Keras GaussianNoise layer causing unexpected predictions? - python

I'm new to Keras and I'm currently using it to build a neural network that will predict a given function, one with Gaussian noise and without. Here's the implementation with the GaussianNoise layer:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import tensorflow.keras as keras
from sklearn.metrics import mean_squared_error
from keras.layers import Dense, GaussianNoise
from scipy.interpolate import make_interp_spline, BSpline
x = [i for i in range(-5, 5)]
x1 = np.asarray(x)
xnew = np.linspace(-5.5, 5.5, 300)
y = [(i**4.0 - 22 * (i ** 2.0)) for i in x]
xnew = np.linspace(-5.5, 5.5, 300)
spl = make_interp_spline(x, y, k=3)
power_smooth = spl(xnew)
y = [(i**4.0 - 22 * (i ** 2.0)) for i in xnew]
y1 = np.asarray(y)
input_layer = keras.layers.Input(shape=(1,))
dense = Dense(10, activation='relu')(input_layer)
gauss = GaussianNoise(stddev=25)(dense)
dense = Dense(10, activation='relu')(gauss)
dense = Dense(10, activation='relu')(dense)
dense = Dense(10, activation='relu')(dense)
dense = Dense(10, activation='relu')(dense)
output = Dense(1)(dense)
model = keras.Model(inputs=input_layer, outputs=output)
model.compile(loss='mse', optimizer='adam')
model.fit(xnew, y1, epochs=1000, batch_size=10, verbose=0)
yhat = model.predict(xnew)
print('MSE: %.3f' % mean_squared_error(y1, yhat))
spl1 = make_interp_spline(xnew, yhat, k=3)
power_smooth1 = spl1(xnew)
plt.plot(xnew,power_smooth1, label='Predicted')
plt.plot(xnew,power_smooth, label = 'Actual')
plt.title('Input (x) versus Output (y)')
plt.xlabel('Input Variable (x)')
plt.ylabel('Output Variable (y)')
plt.legend()
plt.show()
When I remove the GaussianNoise layer, it produced a decent prediction:
However, I then added the GaussianNoise layer back into my code and this is the result:
I'm not sure what's going on here for this layer to obscure the prediction so badly. How could I remedy this? Any help would be appreciated. Thank you!

Related

Partial derivatives of neural network output with respect to inputs

I have trained a deep neural network for regression, with 2 input neurons, 1 output neuron and some hidden layers, as in the following (Tensorflow 2):
import numpy as np
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import losses
import tensorflow as tf
import pandas as pd
import sklearn
from sklearn.model_selection import train_test_split
from tensorflow import keras
from tensorflow.keras import layers
#Creation of a "synthetic" dataset
x1 = np.linspace(0, 6*np.pi, 2000)
x2 = 1.5 * np.linspace(0, 6*np.pi, 2000)
y = np.sin(x1) + np.cos(x2)
data = pd.DataFrame(np.array([x1, x2, y]).transpose(), columns = ['x1', 'x2', 'y'])
