[1]] += 1
print(stats)
You can include counting into the code above and have both pieces in one place. defaultdict (stats) has the same interface as dict if you need to access that.

how to select a specific column of a csv file in python

I am a beginner of Python and would like to have your opinion..
I wrote this code that reads the only column in a file on my pc and puts it in a list.
I have difficulties understanding how I could modify the same code with a file that has multiple columns and select only the column of my interest.
Can you help me?
list = []
with open(r'C:\Users\Desktop\mydoc.csv') as file:
for line in file:
item = int(line)
list.append(item)
results = []
for i in range(0,1086):
a = list[i-1]
b = list[i]
c = list[i+1]
results.append(b)
print(results)
You can use pandas.read_csv() method very simply like this:
import pandas as pd
my_data_frame = pd.read_csv('path/to/your/data')
results = my_data_frame['name_of_your_wanted_column'].values.tolist()
A useful module for the kind of work you are doing is the imaginatively named csv module.
Many csv files have a "header" at the top, this by convention is a useful way of labeling the columns of your file. Assuming you can insert a line at the top of your csv file with comma delimited fieldnames, then you could replace your program with something like:
import csv
with open(r'C:\Users\Desktop\mydoc.csv') as myfile:
csv_reader = csv.DictReader(myfile)
for row in csv_reader:
print ( row['column_name_of_interest'])
The above will print to the terminal all the values that match your specific 'column_name_of_interest' after you edit it to match your particular file.
It's normal to work with lots of columns at once, so that dictionary method of packing a whole row into a single object, addressable by column-name can be very convenient later on.
To a pure python implementation, you should use the package csv.
data.csv
Project1,folder1/file1,data
Project1,folder1/file2,data
Project1,folder1/file3,data
Project1,folder1/file4,data
Project1,folder2/file11,data
Project1,folder2/file42a,data
Project1,folder2/file42b,data
Project1,folder2/file42c,data
Project1,folder2/file42d,data
Project1,folder3/filec,data
Project1,folder3/fileb,data
Project1,folder3/filea,data
Your python program should read it by line
import csv
a = []
with open('data.csv') as csv_file:
reader = csv.reader(csv_file, delimiter=',')
for row in reader:
print(row)
# ['Project1', 'folder1/file1', 'data']
If you print the row element you will see it is a list like that
['Project1', 'folder1/file1', 'data']
If I would like to put in my list all elements in column 1, I need to put that element in my list, doing:
a.append(row[1])
Now in list a I will have a list like:
['folder1/file1', 'folder1/file2', 'folder1/file3', 'folder1/file4', 'folder2/file11', 'folder2/file42a', 'folder2/file42b', 'folder2/file42c', 'folder2/file42d', 'folder3/filec', 'folder3/fileb', 'folder3/filea']
Here is the complete code:
import csv
a = []
with open('data.csv') as csv_file:
reader = csv.reader(csv_file, delimiter=',')
for row in reader:
a.append(row[1])

How to delete lines from csv file using python?

