Keras - Multiclass classification and transfer learning, bad validation and test accuracy - python

I am building a multiclass classification model that would be able to recognize 4 different insects. I am using Resnet50 (weights = imagenet).
The dataset is small, average 100 photos per class (more than 400 in total)
Depends on model, I usually get val_accuracy more than 90% (epochs 200) and test accuracy around 80-85% but when I print confusion matrix or plot actual and predicted labels for given photos, results are terrible (usually around 25%).
I have tried different models (resnet18, resnet50v2, Xception) I was freezing model layers, tried different data augumentation parameters, different model parameters(such as: Dropout(0.5, 0.2), kernel_regularizer='l2' because I read that helps reducing overfitting).
I think problem is while generating images but I don't know what else to change there, I tried val_generator with shuffle=False/True, train_generator seed=1/off but final results are similar.
I am adding images of confusion matrix, accuracy and plotted photos.
I am using jupyter notebook.
Thank you!
directory_train = "keras_splited/train"
directory_test = "keras_splited/test"
directory_val = "keras_splited/val"
BATCH_SIZE = 32
IMG_SIZE = 224
def make_DataImageGenerator(validation_split=None):
image_generator = ImageDataGenerator(
rescale=(1.0/255),
rotation_range=40,
zoom_range=0.1,
horizontal_flip=True,
vertical_flip=True,
validation_split=validation_split
)
return image_generator
train_img_generator = make_DataImageGenerator(validation_split=None)
val_img_generator = make_DataImageGenerator(validation_split=None)
test_img_generator = make_DataImageGenerator(validation_split=None)
def get_generator(img_generator, directory, train_valid=None, seed=None, shuffle=True):
train_generator = img_generator.flow_from_directory(
directory,
batch_size=BATCH_SIZE,
target_size=(IMG_SIZE, IMG_SIZE),
subset=train_valid,
seed=seed,
shuffle=shuffle
)
return train_generator
train_generator = get_generator(train_img_generator, directory_train)
val_generator = get_generator(val_img_generator, directory_val)
test_generator = get_generator(test_img_generator, directory_test)
target_labels = next(os.walk(directory_train))[1]
target_labels.sort()
num_classes = len(target_labels)
model_feature_extraction = tf.keras.applications.ResNet50(weights="imagenet", include_top=False, input_shape=(IMG_SIZE, IMG_SIZE, 3))
x = model_feature_extraction.output
x = layers.GlobalAveragePooling2D()(x)
x = Dense(1024, activation="relu")(x)
myModelOut = Dense(4, activation="softmax")(x)
model = Model(inputs=model_feature_extraction.input, outputs=myModelOut)
optimizer = "adam"
loss = "categorical_crossentropy"
def freeze_pretrained_weights(model):
#model.layers[0].trainable=False #wanted to freeze the model but didn't work good
model.compile(
optimizer=optimizer,
loss=loss,
metrics=["accuracy"]
)
return model
frozen_new_model = freeze_pretrained_weights(model)
my_callbacks = [
tf.keras.callbacks.ModelCheckpoint("testno/best_model/", save_best_only=True, monitor="accuracy", save_weights_only=False, mode="max"),
tf.keras.callbacks.ReduceLROnPlateau(monitor="loss", factor=0.2, patience=25, min_lr=0.001)
]
def train_model(model, train_gen, valid_gen, epochs):
train_steps_per_epoch = train_gen.n // train_gen.batch_size
history = model.fit(
train_gen,
steps_per_epoch=train_steps_per_epoch,
epochs=epochs,
callbacks=my_callbacks,
validation_data=valid_gen,
)
return history
history_frozen_model = train_model(frozen_new_model, train_generator, val_generator, epochs=150)
plt.figure(figsize=(15,5))
plt.subplot(121)
plt.plot(history_frozen_model.history['accuracy'])
plt.plot(history_frozen_model.history['val_accuracy'])
plt.title('Accuracy vs. epochs')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Training', 'Validation'], loc='lower right')
plt.subplot(122)
plt.plot(history_frozen_model.history['loss'])
plt.plot(history_frozen_model.history['val_loss'])
plt.title('Loss vs. epochs')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Training', 'Validation'], loc='upper right')
plt.show()
test_steps = test_generator.n // test_generator.batch_size
test_generator.reset()
new_model_test_loss, new_model_test_acc = frozen_new_model.evaluate(test_generator)
print('\nTest dataset')
print(f"Loss: {new_model_test_loss}")
print(f"Accuracy: {new_model_test_acc}")
pred = frozen_new_model.predict(test_generator, steps=test_steps, verbose=1)
batch = next(test_generator)
batch_images = np.array(batch[0])
batch_labels = np.array(batch[1])
target_labels = np.asarray(target_labels)
print(target_labels)
plt.figure(figsize=(15,15))
for n, i in enumerate(np.arange(6)):
actual = target_labels[np.argmax(batch_labels[i])]
predicted = target_labels[np.argmax(pred[i])]
confidence = round(100*(np.max(pred[i])),2)
ax = plt.subplot(3,3,n+1)
plt.imshow(batch_images[i])
plt.title(f"Actual: {actual},\n Predicted: {predicted},\n Confidence: {confidence}")
plt.axis('off')
from sklearn.metrics import ConfusionMatrixDisplay
y_true_lista = []
y_pred_lista = []
for i, img in enumerate(batch_labels):
y_true = np.argmax(batch_labels[i]).reshape(-1)
for i in y_true:
y_true_lista.append(i)
y_pred = np.argmax(pred[i]).reshape(-1)
for i in y_pred:
y_pred_lista.append(i)
print("y_true: ", y_true_lista)
print("y_pred: ", y_pred_lista)
matrix = confusion_matrix(y_true, y_pred)
#print(matrix.shape)
labels = target_labels
cm = confusion_matrix(y_true_lista, y_pred_lista)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels)
disp.plot(cmap=plt.cm.Blues, xticks_rotation = 'vertical')
plt.show()
I don't know what to change to get right results when plotting and on the matrix
Can someone point me to the right direction? What did I do wrong with this model or is it something wrong with plotting?