# train/test split and definition of the normalization over the training set
train_df, test_df = train_test_split(data, test_size=0.2, random_state=0)
normalizer = tf.keras.layers.Normalization(axis=-1)
normalizer.adapt(np.array(train_df.iloc[:, :-1]))
#Definition of the DNN structure
def build_and_compile_model(norm):
model = keras.Sequential([
norm,
layers.Dense(64, input_dim=2, activation='LeakyReLU'),
layers.Dense(64, activation='LeakyReLU'),
layers.Dense(32, activation='LeakyReLU'),
layers.Dense(32, activation='LeakyReLU'),
layers.Dense(16, activation='LeakyReLU'),
layers.Dense(16, activation='LeakyReLU'),
layers.Dense(8, activation='LeakyReLU'),
layers.Dense(1, activation = 'linear')
])
model.compile(loss='mean_absolute_error',
optimizer=tf.keras.optimizers.Adam(0.001))
return model
model = build_and_compile_model(normalizer)
# Train of the DNN
%%time
history = model.fit(
train_df.iloc[:, :-1],
train_df.iloc[:, -1],
validation_split=0.2,
verbose=2, epochs=100)
Now, if y is the prediction of the network, I want to compute partial derivatives dy/dx1 and dy/dx2. To achieve this, I have tried
x = tf.constant(data.iloc[:, :-1].values)
with tf.GradientTape(persistent = True) as t:
t.watch(x)
y = model(x)
dy_dx = t.gradient(y, x)
dy_dx.numpy()
If I plot the y as a function of x1 (or of x2), and I compare it with the analytical result from the definition I have given above, I get a good agreement:
plt.figure(figsize = (5, 3), dpi = 190)
plt.plot(x1, model.predict(x), label = 'model prediction')
plt.plot(x1, np.sin(x1) + np.cos(x2), label = 'analytical result')
plt.xlabel('$x_1$')
plt.legend()
plt.show()
On the contrary, if I plot the first column of the vector dy_dx and I compare it with the analytical derivative (dy/dx1 = cos(x1)), they do not match (similar situation for the other partial derivative):
plt.figure(figsize = (5, 3), dpi = 190)
plt.plot(x1, dy_dx[:, 0], label = 'autodiff result')
plt.plot(x1, np.cos(x1), label = 'analytical result')
plt.xlabel('$x_1$')
plt.legend()
plt.show()
If I compare this gradient with the finite differences, I get
plt.figure(figsize = (5, 3), dpi = 190)
plt.plot(x1, dy_dx[:, 0], label = 'autodiff result')
plt.plot(x1[0:-1], np.diff(y.numpy()[:, 0])/.1e-1, label = 'finite differences')
plt.xlabel('$x_1$')
plt.legend()
plt.show()
So, since the autodiff result and the finite difference result are equal up to a scaling constant, this means that autodiff is not computing the partial derivative dy/dx1, but it is only computing the total derivative, plotting it over one of the variables.
So, my question remains: how to compute partial derivatives?

