How do I extract GPS metadata from DJI photographs using python? [duplicate] - python

I am writing a small program to get the GPS info of a iphone jpg photo.
The library I am using is the PIL in python. Now I am able to get the GPSInfo, which is something like:
{1: 'N',
2: ((1, 1), (20, 1), (5365, 100)),
3: 'E',
4: ((103, 1), (41, 1), (1052, 100)),
5: 0,
6: (43, 1),
7: ((15, 1), (32, 1), (7, 1)),
16: 'T',
17: (77473, 452),
29: '2013:10:25'}
How can I interpret this? And I notice the tag is not continuous, so is there any cheating sheet which I can refer to in order to get a better understanding of all the number tags and what they mean? Thank you!
UPDATES
Sorry, I have figured it out. In the PIL lib, there is a GPSTAGS.get() function which can help me decode the key in gps info. Thank you guys!
gpsinfo = {}
for key in exif['GPSInfo'].keys():
decode = ExifTags.GPSTAGS.get(key,key)
gpsinfo[decode] = exif['GPSInfo'][key]
print gpsinfo
and here is the result
{'GPSTimeStamp': ((15, 1), (32, 1), (7, 1)),
'GPSImgDirectionRef': 'T',
'GPSImgDirection': (77473, 452),
'GPSLongitude': ((103, 1), (41, 1), (1052, 100)),
'GPSLatitudeRef': 'N', 29: '2013:10:25',
'GPSAltitude': (43, 1),
'GPSLatitude': ((1, 1), (20, 1), (5365, 100)),
'GPSLongitudeRef': 'E',
'GPSAltitudeRef': 0}

Use exifread module.
Here is a very helpful gist
import exifread as ef
# barrowed from
# https://gist.github.com/snakeye/fdc372dbf11370fe29eb
def _convert_to_degress(value):
"""
Helper function to convert the GPS coordinates stored in the EXIF to degress in float format
:param value:
:type value: exifread.utils.Ratio
:rtype: float
"""
d = float(value.values[0].num) / float(value.values[0].den)
m = float(value.values[1].num) / float(value.values[1].den)
s = float(value.values[2].num) / float(value.values[2].den)
return d + (m / 60.0) + (s / 3600.0)
def getGPS(filepath):
'''
returns gps data if present other wise returns empty dictionary
'''
with open(filepath, 'rb') as f:
tags = ef.process_file(f)
latitude = tags.get('GPS GPSLatitude')
latitude_ref = tags.get('GPS GPSLatitudeRef')
longitude = tags.get('GPS GPSLongitude')
longitude_ref = tags.get('GPS GPSLongitudeRef')
if latitude:
lat_value = _convert_to_degress(latitude)
if latitude_ref.values != 'N':
lat_value = -lat_value
else:
return {}
if longitude:
lon_value = _convert_to_degress(longitude)
if longitude_ref.values != 'E':
lon_value = -lon_value
else:
return {}
return {'latitude': lat_value, 'longitude': lon_value}
return {}
file_path = 'file path of the file'
gps = getGPS(file_path)
print gps

Late answer, but as of 2022 you can use GPSPhoto, i.e.:
from GPSPhoto import gpsphoto
# Get the data from image file and return a dictionary
data = gpsphoto.getGPSData('IMG_20181224_201933.jpg')
print(data['Latitude'], data['Longitude'])
Output:
38.71615498471598 -9.148730635643007
Installation:
pip3 install piexif
pip3 install gpsphoto

OP, has already posted a solution using PIL. If you wants to just get GPS info from Python, you can get it by using exifread
Install package using pip
$ pip install exifread
and get GPS data
In [10]: import exifread
In [11]: tags = exifread.process_file(open('./tests/demo-project/content/test.jpg', 'rb'))
In [12]: geo = {i:tags[i] for i in tags.keys() if i.startswith('GPS')}
In [13]: geo
Out[13]:
{'GPS GPSAltitude': (0x0006) Ratio=186188/239 # 898,
'GPS GPSAltitudeRef': (0x0005) Byte=0 # 722,
'GPS GPSDate': (0x001D) ASCII=2015:12:06 # 954,
'GPS GPSDestBearing': (0x0018) Ratio=43771/526 # 946,
'GPS GPSDestBearingRef': (0x0017) ASCII=T # 806,
'GPS GPSImgDirection': (0x0011) Ratio=43771/526 # 938,
'GPS GPSImgDirectionRef': (0x0010) ASCII=T # 782,
'GPS GPSLatitude': (0x0002) Ratio=[46, 3803/100, 0] # 850,
'GPS GPSLatitudeRef': (0x0001) ASCII=N # 674,
'GPS GPSLongitude': (0x0004) Ratio=[13, 2429/100, 0] # 874,
'GPS GPSLongitudeRef': (0x0003) ASCII=E # 698,
'GPS GPSSpeed': (0x000D) Ratio=139/50 # 930,
'GPS GPSSpeedRef': (0x000C) ASCII=K # 758,
'GPS GPSTimeStamp': (0x0007) Ratio=[10, 37, 33] # 906,
'GPS Tag 0x001F': (0x001F) Ratio=30 # 966}