Related

when predict the 2nd label has high score

I'm trying to set a custom binary classification model in tensorflow and the frame of this model looks like this
when I am training this model on the dataset, it all goes right; (Output). But when I try to evaluate or predict it goes wrong and it looks like this
all the predicted results of this dataset have high score on the 2nd label and I don't know why. Here's the code:
def getModel():
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(64, 64)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dense(2, activation='softmax')
])
model.summary()
lossFn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
initial_learning_rate = 0.3
decay_steps = 1.0
decay_rate = 0.5
# learning_rate_fn = tf.keras.optimizers.schedules.InverseTimeDecay(initial_learning_rate, decay_steps, decay_rate)
model.compile(optimizer=tf.keras.optimizers.RMSprop(),
loss=lossFn,
metrics='accuracy')
return model
def getDataset(path):
with np.load(path) as data:
trainData = data['img']
# trainData = np.reshape(trainData, (trainData.shape[0], trainData.shape[1], trainData.shape[2]))
trainLabels = data['label']
trainSet = tf.data.Dataset.from_tensor_slices((trainData, trainLabels))
trainSet = trainSet.batch(BATCH_SIZE)
return trainSet
def getTestSet(path):
with np.load(path) as data:
testData = data['img']
# testData = np.reshape(testData, (testData.shape[0], testData.shape[1], testData.shape[2]))
testLabels = data['label']
testSet = tf.data.Dataset.from_tensor_slices((testData, testLabels))
testSet = testSet.batch(BATCH_SIZE)
return testSet
def getAcc(history):
plt.plot(history.history['accuracy'], label='accuracy')
# plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('acc')
plt.legend(loc='lower right')
plt.savefig('./acc.png')
plt.clf()
def getLoss(history):
plt.plot(history.history['loss'], label='loss')
plt.xlabel('Epoch')
plt.ylabel('loss')
plt.legend(loc='lower right')
plt.savefig('./loss.png')
if __name__ == "__main__": model = getModel()
dataset = getDataset('./train.npz')
checkpoint_path = "training_1/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
save_weights_only=True,
verbose=1)
history = model.fit(dataset, epochs=5, callbacks=[cp_callback])
getAcc(history)
getLoss(history)
model.save('GRaymodel.h5')
print('training done!!')
test = getTestSet('test.npz')
loss, acc = model.evaluate(test)
print(model.predict(test))
print('Restored model, accuracy: {:5.2f}%'.format(100 * acc))

augemtation error, tensorflow.python.keras.preprocessing.image.ImageDataGenerator

