Fitting a Two-Phase Coxian Distribution to Data - python

Is there an easy(ish) way to fit a two phase Coxian distribution, preferable in R or if necessary Python? This is a distribution with two transient states in sequence, each described by an exponential distribution, that each can lead to the absorbing state with some probability. I have some real world data that I think is best described by this distribution and I would like to be able to estimate the exponential parameters of the two phases, ideally as a linear function of some covariates I have. If there is a package or library or any sort of resources about fitting a model like this I would really appreciate it. Thank you for your time.

Related

Gaussian process regression with sci-kit learn

Context:
in Gaussian Process (GP) regression we can use two approaches:
(I) Fit the kernel parameters via Maximum Likelihood (maximize data likelihood) and use the GP defined by these
parameters for prediction.
(II) Bayesian approach: put a parametric prior distribution on the kernel parameters.
The parameters of this prior distribution are called the hyperparameters.
Condition on the data to obtain a posterior distribution for the kernel parameters and now either
(IIa) fit the kernel parameters by maximizing the posterior kernel-parameter likelihood (MAP parameters)
and use the GP defined by the MAP-parameters for prediction, or
(IIb) (the full Bayesian approach): predict using the mixture model which integrates all the GPs defined by
the admissible kernel parameters along the posterior distribution of kernel-parameters.
(IIb) is the principal approach advocated in the reference [RW2006] cited in the package.
The point is that hyperparameters exist only in the Bayesian approach and are the parameters of the prior
distribution on kernel parameters.
Therefore I am confused about the use of the term "hyperparameters" in the documentation, e.g.
here
where it is stated that
"Kernels are parameterized by a vector of hyperparameters".
This must be interpreted as a sort of indirect parameterization via conditioning on the data as the hyperparameters
do not directly determine the kernel parameters.
Then an example is given of the exponential kernel and its length-scale parameter.
This is definitely not a hyperparameter as this term is generally used.
No distinction seems to be drawn between kernel-parameters and hyperparameters.
This is confusing and it is now unclear if the package uses the Bayesian approach at all.
For example where do we specify the parametric family of prior distributions on kernel parameters?
Question: does scikit-learn use approach (I) or (II)?
Here is my own tentative answer:
the confusion comes from the fact that a Gaussian Process is often called a "prior on functions" indicating some sort of Bayesianism. Worse still the process is infinite dimensional so restricting to the finite data dimensions is some sort of "marginalization".
This is also confusing since in general you have marginalization only in the Bayesian approach where you have a joint distribution of data and parameters,
so you often marginalize out one or the other.
The correct view here however is the following: the Gaussian Process is the model, the kernel parameters are the model parameters, in sci-kit learn there are no hyperparameters since there is no prior distribution on kernel parameters, the so called LML (log marginal likelihood) is ordinary data likelihood given the model parameters and the parameter-fit is ordinary maximum data-likelihood. In short the approach is (I) and not (II).
If you read the scikit-learn documentation on GP regression, you clearly see that the kernel (hyper)parameters are optimized. Take a look for example at the description of the argument n_restarts_optimizer: "The number of restarts of the optimizer for finding the kernel’s parameters which maximize the log-marginal likelihood." In your question that is approach (i).
I would note two more things though:
In my mind, the fact that they are called "hyperparameters" automatically implies that they are deterministic and can be estimated directly. Otherwise, they are random variables and that is why they can have a distribution. Another way to think of it is: did you define a prior for it? If not, then it is a parameter! If you did, then the prior's hyperparameter(s) may be what needs to be determined.
Note that the GaussianProcessRegressor class "exposes a method log_marginal_likelihood(theta), which can be used externally for other ways of selecting hyperparameters, e.g., via Markov chain Monte Carlo." So, technically it is possible to make it "fully Bayesian" (your approach (ii)) but you must provide the inference method.

Fitting data with a convolution of continuous distributions with python

I need to fit a data set, which I suspect should be described by the convolution of a chi2 and a normal distribution, but the specific distributions are not the relevant matter. I found this thread, where the accepted answer manages to convolute the two functions. I haven't managed to come up with a solution to use this for fitting. Is there a way of using a convolution of two continuous distributions for fitting in Python? I added a plot of the data and the data can be found here.