I have a CSV file:It contain the classes name and type of code smell and for each class Icalculated the number of a code smell .the final calcul is on the last line so there are many repeated classes name .
I need just the last line of the class name.
This is a part of my CSV file beacause it's too long :
NameOfClass,LazyClass,ComplexClass,LongParameterList,FeatureEnvy,LongMethod,BlobClass,MessageChain,RefusedBequest,SpaghettiCode,SpeculativeGenerality
com.nirhart.shortrain.MainActivity,NaN,NaN,NaN,NaN,NaN,NaN,1,NaN,NaN,NaN
com.nirhart.shortrain.path.PathParser,NaN,1,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN
com.nirhart.shortrain.path.PathParser,NaN,1,NaN,1,NaN,NaN,NaN,NaN,NaN,NaN
com.nirhart.shortrain.path.PathParser,NaN,1,1,1,NaN,NaN,NaN,NaN,NaN,NaN
com.nirhart.shortrain.path.PathParser,NaN,1,2,1,NaN,NaN,NaN,NaN,NaN,NaN
com.nirhart.shortrain.path.PathParser,NaN,1,2,1,1,NaN,NaN,NaN,NaN,NaN
com.nirhart.shortrain.path.PathPoint,1,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN
com.nirhart.shortrain.path.PathPoint,1,NaN,1,NaN,NaN,NaN,NaN,NaN,NaN,NaN
com.nirhart.shortrain.path.TrainPath,NaN,NaN,NaN,1,NaN,NaN,NaN,NaN,NaN,NaN
com.nirhart.shortrain.rail.RailActionActivity,NaN,NaN,NaN,1,NaN,NaN,NaN,NaN,NaN,NaN
com.nirhart.shortrain.rail.RailActionActivity,NaN,NaN,NaN,1,1,NaN,NaN,NaN,NaN,NaN
To filter out the last entry for groups of NameOfClass, you can make use of Python's groupby() function to return lists of rows with the same NameOfClass. The last entry from each can then be written to a file.
from itertools import groupby
import csv
with open('data_in.csv', newline='') as f_input, open('data_out.csv', 'w', newline='') as f_output:
csv_input = csv.reader(f_input)
csv_output = csv.writer(f_output)
for key, rows in groupby(csv_input, key=lambda x: x[0]):
csv_output.writerow(list(rows)[-1])
For the data you have given, this would give you the following output:
NameOfClass,LazyClass,ComplexClass,LongParameterList,FeatureEnvy,LongMethod,BlobClass,MessageChain,RefusedBequest,SpaghettiCode,SpeculativeGenerality
com.nirhart.shortrain.MainActivity,NaN,NaN,NaN,NaN,NaN,NaN,1,NaN,NaN,NaN
com.nirhart.shortrain.path.PathParser,NaN,1,2,1,1,NaN,NaN,NaN,NaN,NaN
com.nirhart.shortrain.path.PathPoint,1,NaN,1,NaN,NaN,NaN,NaN,NaN,NaN,NaN
com.nirhart.shortrain.path.TrainPath,NaN,NaN,NaN,1,NaN,NaN,NaN,NaN,NaN,NaN
com.nirhart.shortrain.rail.RailActionActivity,NaN,NaN,NaN,1,1,NaN,NaN,NaN,NaN,NaN
To get just the unique class names (ignoring repeated rows, not deleting them), you can do this:
import csv
with open('my_file.csv', 'r') as csvfile:
reader = csv.reader(csvfile)
classNames = set(row[0] for row in reader)
print(classNames)
# {'com.nirhart.shortrain.MainActivity', 'com.nirhart.shortrain.path.PathParser', 'com.nirhart.shortrain.path.PathPoint', ...}
This is just using the csv module to open a file, getting the first value in each row, and then taking only the unique values of those. You can then manipulate the resulting set of strings (you might want to cast it back to a list via list(classNames)) however you need to.
If you intend to later process the data in pandas, filtering duplicates is trivial:
import pandas as pd
df = pd.read_csv('file.csv')
df = df.loc[~df.NameOfClass.duplicated(keep='last')]
If you just want to build a new csv file with only the expected lines, pandas is overkill and the csv module is enough:
import csv
with open('file.csv') as fdin, file('new_file.csv', 'w', newline='') as fdout:
rd = csv.reader(fdin)
wr = csv.writer(fdout)
wr.writerow(next(rd)) # copy the header line
old = None
for row in rd:
if old is not None and old[0] != row[0]:
wr.writerow(old)
old = row
wr.writerow(old)

Making Python ignore CSV separator instruction [duplicate]