Overwrite plot every epoch

I wrote a little script that has Neural Network approximate polynomial, and plots the result every epoch, but the problem is that I want that every iteration the new plot will overwrite the previous plot, so I can see how it changes over training.
I searched around the web and found that I need to use either ion() or isinteractive() or clear(), but I tried them all and it still does not work.
Edit:
For the sake of clarification, I am using Jupyter notebook, so I want it to work on this platform.
Here's my code:
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import Dense
from numpy import asarray
from matplotlib import pyplot
from tensorflow.keras.layers import Conv1D
import tensorflow
class myCallback(tensorflow.keras.callbacks.Callback):
def on_train_begin(self, logs={}):
pyplot.ion()
def on_epoch_end(self, epoch, logs=None):
yhat = model.predict(x)
# inverse transforms
x_plot = scale_x.inverse_transform(x)
y_plot = scale_y.inverse_transform(y)
yhat_plot = scale_y.inverse_transform(yhat)
# report model error
print('MSE: %.3f' % mean_squared_error(y_plot, yhat_plot))
# plot x vs y
plt = pyplot.scatter(x_plot,y_plot, label='Actual')
# plot x vs yhat
pyplot.scatter(x_plot,yhat_plot, label='Predicted')
pyplot.title('Input (x) versus Output (y)')
pyplot.xlabel('Input Variable (x)')
pyplot.ylabel('Output Variable (y)')
pyplot.legend()
pyplot.show()
# define the dataset
x = asarray([i for i in range(-50,51)])
y = asarray([i**3 for i in x])
print(x.min(), x.max(), y.min(), y.max())
# reshape arrays into into rows and cols
x = x.reshape((len(x), 1))
y = y.reshape((len(y), 1))
# separately scale the input and output variables
scale_x = MinMaxScaler()
x = scale_x.fit_transform(x)
scale_y = MinMaxScaler()
y = scale_y.fit_transform(y)
print(x.min(), x.max(), y.min(), y.max())
# design the neural network model
model = Sequential()
model.add(Dense(10, input_dim=1, activation='relu', kernel_initializer='he_uniform'))
#Conv1D(32, 5, activation='relu')
model.add(Dense(10, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(1))
opt = tensorflow.keras.optimizers.Adam(learning_rate=0.01)
# define the loss function and optimization algorithm
model.compile(loss='mse', optimizer=opt)
# ft the model on the training dataset
model.fit(x, y, epochs=10, batch_size=10, verbose=0, callbacks=[myCallback()])
# make predictions for the input data
Your help would be highly appreciated!
You are getting a new plot after each epoch but the changes are not really visible because your model is too weak. Here is an example with significant differences:
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import Dense
from numpy import asarray
from matplotlib import pyplot
import tensorflow
from IPython.display import clear_output
class myCallback(tensorflow.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
clear_output(wait=True)
yhat = model.predict(x)
# inverse transforms
x_plot = scale_x.inverse_transform(x)
y_plot = scale_y.inverse_transform(y)
yhat_plot = scale_y.inverse_transform(yhat)
# report model error
print('MSE: %.3f' % mean_squared_error(y_plot, yhat_plot))
# plot x vs y
plt = pyplot.scatter(x_plot,y_plot, label='Actual')
# plot x vs yhat
pyplot.scatter(x_plot,yhat_plot, label='Predicted')
pyplot.title('Input (x) versus Output (y)')
pyplot.xlabel('Input Variable (x)')
pyplot.ylabel('Output Variable (y)')
pyplot.legend()
pyplot.show()
# define the dataset
x = asarray([i for i in range(-50,51)])
y = asarray([i**3 for i in x])
print(x.shape)
print(x.min(), x.max(), y.min(), y.max())
# reshape arrays into into rows and cols
x = x.reshape((len(x), 1))
y = y.reshape((len(y), 1))
# separately scale the input and output variables
scale_x = MinMaxScaler()
x = scale_x.fit_transform(x)
scale_y = MinMaxScaler()
y = scale_y.fit_transform(y)
print(x.min(), x.max(), y.min(), y.max())
# design the neural network model
model = Sequential()
model.add(Dense(64, input_dim=1, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(16, activation='relu'))
model.add(Dense(1))
opt = tensorflow.keras.optimizers.Adam(learning_rate=0.01)
# define the loss function and optimization algorithm
model.compile(loss='mse', optimizer=opt)
# ft the model on the training dataset
model.fit(x, y, epochs=50, batch_size=10, verbose=0, callbacks=[myCallback()])
# make predictions for the input data
Here is the plot of the final epoch:

Class weights for multi-output classification

I have a problem where i created a model like this :
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Flatten
from keras.layers import LSTM, Conv1D, Input, MaxPooling1D, GlobalMaxPooling1D
from keras.layers.embeddings import Embedding
posts_input = Input(shape=(None,), dtype='int32', name='posts')
embedded_posts = Embedding(max_nb_words, embedding_vector_length, input_length=max_post_len)(posts_input)
x = Conv1D(128, 5, activation='relu')(embedded_posts)
x = Dropout(0.25)(x)
x = MaxPooling1D(5)(x)
x = Conv1D(256, 5, activation='relu')(x)
x = Conv1D(256, 5, activation='relu')(x)
x = Dropout(0.25)(x)
x = MaxPooling1D(5)(x)
x = Conv1D(256, 5, activation='relu')(x)
x = Conv1D(256, 5, activation='relu')(x)
x = Dropout(0.25)(x)
x = GlobalMaxPooling1D()(x)
x = Dense(128, activation='relu')(x)
Axe1_prediction = Dense(1, activation='sigmoid', name='axe1')(x)
Axe2_prediction = Dense(1, activation='sigmoid', name='axe2')(x)
Axe3_prediction = Dense(1, activation='sigmoid', name='axe3')(x)
Axe4_prediction = Dense(1, activation='sigmoid', name='axe4')(x)
model = Model(posts_input, [Axe1_prediction, Axe2_prediction, Axe3_prediction, Axe4_prediction])
as you can see, this model has 4 outputs.
Then i compile this model like this :
model.compile(optimizer='rmsprop',
loss=['binary_crossentropy',
'binary_crossentropy',
'binary_crossentropy',
'binary_crossentropy'],
metrics=['accuracy'])
For fitting this model, i think i need to set the class weights, so i create these :
from sklearn.preprocessing import LabelEncoder
from sklearn.utils import class_weight
le = LabelEncoder()
y1 = le.fit_transform(df2["Axe1"])
y2 = le.fit_transform(df2["Axe2"])
y3 = le.fit_transform(df2["Axe3"])
y4 = le.fit_transform(df2["Axe4"])
cw1 = class_weight.compute_class_weight('balanced', np.unique(y1), y1)
cw2 = class_weight.compute_class_weight('balanced', np.unique(y2), y2)
cw3 = class_weight.compute_class_weight('balanced', np.unique(y3), y3)
cw4 = class_weight.compute_class_weight('balanced', np.unique(y4), y4)
But finally i don't know how to set this parameters in the fitting :
history = model.fit(X_train,
[y1_train, y2_train, y3_train, y4_train],
epochs=10,
validation_data=(X_val, [y1_val, y2_val, y3_val, y4_val]));
Could you help me by showing how i can add the "class_weights =" parameter ?
You have to use tensorflow 2.1 or earlier. The class weights fuctionality has beed removed after TF2.1 for multioutput models
If you want still to use tensorflow > 2.1, you need to define a custom loss instead, something similar as below :
from functools import partial
import tensorflow as tf
import keras.backend as K
def weighted_binary_crossentropy(target, output, weights_table):
# get the given weight
weights_vect = weights_table.lookup(target)
return K.binary_crossentropy(target, output) * weights_vect
# transform dictionnary of weights into lookup table that can be used
def to_lookup_table(dictionnary):
return tf.lookup.StaticHashTable(
tf.lookup.KeyValueTensorInitializer(
list(dictionnary.keys()), #[0,1]
list(dictionnary.values()), # corresponding weights
key_dtype=tf.int64,
value_dtype=tf.float32,
),
default_value=-1)
cw1 = ...
cw2 = ...
cw3 = ...
cw4 = ...
# define function where weights_table already defined
binary_crossentropy_1 = partial(weighted_binary_crossentropy, weights_table=to_lookup_table(cw1))
...
binary_crossentropy_4 = partial(weighted_binary_crossentropy, weights_table=to_lookup_table(cw4))
model.compile(optimizer='rmsprop',
loss=[binary_crossentropy_1, ..., binary_crossentropy_4],
metrics=['accuracy'])
Depending on how you define the weights dictionnary and the output of your model, you might have to change the type of the target, its shape, or removing the argmax. You might also to change the type of the keys and values in the to_lookup_table function.
For those who need a categorical crossentropy at the end, just replace K.binary_crossentropy by K.categorical_crossentropy.