Related

Implementing Dijkstra's algorithm in Python but a Key Error is received when using a different graph

I'm a university student and we were tasked to implement Dijkstra's algorithm on the given graph below.
Graph to implement Dijkstra's algorithm on
We were given a code to use and/or modify and help answer the question given.
import heapq
import math
def dijkstra(G, S):
pq = []
entry_finder = {}
costs = {}
pred = {S: None}
REMOVED = 'removed'
def add_entry(label, priority):
if label in entry_finder:
remove_entry(label)
entry = [priority, label]
entry_finder[label] = entry
heapq.heappush(pq, entry)
def remove_entry(label):
entry = entry_finder.pop(label)
entry[-1] = REMOVED
def pop_entry():
while pq:
priority, label = heapq.heappop(pq)
if label != REMOVED:
del entry_finder[label]
return priority, label
return None, None
for v in G:
if v == S:
add_entry(S, 0)
else:
add_entry(v, math.inf)
while pq:
d_u, u = pop_entry()
if u is not None and u != REMOVED:
costs[u] = d_u
for e in G[u]:
v, w = e
entry_v = entry_finder[v]
d_v = entry_v[0]
if d_v > d_u + w:
add_entry(v, d_u + w)
pred[v] = u
return costs, pred
This code was shown to work for a separate graph that was used in an example from our lectures. The graph was converted into code as such.
G = {
'0': [('1', 2), ('2', 6), ('3', 7)],
'1': [('3', 3), ('4', 6)],
'2': [('4', 1)],
'3': [('4', 5)],
'4': []
}
costs, pred = dijkstra(G, '0')
print(costs, pred)
So I know for a fact that the given code works. The problem arose when I tried to implement the graph into code and it gave me a KeyError: 'D'. My implementation of the graph is as follows.
G = {
'A': [('B', 56), ('C', 96), ('D', 78)],
'B': [('D', 18), ('F', 208), ('E', 110)],
'C': [('D', 20), ('F', 90)],
'D': [('F', 112)],
'E': [('F', 16), ('G', 46), ('I', 108)],
'F': [('G', 20), ('H', 62)],
'G': [('H', 40)],
'H': [('I', 29), ('J', 56)],
'I': [('J', 21)],
'J': []
}
costs, pred = dijkstra(G, 'A')
print(costs, pred)
The error also comes with:
line 41, in dijkstra
entry_v = entry_finder[v]. I'd like to know if the error came from my wrong implementation of the graph or if the given sample code itself had errors.

How to dump and save function arguments without embedding all of the container's content?