Failed to find data adapter that can handle input: <class 'tensorflow.python.keras.preprocessing.image.ImageDataGenerator'>, <class 'NoneType'>
I am trying to implement deep learning model and I have run the code more than 10 times , some times in 41, 72,88,100 epoch I got this error, is there anybody to help me
def Tuning_Model():
for k in range(FOLDS):
timestamp = datetime.fromtimestamp(time()).strftime('%Y%m%d-%H%M%S')
output_directory = model_path + "\\" + timestamp
if not os.path.exists(output_directory):
os.makedirs(output_directory)
# Training image augmentation
train_data_generator =tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1. / 255,
fill_mode="constant",
shear_range=0.2,
zoom_range=(0.5, 1),
horizontal_flip=True,
rotation_range=360,
channel_shift_range=25,
brightness_range=(0.75, 1.25))
# Validation image augmentation
val_data_generator =tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1. / 255,
fill_mode="constant",
shear_range=0.2,
zoom_range=(0.5, 1),
horizontal_flip=True,
rotation_range=360,
channel_shift_range=25,
brightness_range=(0.75, 1.25))
test_data_generator =tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255)
train_data_generator = train_data_generator.flow_from_directory(
train_data_path,
target_size = RAW_IMG_SIZE,
batch_size = BATCH_SIZE,
class_mode ='categorical'
)
val_data_generator = val_data_generator.flow_from_directory(
val_data_path,
target_size = RAW_IMG_SIZE,
batch_size = BATCH_SIZE,
class_mode = 'categorical')
test_data = test_data_generator.flow_from_directory(
test_data_path,
target_size = IMG_SIZE,
batch_size = BATCH_SIZE,
class_mode = 'categorical',
shuffle = False)
train_data_generator = crop_generator(train_data_generator, IMG_SIZE)
val_data_generator = crop_generator(val_data_generator, IMG_SIZE)
model = Build_Model(model_name)
model_checkpoint = ModelCheckpoint(output_directory + "\\best_model.hdf5", verbose=1, save_best_only=True)
early_stopping = EarlyStopping(patience=STOPPING_PATIENCE, restore_best_weights=True)
reduce_lr = ReduceLROnPlateau('val_loss', factor=0.5, patience=LR_PATIENCE, min_lr=0.000003125)
model.compile(loss='binary_crossentropy', optimizer=Adam(lr=INITIAL_LR), metrics=['categorical_accuracy'])
history = model.fit_generator(
generator = train_data_generator,
steps_per_epoch = train_image_count // BATCH_SIZE,
epochs = epochs,
validation_data = val_data_generator,
validation_steps= val_image_count // BATCH_SIZE,
callbacks = [model_checkpoint, early_stopping, reduce_lr],
shuffle = False)
# Load the last best model
model = load_model(
output_directory + "\\best_model.hdf5")
# Evaluate model on test set
predictions = model.predict_generator(test_data_generator, test_image_count // BATCH_SIZE + 1)
y_true = test_data_generator.classes
y_pred = np.argmax(predictions, axis=1)
print(classification_report(y_true, y_pred, labels=CLASSES, target_names=CLASS_NAMES))
report = classification_report(y_true, y_pred, labels=CLASSES, target_names=CLASS_NAMES, output_dict=True)
with open(output_directory + '\\classification_report.csv', 'w') as f:
for key in report.keys():
f.write("%s,%s\n" % (key, report[key]))
conf_arr = confusion_matrix(y_true, y_pred, labels=CLASSES)
print(conf_arr)
np.savetxt(output_directory + "\\confusion_matrix.csv", conf_arr, delimiter=",")
# Clear model from GPU after each iteration
print("Finished testing fold {}\n".format(k + 1))
K.clear_session()
k = k + 1
if __name__ == '__main__':
Tuning_Model()
ValueError: Failed to find data adapter that can handle input: <class 'tensorflow.python.keras.preprocessing.image.ImageDataGenerator'>, <class 'NoneType
Have you checked whether training/testing data are in the form of numpy arrays before fitting the model?
Also it might be the case where you are importing model from keras like keras.Sequential() but the generator from Tensorflow like tf.keras.preprocessing.image.ImageDataGenerator().