I am asking Python to print the minimum number from a column of CSV data, but the top row is the column number, and I don't want Python to take the top row into account. How can I make sure Python ignores the first line?
This is the code so far:
import csv
with open('all16.csv', 'rb') as inf:
incsv = csv.reader(inf)
column = 1
datatype = float
data = (datatype(column) for row in incsv)
least_value = min(data)
print least_value
Could you also explain what you are doing, not just give the code? I am very very new to Python and would like to make sure I understand everything.
You could use an instance of the csv module's Sniffer class to deduce the format of a CSV file and detect whether a header row is present along with the built-in next() function to skip over the first row only when necessary:
import csv
with open('all16.csv', 'r', newline='') as file:
has_header = csv.Sniffer().has_header(file.read(1024))
file.seek(0) # Rewind.
reader = csv.reader(file)
if has_header:
next(reader) # Skip header row.
column = 1
datatype = float
data = (datatype(row[column]) for row in reader)
least_value = min(data)
print(least_value)
Since datatype and column are hardcoded in your example, it would be slightly faster to process the row like this:
data = (float(row[1]) for row in reader)
Note: the code above is for Python 3.x. For Python 2.x use the following line to open the file instead of what is shown:
with open('all16.csv', 'rb') as file:
To skip the first line just call:
next(inf)
Files in Python are iterators over lines.
Borrowed from python cookbook,
A more concise template code might look like this:
import csv
with open('stocks.csv') as f:
f_csv = csv.reader(f)
headers = next(f_csv)
for row in f_csv:
# Process row ...
In a similar use case I had to skip annoying lines before the line with my actual column names. This solution worked nicely. Read the file first, then pass the list to csv.DictReader.
with open('all16.csv') as tmp:
# Skip first line (if any)
next(tmp, None)
# {line_num: row}
data = dict(enumerate(csv.DictReader(tmp)))
You would normally use next(incsv) which advances the iterator one row, so you skip the header. The other (say you wanted to skip 30 rows) would be:
from itertools import islice
for row in islice(incsv, 30, None):
# process
use csv.DictReader instead of csv.Reader.
If the fieldnames parameter is omitted, the values in the first row of the csvfile will be used as field names. you would then be able to access field values using row["1"] etc
Python 2.x
csvreader.next()
Return the next row of the reader’s iterable object as a list, parsed
according to the current dialect.
csv_data = csv.reader(open('sample.csv'))
csv_data.next() # skip first row
for row in csv_data:
print(row) # should print second row
Python 3.x
csvreader.__next__()
Return the next row of the reader’s iterable object as a list (if the
object was returned from reader()) or a dict (if it is a DictReader
instance), parsed according to the current dialect. Usually you should
call this as next(reader).
csv_data = csv.reader(open('sample.csv'))
csv_data.__next__() # skip first row
for row in csv_data:
print(row) # should print second row
The documentation for the Python 3 CSV module provides this example:
with open('example.csv', newline='') as csvfile:
dialect = csv.Sniffer().sniff(csvfile.read(1024))
csvfile.seek(0)
reader = csv.reader(csvfile, dialect)
# ... process CSV file contents here ...
The Sniffer will try to auto-detect many things about the CSV file. You need to explicitly call its has_header() method to determine whether the file has a header line. If it does, then skip the first row when iterating the CSV rows. You can do it like this:
if sniffer.has_header():
for header_row in reader:
break
for data_row in reader:
# do something with the row
this might be a very old question but with pandas we have a very easy solution
import pandas as pd
data=pd.read_csv('all16.csv',skiprows=1)
data['column'].min()
with skiprows=1 we can skip the first row then we can find the least value using data['column'].min()
The new 'pandas' package might be more relevant than 'csv'. The code below will read a CSV file, by default interpreting the first line as the column header and find the minimum across columns.
import pandas as pd
data = pd.read_csv('all16.csv')
data.min()
Because this is related to something I was doing, I'll share here.
What if we're not sure if there's a header and you also don't feel like importing sniffer and other things?
If your task is basic, such as printing or appending to a list or array, you could just use an if statement:
# Let's say there's 4 columns
with open('file.csv') as csvfile:
csvreader = csv.reader(csvfile)
# read first line
first_line = next(csvreader)
# My headers were just text. You can use any suitable conditional here
if len(first_line) == 4:
array.append(first_line)
# Now we'll just iterate over everything else as usual:
for row in csvreader:
array.append(row)
Well, my mini wrapper library would do the job as well.
>>> import pyexcel as pe
>>> data = pe.load('all16.csv', name_columns_by_row=0)
>>> min(data.column[1])
Meanwhile, if you know what header column index one is, for example "Column 1", you can do this instead:
>>> min(data.column["Column 1"])
For me the easiest way to go is to use range.
import csv
with open('files/filename.csv') as I:
reader = csv.reader(I)
fulllist = list(reader)
# Starting with data skipping header
for item in range(1, len(fulllist)):
# Print each row using "item" as the index value
print (fulllist[item])
I would convert csvreader to list, then pop the first element
import csv
with open(fileName, 'r') as csvfile:
csvreader = csv.reader(csvfile)
data = list(csvreader) # Convert to list
data.pop(0) # Removes the first row
for row in data:
print(row)
I would use tail to get rid of the unwanted first line:
tail -n +2 $INFIL | whatever_script.py
just add [1:]
example below:
data = pd.read_csv("/Users/xyz/Desktop/xyxData/xyz.csv", sep=',', header=None)**[1:]**
that works for me in iPython
Python 3.X
Handles UTF8 BOM + HEADER
It was quite frustrating that the csv module could not easily get the header, there is also a bug with the UTF-8 BOM (first char in file).
This works for me using only the csv module:
import csv
def read_csv(self, csv_path, delimiter):
with open(csv_path, newline='', encoding='utf-8') as f:
# https://bugs.python.org/issue7185
# Remove UTF8 BOM.
txt = f.read()[1:]
# Remove header line.
header = txt.splitlines()[:1]
lines = txt.splitlines()[1:]
# Convert to list.
csv_rows = list(csv.reader(lines, delimiter=delimiter))
for row in csv_rows:
value = row[INDEX_HERE]
Simple Solution is to use csv.DictReader()
import csv
def read_csv(file): with open(file, 'r') as file:
reader = csv.DictReader(file)
for row in reader:
print(row["column_name"]) # Replace the name of column header.