Neural network sine approximation

After spending days failing to use neural network for Q learning, I decided to go back to the basics and do a simple function approximation to see if everything was working correctly and see how some parameters affected the learning process.
Here is the code that I came up with
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt
import random
import numpy
from sklearn.preprocessing import MinMaxScaler
regressor = Sequential()
regressor.add(Dense(units=20, activation='sigmoid', kernel_initializer='uniform', input_dim=1))
regressor.add(Dense(units=20, activation='sigmoid', kernel_initializer='uniform'))
regressor.add(Dense(units=20, activation='sigmoid', kernel_initializer='uniform'))
regressor.add(Dense(units=1))
regressor.compile(loss='mean_squared_error', optimizer='sgd')
#regressor = ExtraTreesRegressor()
N = 5000
X = numpy.empty((N,))
Y = numpy.empty((N,))
for i in range(N):
X[i] = random.uniform(-10, 10)
X = numpy.sort(X).reshape(-1, 1)
for i in range(N):
Y[i] = numpy.sin(X[i])
Y = Y.reshape(-1, 1)
X_scaler = MinMaxScaler()
Y_scaler = MinMaxScaler()
X = X_scaler.fit_transform(X)
Y = Y_scaler.fit_transform(Y)
regressor.fit(X, Y, epochs=2, verbose=1, batch_size=32)
#regressor.fit(X, Y.reshape(5000,))
x = numpy.mgrid[-10:10:100*1j]
x = x.reshape(-1, 1)
y = numpy.mgrid[-10:10:100*1j]
y = y.reshape(-1, 1)
x = X_scaler.fit_transform(x)
for i in range(len(x)):
y[i] = regressor.predict(numpy.array([x[i]]))
plt.figure()
plt.plot(X_scaler.inverse_transform(x), Y_scaler.inverse_transform(y))
plt.plot(X_scaler.inverse_transform(X), Y_scaler.inverse_transform(Y))
The problem is that all my predictions are around 0 in value. As you can see I used an ExtraTreesRegressor from sklearn (commented lines) to check that the protocol is actually correct. So what is wrong with my neural network ? Why is it not working ?
(The actual problem that I'm trying to solve is to compute the Q function for the mountain car problem using neural network. How is it different from this function approximator ?)
With these changes:
Activations to relu
Remove kernel_initializer (i.e. leave the default 'glorot_uniform')
Adam optimizer
100 epochs
i.e.
regressor = Sequential()
regressor.add(Dense(units=20, activation='relu', input_dim=1))
regressor.add(Dense(units=20, activation='relu'))
regressor.add(Dense(units=20, activation='relu'))
regressor.add(Dense(units=1))
regressor.compile(loss='mean_squared_error', optimizer='adam')
regressor.fit(X, Y, epochs=100, verbose=1, batch_size=32)
and the rest of your code unchanged, here is the result:
Tinker, again and again...
A more concise version of your code that works:
def data_gen():
while True:
x = (np.random.random([1024])-0.5) * 10
y = np.sin(x)
yield (x,y)
regressor = Sequential()
regressor.add(Dense(units=20, activation='tanh', input_dim=1))
regressor.add(Dense(units=20, activation='tanh'))
regressor.add(Dense(units=20, activation='tanh'))
regressor.add(Dense(units=1, activation='linear'))
regressor.compile(loss='mse', optimizer='adam')
regressor.fit_generator(data_gen(), epochs=3, steps_per_epoch=128)
x = (np.random.random([1024])-0.5)*10
x = np.sort(x)
y = np.sin(x)
plt.plot(x, y)
plt.plot(x, regressor.predict(x))
plt.show()
Changes made: replacing low layer activations with hyperbolic tangents, replacing the static dataset with a random generator, replacing sgd with adam. That said, there still are problems with other parts of your code that I haven't been able to locate yet (most likely your scaler and random process).
I managed to get a good approximation by changing the architecture and the training as in the following code. It's a bit of an overkill but at least I know where the problem was coming from.
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt
import random
import numpy
from sklearn.preprocessing import MinMaxScaler
from sklearn.ensemble import ExtraTreesRegressor
from keras import optimizers
regressor = Sequential()
regressor.add(Dense(units=500, activation='sigmoid', kernel_initializer='uniform', input_dim=1))
regressor.add(Dense(units=500, activation='sigmoid', kernel_initializer='uniform'))
regressor.add(Dense(units=1, activation='sigmoid'))
regressor.compile(loss='mean_squared_error', optimizer='adam')
#regressor = ExtraTreesRegressor()
N = 5000
X = numpy.empty((N,))
Y = numpy.empty((N,))
for i in range(N):
X[i] = random.uniform(-10, 10)
X = numpy.sort(X).reshape(-1, 1)
for i in range(N):
Y[i] = numpy.sin(X[i])
Y = Y.reshape(-1, 1)
X_scaler = MinMaxScaler()
Y_scaler = MinMaxScaler()
X = X_scaler.fit_transform(X)
Y = Y_scaler.fit_transform(Y)
regressor.fit(X, Y, epochs=50, verbose=1, batch_size=2)
#regressor.fit(X, Y.reshape(5000,))
x = numpy.mgrid[-10:10:100*1j]
x = x.reshape(-1, 1)
y = numpy.mgrid[-10:10:100*1j]
y = y.reshape(-1, 1)
x = X_scaler.fit_transform(x)
for i in range(len(x)):
y[i] = regressor.predict(numpy.array([x[i]]))
plt.figure()
plt.plot(X_scaler.inverse_transform(x), Y_scaler.inverse_transform(y))
plt.plot(X_scaler.inverse_transform(X), Y_scaler.inverse_transform(Y))
However I'm still baffled that I found papers saying that they were using only two hidden layers of five neurons to approximate the Q function of the mountain car problem and training their network for only a few minutes and get good results. I will try changing my batch size in my original problem to see what results I can get but I'm not very optimistic