Getting a fixed accuracy: 0.5000 and sometimes 0.0000e+00 in Keras model using Google Colab

I am training a CNN model using Keras on Google Colab for binary image classification, the problem is when i use Sigmoid function i get accuracy fixed on 0.5000, and when i change metrics to 'acc' i get 0.000e+00 as accuracy. Also, when i change the activation function to 'Softmax' my model start learning.
Ps: i am using google colab where Tensorflow version is 2.5.0
My code:
def define_model(input_shape, num_classes):
model=ResNet50(include_top = False, weights = 'imagenet', input_shape = input_shape)
x = model.output
x = GlobalAveragePooling2D()(x)
preds = Dense(num_classes,activation='sigmoid')(x)
model = Model(inputs=model.input,outputs=preds)
return model
def train(epochs):
train_generator = ImageDataGenerator(rescale=1.0/255.0,vertical_flip=True, horizontal_flip=True)
test_generator = ImageDataGenerator(rescale=1.0/255.0)
train_generator = train_generator.flow_from_directory(
'trainset/',
target_size=(image_size, image_size),
batch_size=BATCH_SIZE_TRAINING,
seed = 7)
validation_generator = test_generator.flow_from_directory(
'testset/',
target_size=(image_size, image_size),
batch_size=BATCH_SIZE_VALIDATION,
seed = 7)
input_shape = (CHANNELS, image_size, image_size) if K.image_data_format() == 'channels_first' \
else (image_size, image_size, CHANNELS)
model = define_model(input_shape, NUM_CLASSES)
opt = optimizers.Adam(learning_rate=1e-6, beta_1=0.9, beta_2=0.99, amsgrad=False)
model.summary()
model.compile(loss='binary_crossentropy',
optimizer=opt,
metrics=['acc'])
filepath=path+"weights-improvement-{epoch:02d}-vacc:{val_accuracy:.2f}-tacc:{accuracy:.2f}.hdf5"
'''cb_early_stopper = EarlyStopping(monitor = 'val_accuracy', mode='min', verbose=1, patience = EARLY_STOP_PATIENCE)
cb_checkpointer = ModelCheckpoint(filepath = filepath, monitor = 'val_accuracy', save_best_only = True, mode = 'auto')
reduce_lr = ReduceLROnPlateau(monitor='val_accuracy', factor=0.25, patience=5, min_lr=1e-7)'''
fit_history = model.fit(train_generator,
epochs = NUM_EPOCHS,
validation_data=validation_generator,
verbose=1,
class_weight=class_weights)
# callbacks = [cb_checkpointer, cb_early_stopper, reduce_lr],
return model, fit_history
def main():
start_time = time()
model, fit_history = train(epochs=NUM_EPOCHS)
end_time = time()
seconds_elapsed = end_time - start_time
print('token time: ', seconds_elapsed)
hours, rest = divmod(seconds_elapsed, 3600)
minutes, seconds = divmod(rest, 60)
if __name__ == "__main__":
main()
The problem solved by adding this code to the .flow_from_directory() function:
class_mode='binary',
Thanks to this thread on github:
https://github.com/keras-team/keras/issues/13006