How to get specific columns in a certain range from a csv file without using pandas

For some reason the pandas module does not work and I have to find another way to read a (large) csv file and have as Output specific columns within a certain range (e.g. first 1000 lines). I have the code that reads the entire csv file, but I haven't found a way to display just specific columns.
Any help is much appreciated!
import csv
fileObj = open('apartment-data-all-4-xaver.2018.csv')
csvReader = csv.reader( fileObj )
for row in csvReader:
print row
fileObj.close()
I created a small csv file with the following contents:
first,second,third
11,12,13
21,22,23
31,32,33
41,42,43
You can use the following helper function that uses namedtuple from collections module, and generates objects that allows you to access your columns like attributes:
import csv
from collections import namedtuple
def get_first_n_lines(file_name, n):
with open(file_name) as file_obj:
csv_reader = csv.reader(file_obj)
header = next(csv_reader)
Tuple = namedtuple('Tuple', header)
for i, row in enumerate(csv_reader, start=1):
yield Tuple(*row)
if i >= n: break
If you want to print first and third columns, having n=3 lines, you use the method like this (Python 3.6 +):
for line in get_first_n_lines(file_name='csv_file.csv', n=3):
print(f'{line.first}, {line.third}')
Or like this (Python 3.0 - 3.5):
for line in get_first_n_lines(file_name='csv_file.csv', n=3):
print('{}, {}'.format(line.first, line.third))
Outputs:
11, 13
21, 23
31, 33
use csv dictreader and then filter out specific rows and columns
import csv
data = []
with open('names.csv', newline='') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
data.append(row)
colnames = ['col1', 'col2']
for i in range(1000):
print(data[i][colnames[0]], data[i][colnames[1]])

Categories

Resources