I am trying to save all function arguments as it is ran, to a container. Container is common for all funcs ran in the script. How to ensure all container's content is NOT saved every time I save function arguments?
Below decorator saves function arguments:
import inspect
from datetime import datetime
import time
def func_logger(method):
def wrapper(*args, **kw):
method_args = inspect.signature(method).bind(*args, **kw).arguments
runtime = str( datetime.now() )
name = method.__name__
module = method.__module__
signature = runtime + ': ' + '.'.join([module, name])
ts = time.time()
result = method(*args, **kw)
te = time.time()
kw['log'][signature] = {}
kw['log'][signature]['time'] = round(te - ts, 2)
kw['log'][signature]['args'] = method_args
return result
return wrapper
And an example function:
#func_logger
def test(a, b=4, c='blah-blah', *args, **kwargs):
return 4**4**8
When I am running the following snippet:
log = {}
output = test(1,4,2,4,1,par=1, log=log)
output = test(1,4,2,4,1,par=1, log=log)
log
I receive this output:
{'2019-05-17 13:48:25.214094: __main__.test': {'time': 0.0,
'args': OrderedDict([('a', 1),
('b', 4),
('c', 2),
('args', (4, 1)),
('kwargs', {'par': 1, 'log': {...}})])},
'2019-05-17 13:48:25.215092: __main__.test': {'time': 0.0,
'args': OrderedDict([('a', 1),
('b', 4),
('c', 2),
('args', (4, 1)),
('kwargs', {'par': 1, 'log': {...}})])}}
I already tried a workaround - a function that removes 'log' entry from the dictionary. However, every next item in this log stores of the log's current content. So when I try this:
list( log.items() )[-1][-1]['args']
The output is this:
OrderedDict([('a', 1),
('b', 4),
('c', 2),
('args', (4, 1)),
('kwargs',
{'par': 1,
'log': {'2019-05-17 13:45:45.748722: __main__.test': {'time': 0.0,
'args': OrderedDict([('a', 1),
('b', 4),
('c', 2),
('args', (4, 1)),
('kwargs', {'par': 1, 'log': {...}})])},
'2019-05-17 13:45:45.749221: __main__.test': {'time': 0.0,
'args': OrderedDict([('a', 1),
('b', 4),
('c', 2),
('args', (4, 1)),
('kwargs', {'par': 1, 'log': {...}})])},
'2019-05-17 13:45:45.750218: __main__.test': {'time': 0.0,
'args': OrderedDict(...)}}})])
So essentially, such a workaround won't work because with time, the memory would get clogged quickly.
Is there any way decorator would not save log entry every time I save function arguments? What I would rather like to avoid is to create a new 'log = {}' container every time I want to dump arguments from a new function.
You could simply store the log parameter if present and remove it from **kw:
def func_logger(method):
def wrapper(*args, **kw):
try:
log = kw['log']
del kw['log']
except KeyError:
log = None
method_args = inspect.signature(method).bind(*args, **kw).arguments
runtime = str( datetime.now() )
name = method.__name__
module = method.__module__
signature = runtime + ': ' + '.'.join([module, name])
ts = time.time()
result = method(*args, **kw)
te = time.time()
if log is not None:
log[signature] = {}
log[signature]['time'] = round(te - ts, 2)
log[signature]['args'] = method_args
return result
return wrapper
use global log in func_logger
log = {}
def func_logger(method):
def wrapper(*args, **kw):
# pass
log[signature] = {...}
return result
return wrapper
then, use output = test(1,4,2,4,1,par=1)

python3 fuzzywuzzy not returning index value of the array

I am trying to modify the fuzzywuzzy library. The module process returns the score and the array element. But I want it to return the index of the element along with the group of score,item,index.
Here is what I tried:
#!/usr/bin/env python
# encoding: utf-8
from fuzzywuzzy import fuzz
from fuzzywuzzy import utils
import heapq
import logging
from functools import partial
default_scorer = fuzz.WRatio
default_processor = utils.full_process
def extractWithoutOrder(query, choices, processor=default_processor, scorer=default_scorer, score_cutoff=0):
def no_process(x):
return x
try:
if choices is None or len(choices) == 0:
raise StopIteration
except TypeError:
pass
if processor is None:
processor = no_process
processed_query = processor(query)
if len(processed_query) == 0:
logging.warning(u"Applied processor reduces input query to empty string, "
"all comparisons will have score 0. "
"[Query: \'{0}\']".format(query))
# Don't run full_process twice
if scorer in [fuzz.WRatio, fuzz.QRatio,
fuzz.token_set_ratio, fuzz.token_sort_ratio,
fuzz.partial_token_set_ratio, fuzz.partial_token_sort_ratio,
fuzz.UWRatio, fuzz.UQRatio] \
and processor == utils.full_process:
processor = no_process
# Only process the query once instead of for every choice
if scorer in [fuzz.UWRatio, fuzz.UQRatio]:
pre_processor = partial(utils.full_process, force_ascii=False)
scorer = partial(scorer, full_process=False)
elif scorer in [fuzz.WRatio, fuzz.QRatio,
fuzz.token_set_ratio, fuzz.token_sort_ratio,
fuzz.partial_token_set_ratio, fuzz.partial_token_sort_ratio]:
pre_processor = partial(utils.full_process, force_ascii=True)
scorer = partial(scorer, full_process=False)
else:
pre_processor = no_process
processed_query = pre_processor(processed_query)
count = -1
try:
# See if choices is a dictionary-like object.
for key, choice in choices.items():
count = count + 1
processed = pre_processor(processor(choice))
score = scorer(processed_query, processed)
if score >= score_cutoff:
yield (choice, score, key,count)
except AttributeError:
# It's a list; just iterate over it.
for choice in choices:
count = count + 1
processed = pre_processor(processor(choice))
score = scorer(processed_query, processed)
if score >= score_cutoff:
yield (choice, score,count)
def extract(query, choices, processor=default_processor, scorer=default_scorer, limit=5):
sl = extractWithoutOrder(query, choices, processor, scorer)
return heapq.nlargest(limit, sl, key=lambda i: i[1]) if limit is not None else \
sorted(sl, key=lambda i: i[1], reverse=True)
When I tried to implement it, the result was what it was previously showing by fuzzywuzzy.
import process as p
box=['ness', 'apple','banana','carrot','duck','eagle','fish','gate','hitler']
p.extract('b',box)
[('banana', 90), ('apple', 0), ('carrot', 0), ('duck', 0), ('eagle', 0)]
But what I am expecting it to return is:
[('banana', 90, 2), ('apple', 0, 1), ('carrot', 0, 3), ('duck', 0, 4), ('eagle', 0, 5)]
Kindly let me know the suggestion.
As an alternative to FuzzyWuzzy you could use RapidFuzz (I am the author) which will return the index as well:
from rapidfuzz import process
box=['ness', 'apple','banana','carrot','duck','eagle','fish','gate','hitler']
p.extract('b',box)
which returns
[('banana', 90, 2), ('apple', 0, 1), ('carrot', 0, 3), ('duck', 0, 4), ('eagle', 0, 5)]
For those looking for the answer, can pass a dictionary to the process.
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
box = ['apple','banana','carrot','duck','eagle']
box_dict = {i: val for i, val in enumerate(box)}
process.extract("b", box_dict, scorer=fuzz.WRatio)
# O/P -> [("banana", 90, 1), ('apple', 0, 0), ('carrot', 0, 2), ('duck', 0, 3), ('eagle', 0, 4)]