Keras predict diabetic retiopathy

I'm trying to predict a diabetic retiopathy by using densenet121 model from keras.
I have a 5 folder that contain 0:3647 images 1:750 images 2:1105 images 3:305 images 4:193 images
train data have 6000 image
and validate data have 1000 image and test data have 25 to test a little bit
I use keras imagedatagenerator to preprocess image and augmented it,size of image is (224,224)
def HE(img):
img_eq = exposure.equalize_hist(img)
return img_eq
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=90,
width_shift_range=0,
height_shift_range=0,
shear_range=0,
zoom_range=0,
horizontal_flip=True,
fill_mode='nearest',
preprocessing_function=HE,
)
validation_datagen = ImageDataGenerator(
rescale=1./255
)
test_datagen = ImageDataGenerator(
rescale=1./255
)
train = train_datagen.flow_from_directory(
'train/train_deep/',
target_size=(224,224),
color_mode='grayscale',
class_mode='categorical',
batch_size = 20,
)
test = test_datagen.flow_from_directory(
'test_deep/',
batch_size=1,
target_size = (224,224),
color_mode='grayscale',
)
val = validation_datagen.flow_from_directory(
'train/validate_deep/',
target_size=(224,224),
color_mode='grayscale',
batch_size = 20,
)
I use a densenet121 model from keras to compile
model = DenseNet121(include_top=True, weights=None, input_tensor=None,
input_shape=(224,224,3), pooling=None, classes=5)
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model.summary()
filepath="weights-improvement-{epoch:02d}-{val_loss:.2f}.hdf5"
checkpointer = ModelCheckpoint(filepath,monitor='val_loss', verbose=1,
save_best_only=True,save_weights_only=True)
lr_reduction = ReduceLROnPlateau(monitor='val_loss', patience=5, verbose=2,
factor=0.5)
callbacks_list = [checkpointer, lr_reduction]
history = model.fit_generator(
train,
epochs=Epoch,
validation_data=val,
class_weight={0:1, 1:10.57, 2:4.88, 3:29, 4:35},
use_multiprocessing = False,
workers = 16,
callbacks=callbacks_list
)
but when I try to predict
#predict
pred=model.predict_generator(test,
steps=25,)
print(pred)
They predict all are 3
my predict image
problems that I am facing.
1.I try to change a weight of my image because it a imbalance data but, it still doesn't work:
2.Estimate time use 6-7 minutes per epoch that take too much time if I want to train more epoch like 50 epoch what should I do??
Edit
1. I print an array of my 25 predict image and they show
[[0.2718658 0.21595034 0.29440382 0.12089088 0.0968892 ]
[0.2732306 0.22084573 0.29103383 0.11724534 0.0976444 ]
[0.27060518 0.22559224 0.2952135 0.11220136 0.09638774]
[0.27534768 0.21236925 0.28757185 0.12544192 0.09926935]
[0.27870545 0.22124214 0.27978882 0.11854914 0.1017144 ]
[0.2747815 0.22287942 0.28961015 0.11473729 0.09799159]
[0.27190813 0.22454649 0.29327467 0.11331796 0.09695279]
[0.27190694 0.22116153 0.27061856 0.12831333 0.10799967]
[0.27871644 0.21939436 0.28575435 0.11689039 0.09924441]
[0.27156618 0.22850358 0.27458736 0.11895953 0.10638336]
[0.27199408 0.22443996 0.29326025 0.11337796 0.09692782]
[0.27737287 0.22283535 0.28601763 0.11459836 0.09917582]
[0.2719294 0.22462222 0.29477262 0.11228184 0.09639395]
[0.27496076 0.22619417 0.24634513 0.12380602 0.12869397]
[0.27209386 0.23049556 0.27982628 0.11399914 0.10358524]
[0.2763851 0.22362126 0.27667257 0.11974224 0.10357884]
[0.28445077 0.22687359 0.22116113 0.12310001 0.14441448]
[0.27552167 0.22341767 0.28794768 0.11433118 0.09878179]
[0.27714184 0.22157396 0.26033664 0.12819317 0.11275442]
[0.27115697 0.22615613 0.29698634 0.10981857 0.09588206]
[0.27108756 0.22484282 0.29557163 0.11230227 0.09619577]
[0.2713721 0.22606659 0.29634616 0.11017173 0.09604342]
[0.27368984 0.22699612 0.28083235 0.11586079 0.10262085]
[0.2698808 0.22924589 0.29770645 0.10761821 0.0955487 ]
[0.27016872 0.23090932 0.2694938 0.11959692 0.1098313 ]]
I see some image are in 0 but they show 3 in all prediction,So why it show that?
2. I change some line of code a little bit in model densenet121 , I remove a external top layer and change a predict code for more easy to see.

Why do my models keep getting exactly 0.5 AUC?