Semi-supervised Gaussian mixture model clustering in Python

I have images that I am segmenting using a gaussian mixture model from scikit-learn. Some images are labeled, so I have a good bit of prior information that I would like to use. I would like to run a semi-supervised training of a mixture model, by providing some of the cluster assignments ahead of time.
From the Matlab documentation, I can see that Matlab allows initial values to be set. Are there any python libraries, especially scikit-learn approaches that would allow this?
The standard GMM does not work in a semi-supervised fashion. The initial values you mentioned is likely the initial values for the mean vectors and covariance matrices for the gaussians which will be updated by the EM algorithm.
A simple hack will be to group your labeled data based on their labels and individually estimate mean vectors and covariance matrices for them and pass these as the initial values to your MATLAB function (scikit-learn does not allow this as far as I'm aware). Hopefully this will position your Gaussians at the "correct locations". The EM algorithm will then take it from there to adjust these parameters.
The downside of this hack is that it does not guarantee that it will respect your true label assignment, hence even if a data point is assigned a particular cluster label, there is a chance that it might be re-assigned to another cluster. Also, noise in your feature vectors or labels could also cause your initial Gaussians to cover a much larger region than it is suppose to, hence wrecking havoc on the EM algorithm. Also, if you do not have sufficient data points for a particular cluster, your estimated covariance matrices might be singular, hence breaking this trick altogether.
Unless it is a must for you to use GMM to cluster your data (for e.g., you know for sure that gaussians model your data well), then perhaps you can just try the semi-supervised methods in scikit-learn . These will propagate the labels based on feature similarities to your other data point. However, I doubt this can handle large dataset as it requires the graph laplacian matrix to be built from pairs of samples, unless there is some special implementation trick to handle this in scikit-learn.

Statsmodels Logistic Regression class imbalance

I'd like to run a logistic regression on a dataset with 0.5% positive class by re-balancing the dataset through class or sample weights. I can do this in scikit learn, but it doesn't provide any of the inferential stats for the model (confidence intervals, p-values, residual analysis).
Is this possible to do in statsmodels? I don't see a sample_weights or class_weights argument in statsmodels.discrete.discrete_model.Logit.fit
Thank you!
programmer's answer:
statsmodels Logit and other discrete models don't have weights yet. (*)
GLM Binomial has implicitly defined case weights through the number of successful and unsuccessful trials per observation. It would also allow manipulating the weights through the GLM variance function, but that is not officially supported and tested yet.
update statsmodels Logit still does not have weights, but GLM has obtained var_weights and freq_weights several statsmodels releases ago. GLM Binomial can be used to estimate a Logit or a Probit model.
statistician's/econometrician's answer:
Inference, standard errors, confidence intervals, tests and so on, are based on having a random sample. If weights are manipulated, then this should affect the inferential statistics.
However, I never looked at the problem for rebalancing the data based on the observed response. In general, this creates a selection bias. A quick internet search shows several answers, from rebalancing doesn't have a positive effect in Logit to penalized estimation as alternative.
One possibility is to also try different link function, cloglog or other link functions have asymmetric or heavier tails that are more appropriate for data with small risk in one class or category.
(*) One problem with implementing weights is to decide what their interpretation is for inference. Stata, for example, allows for 3 kinds of weights.

Python multiple curve fitting models

Is there a way to have an x,y pair dataset given to a function that will return a list of curve fit models and the coeff. The program DataFit does this with about 200 different models, but we are looking for a pythonic way. From exponential to inverse polynomial etc.
I have seen many posts of manually using scipy to type each model, but this is not feasible for the number of models we want to test.
The closest I found was pyeq2, but this is not returning the list of functions, and seems to be a rabbit hole to code for.
If R has this available, we could use that but python is really the goal
Below is an example of the data, we want to find the best way to describe this curve
You can try library splines in R. I have used this for higher order curve fitting to some univariate data. You can try to change and achieve similar thing with corresponding R^2 errors.
You can either decide to do the following:
Choose a model to fit a parameters. This model should be based on a single independent variable. This can be done by python's scipy.optimize curve_fit function. You can choose something like a hyberbola.
Choose a model that is complex and likely represents an underlying mechanism of something at work. Like the system of ODE's from a disease SIR model. Fitting the parameters will be no easy task. This will be done by Markov Chain Monte Carlo (MCMC) methods. This is VERY difficult.
Realise that you have data and can use machine learning via scikit learn to predict from your data. This is a method that doesn't require parameters.
Machine learning and neural networks don't fit something and can't really tell you about the underlying mechanism but can make predicitions just as a best fit model would...dare I say even better.
In the end, we found that Eureqa software was able to achieve this. https://www.nutonian.com/products/eureqa/

Categories

Resources