write data in to a csv according to headers names, which indicate occurrences of items

I need to enter data in to csv using headers and put a value if the flag is available in the event else zero it. Required output is:
I am currently getting:
This is my current code, I would like to know how to generate my desired output:
inputs for code is counter1-4 shown below :
OrderedDict([('flags=40', 3971), ('flags=10004', 6244), ('flags=10100', 236), ('flags=90002', 2), ('flags=80', 2009), ('flags=10080', 5421), ('flags=4', 2886), ('flags=100', 227), ('flags=80002', 58), ('flags=10040', 8990), ('flags=0', 5)])
OrderedDict([('flags=40', 16), ('flags=10004', 6244), ('flags=10100', 236), ('flags=90002', 2), ('flags=10080', 5421), ('flags=4', 16), ('flags=80002', 11), ('flags=10040', 8990), ('flags=0', 4), ('Total', 20940)])
OrderedDict([('flags=4', 1332), ('flags=40', 1839), ('flags=80002', 3), ('flags=100', 197), ('flags=80', 935), ('Total', 4306)])
OrderedDict([('Total', 0)])
OrderedDict([('flags=40', 2116), ('flags=80', 1074), ('flags=4', 1538), ('flags=100', 30), ('flags=80002', 44), ('flags=0', 1), ('Total', 4803)])
dat = 1
with open(outputcsv,'wb') as outcsv:
writer = csv.writer(outcsv,delimiter=',')
appname = inputfile[:-3]
writer.writerow(appname.split(','))
for x in threads:
writer.writerows([x.split(',')])
#w.writeheader([x.split(',')])
if dat == 1:
w = csv.DictWriter(outcsv,counter1.keys())
w.writeheader()
w.writerow(counter1)
elif dat == 2:
w = csv.DictWriter(outcsv,counter2.keys())
w.writeheader()
w.writerow(counter2)
elif dat == 3:
w = csv.DictWriter(outcsv,counter3.keys())
w.writeheader()
w.writerow(counter3)
elif dat == 4:
w = csv.DictWriter(outcsv,counter4.keys())
w.writeheader()
w.writerow(counter4)
dat = dat +1
writer.writerows('\n')
code for how threads are being read:
exampleFile = open('top_tasks.csv')
exampleReader = csv.reader(exampleFile)
exampleData = list(exampleReader)
thread1 = exampleData[11][0]
thread2 = exampleData[12][0]
thread3 = exampleData[13][0]
thread4 = exampleData[14][0]
threads = [thread1,thread2,thread3,thread4]
I think this code meets your requirements:
from collections import OrderedDict
import csv
# build an OrderedDict of all keys
all_keys = OrderedDict()
# first column gets name of data set
all_keys[data_set_name] = data_set_name
# collect all of the known keys, and insert the thread name
for counter, thread in zip(counters, threads):
all_keys.update(counter)
counter[data_set_name] = thread
with open(outputcsv, 'wb') as outcsv:
# using all known keys, create a csv writer
w = csv.DictWriter(outcsv, fieldnames=all_keys.keys())
# output the header and data rows
w.writeheader()
w.writerows(counters)
Data Used:
outputcsv = 'output.csv'
counters = [
OrderedDict(
[('flags=40', 3971), ('flags=10004', 6244), ('flags=10100', 236),
('flags=90002', 2), ('flags=80', 2009), ('flags=10080', 5421),
('flags=4', 2886), ('flags=100', 227), ('flags=80002', 58),
('flags=10040', 8990), ('flags=0', 5)]),
OrderedDict(
[('flags=40', 16), ('flags=10004', 6244), ('flags=10100', 236),
('flags=90002', 2), ('flags=10080', 5421), ('flags=4', 16),
('flags=80002', 11), ('flags=10040', 8990), ('flags=0', 4),
('Total', 20940)]),
OrderedDict([('flags=4', 1332), ('flags=40', 1839), ('flags=80002', 3),
('flags=100', 197), ('flags=80', 935), ('Total', 4306)]),
OrderedDict([('Total', 0)]),
OrderedDict([('flags=40', 2116), ('flags=80', 1074), ('flags=4', 1538),
('flags=100', 30), ('flags=80002', 44), ('flags=0', 1),
('Total', 4803)]),
]
# code assumes thread names are in a list, make some sample names
threads = ['thread%d' % (i+1) for i in range(len(counters))]
# first column header if the name of the data set
data_set_name = 'CandyCrush 1'