Multiple outputs in Keras

I have a problem which deals with predicting two outputs when given a vector of predictors.
Assume that a predictor vector looks like x1, y1, att1, att2, ..., attn, which says x1, y1 are coordinates and att's are the other attributes attached to the occurrence of x1, y1 coordinates. Based on this predictor set I want to predict x2, y2. This is a time series problem, which I am trying to solve using multiple regresssion.
My question is how do I setup keras, which can give me 2 outputs in the final layer.
from keras.models import Model
from keras.layers import *
#inp is a "tensor", that can be passed when calling other layers to produce an output
inp = Input((10,)) #supposing you have ten numeric values as input
#here, SomeLayer() is defining a layer,
#and calling it with (inp) produces the output tensor x
x = SomeLayer(blablabla)(inp)
x = SomeOtherLayer(blablabla)(x) #here, I just replace x, because this intermediate output is not interesting to keep
#here, I want to keep the two different outputs for defining the model
#notice that both left and right are called with the same input x, creating a fork
out1 = LeftSideLastLayer(balbalba)(x)
out2 = RightSideLastLayer(banblabala)(x)
#here, you define which path you will follow in the graph you've drawn with layers
#notice the two outputs passed in a list, telling the model I want it to have two outputs.
model = Model(inp, [out1,out2])
model.compile(optimizer = ...., loss = ....) #loss can be one for both sides or a list with different loss functions for out1 and out2
model.fit(inputData,[outputYLeft, outputYRight], epochs=..., batch_size=...)
You can make a model with multiple output with
the Functional API
by subclassing tf.keras.Model.
Here's an example of dual outputs (regression and classification) on the Iris Dataset, using the Functional API:
from sklearn.datasets import load_iris
from tensorflow.keras.layers import Dense
from tensorflow.keras import Input, Model
import tensorflow as tf
data, target = load_iris(return_X_y=True)
X = data[:, (0, 1, 2)]
Y = data[:, 3]
Z = target
inputs = Input(shape=(3,), name='input')
x = Dense(16, activation='relu', name='16')(inputs)
x = Dense(32, activation='relu', name='32')(x)
output1 = Dense(1, name='cont_out')(x)
output2 = Dense(3, activation='softmax', name='cat_out')(x)
model = Model(inputs=inputs, outputs=[output1, output2])
model.compile(loss={'cont_out': 'mean_absolute_error',
'cat_out': 'sparse_categorical_crossentropy'},
optimizer='adam',
metrics={'cat_out': tf.metrics.SparseCategoricalAccuracy(name='acc')})
history = model.fit(X, {'cont_out': Y, 'cat_out': Z}, epochs=10, batch_size=8)
Here's a simplified version:
from sklearn.datasets import load_iris
from tensorflow.keras.layers import Dense
from tensorflow.keras import Input, Model
data, target = load_iris(return_X_y=True)
X = data[:, (0, 1, 2)]
Y = data[:, 3]
Z = target
inputs = Input(shape=(3,))
x = Dense(16, activation='relu')(inputs)
x = Dense(32, activation='relu')(x)
output1 = Dense(1)(x)
output2 = Dense(3, activation='softmax')(x)
model = Model(inputs=inputs, outputs=[output1, output2])
model.compile(loss=['mae', 'sparse_categorical_crossentropy'], optimizer='adam')
history = model.fit(X, [Y, Z], epochs=10, batch_size=8)
Here's the same example, subclassing tf.keras.Model and with a custom training loop:
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras import Model
from sklearn.datasets import load_iris
tf.keras.backend.set_floatx('float64')
iris, target = load_iris(return_X_y=True)
X = iris[:, :3]
y = iris[:, 3]
z = target
ds = tf.data.Dataset.from_tensor_slices((X, y, z)).shuffle(150).batch(8)
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.d0 = Dense(16, activation='relu')
self.d1 = Dense(32, activation='relu')
self.d2 = Dense(1)
self.d3 = Dense(3, activation='softmax')
def call(self, x, training=None, **kwargs):
x = self.d0(x)
x = self.d1(x)
a = self.d2(x)
b = self.d3(x)
return a, b
model = MyModel()
loss_obj_reg = tf.keras.losses.MeanAbsoluteError()
loss_obj_cat = tf.keras.losses.SparseCategoricalCrossentropy()
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
loss_reg = tf.keras.metrics.Mean(name='regression loss')
loss_cat = tf.keras.metrics.Mean(name='categorical loss')
error_reg = tf.keras.metrics.MeanAbsoluteError()
error_cat = tf.keras.metrics.SparseCategoricalAccuracy()
#tf.function
def train_step(inputs, y_reg, y_cat):
with tf.GradientTape() as tape:
pred_reg, pred_cat = model(inputs)
reg_loss = loss_obj_reg(y_reg, pred_reg)
cat_loss = loss_obj_cat(y_cat, pred_cat)
gradients = tape.gradient([reg_loss, cat_loss], model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
loss_reg(reg_loss)
loss_cat(cat_loss)
error_reg(y_reg, pred_reg)
error_cat(y_cat, pred_cat)
for epoch in range(50):
for xx, yy, zz in ds:
train_step(xx, yy, zz)
template = 'Epoch {:>2}, SCCE: {:>5.2f},' \
' MAE: {:>4.2f}, SAcc: {:>5.1%}'
print(template.format(epoch+1,
loss_cat.result(),
error_reg.result(),
error_cat.result()))
loss_reg.reset_states()
loss_cat.reset_states()
error_reg.reset_states()
error_cat.reset_states()

Categories

Resources