Translate Exif DMS to DD Geolocation with Python

I am using the following code to extract the geolocation of an image taken with an iPhone:
from PIL import Image
from PIL.ExifTags import TAGS
def get_exif(fn):
ret = {}
i = Image.open(fn)
info = i._getexif()
for tag, value in info.items():
decoded = TAGS.get(tag, tag)
ret[decoded] = value
return ret
a = get_exif('photo2.jpg')
print a
This is the result that I am returned:
{
'YResolution': (4718592, 65536),
41986: 0,
41987: 0,
41990: 0,
'Make': 'Apple',
'Flash': 32,
'ResolutionUnit': 2,
'GPSInfo': {
1: 'N',
2: ((32, 1), (4571, 100), (0, 1)),
3: 'W',
4: ((117, 1), (878, 100), (0, 1)),
7: ((21, 1), (47, 1), (3712, 100))
},
'MeteringMode': 1,
'XResolution': (4718592, 65536),
'ExposureProgram': 2,
'ColorSpace': 1,
'ExifImageWidth': 1600,
'DateTimeDigitized': '2011:03:01 13:47:39',
'ApertureValue': (4281, 1441),
316: 'Mac OS X 10.6.6',
'SensingMethod': 2,
'FNumber': (14, 5),
'DateTimeOriginal': '2011:03:01 13:47:39',
'ComponentsConfiguration': '\x01\x02\x03\x00',
'ExifOffset': 254,
'ExifImageHeight': 1200,
'Model': 'iPhone 3G',
'DateTime': '2011:03:03 10:37:32',
'Software': 'QuickTime 7.6.6',
'Orientation': 1,
'FlashPixVersion': '0100',
'YCbCrPositioning': 1,
'ExifVersion': '0220'
}
So, I am wondering how I convert the GPSInfo values (DMS) to Decimal Degrees for actual coordinates? Also, there seems to be two Wests listed . . . ?
Here's a way to do it, adapted for a script I wrote some months ago using pyexiv2:
a = get_exif('photo2.jpg')
lat = [float(x)/float(y) for x, y in a['GPSInfo'][2]]
latref = a['GPSInfo'][1]
lon = [float(x)/float(y) for x, y in a['GPSInfo'][4]]
lonref = a['GPSInfo'][3]
lat = lat[0] + lat[1]/60 + lat[2]/3600
lon = lon[0] + lon[1]/60 + lon[2]/3600
if latref == 'S':
lat = -lat
if lonref == 'W':
lon = -lon
This gives me the following latitude and longitude for your picture: 32.7618333, -117.146333 (same results as Lance Lee).
The last entry of GPSInfo may be the heading of the picture. You could check this using a tool that gives proper names to the different EXIF values such as exiv2 or exiftools.
http://www.exiv2.org/tags.html
find the string 'Exif.GPSInfo.GPSLatitude' in that page.
It appears that you get 3 pairs (representing rationals) and the second number in the pair is the denominator.
I would expect the thing after Longitude to be altitude, however it is a better fit for GPS timestamp.
In this example:
32/1 + (4571 / 100)/60 + (0 / 1)/3600 = 32.761833 N
117/1 + (878 / 100)/60 + (0 / 1)/3600 = 117.146333 W
Was this picture taken near 4646 Park Blvd, San Diego, CA 92116? If not then ignore this answer.

Categories

Resources