I am currently doing a project in which I need to predict eye disease in a group of images. I am using the Keras built-in applications. I am getting good results on VGG16 and VGG19, but on the Xception architecture I keep getting AUC of exactly 0.5 every epoch.
I have tried different optimizers and learning rates, but nothing works. I solved the same problem with VGG19 by switching from RMSProp optimizer to Adam optimizer, but I can't get it to work for Xception.
def buildModel():
from keras.models import Model
from keras.layers import Dense, Flatten
from keras.optimizers import adam
input_model = applications.xception.Xception(
include_top=False,
weights='imagenet',
input_tensor=None,
input_shape=input_sizes["xception"],
pooling=None,
classes=2)
base_model = input_model
x = base_model.output
x = Flatten()(x)
predictions = Dense(2, activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=predictions)
for layer in base_model.layers:
layer.trainable = False
model.compile(optimizer=adam(lr=0.01), loss='binary_crossentropy', metrics=['accuracy'])
return model
class Histories(keras.callbacks.Callback):
def __init__(self, val_data):
super(Histories, self).__init__()
self.x_batch = []
self.y_batch = []
for i in range(len(val_data)):
x, y = val_data.__getitem__(i)
self.x_batch.extend(x)
self.y_batch.extend(np.ndarray.astype(y, int))
self.aucs = []
self.specificity = []
self.sensitivity = []
self.losses = []
return
def on_train_begin(self, logs={}):
initFile("results/xception_results_adam_3.txt")
return
def on_train_end(self, logs={}):
return
def on_epoch_begin(self, epoch, logs={}):
return
def on_epoch_end(self, epoch, logs={}):
self.losses.append(logs.get('loss'))
y_pred = self.model.predict(np.asarray(self.x_batch))
con_mat = confusion_matrix(np.asarray(self.y_batch).argmax(axis=-1), y_pred.argmax(axis=-1))
tn, fp, fn, tp = con_mat.ravel()
sens = tp/(tp+fn)
spec = tn/(tn+fp)
auc_score = roc_auc_score(np.asarray(self.y_batch).argmax(axis=-1), y_pred.argmax(axis=-1))
print("Specificity: %f Sensitivity: %f AUC: %f"%(spec, sens, auc_score))
print(con_mat)
self.sensitivity.append(sens)
self.specificity.append(spec)
self.aucs.append(auc_score)
writeToFile("results/xception_results_adam_3.txt", epoch, auc_score, spec, sens, self.losses[epoch])
return
# What follows is data from the Jupyter Notebook that I actually use to evaluate
#%% Initialize data
trainDirectory = 'RetinaMasks/train'
valDirectory = 'RetinaMasks/val'
testDirectory = 'RetinaMasks/test'
train_datagen = ImageDataGenerator(rescale=1. / 255)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
trainDirectory,
target_size=(299, 299),
batch_size=16,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
valDirectory,
target_size=(299, 299),
batch_size=16,
class_mode='categorical')
test_generator = test_datagen.flow_from_directory(
testDirectory,
target_size=(299, 299),
batch_size=16,
class_mode='categorical')
#%% Create model
model = buildModel("xception")
#%% Initialize metrics
from keras.callbacks import EarlyStopping
from MetricsCallback import Histories
import keras
metrics = Histories(validation_generator)
es = EarlyStopping(monitor='val_loss',
min_delta=0,
patience=20,
verbose=0,
mode='auto',
baseline=None,
restore_best_weights=False)
mcp = keras.callbacks.ModelCheckpoint("saved_models/xception.adam.lr0.1_{epoch:02d}.hdf5",
monitor='val_loss',
verbose=0,
save_best_only=False,
save_weights_only=False,
mode='auto',
period=1)
#%% Train model
from StaticDataAugmenter import superDirectorySize
history = model.fit_generator(
train_generator,
steps_per_epoch=superDirectorySize(trainDirectory) // 16,
epochs=100,
validation_data=validation_generator,
validation_steps=superDirectorySize(valDirectory) // 16,
callbacks=[metrics, es, mcp],
workers=8,
shuffle=False
)
I honestly have no idea what causes this behavior, or how to prevent it. Thank you in advance, and I apologize for the long code snippet :)
Your learning rate is too high.
Try lowering the learning rate.
I used to run into this when using transfer learning, I was fine-tuning at very high learning rates.
An extended AUC of 0.5 over multiple epochs in case of a binary classification means that your (convolutional) neural network is not able to distinguish between the classes at all. This is in turn because it's not able to learn anything.
Use learning_rates of 0.0001,0.00001,0.000001.
At the same time, you should try to unfreeze/make some layers trainable, due to the fact that you entire feature extractor is frozen; in fact this could be another reason why the network is incapable of learning anything.
I am quite confident that your problem will be solved if you lower your learning rate :).
An AUC of 0.5 implies that your network is randomly guessing the output, which means it didn't learn anything. This was already disscued for example here.
As Timbus Calin suggested, you could do a "line search" of the learning rate starting with 0.000001 and then increase the learning rate by potencies of 10.
I would suggest you directly start with a random search, where you not only try to optimize the learning rate, but also other hyperparameters like for example the batch size. Read more about random search in this paper.
You are not computing the AUC correctly, you currently have this:
auc_score = roc_auc_score(np.asarray(self.y_batch).argmax(axis=-1), y_pred.argmax(axis=-1))
AUC is computed from (probability) scores produced by the model. The argmax of the model output does not provide scores, but class labels. The correct function call is:
auc_score = roc_auc_score(np.asarray(self.y_batch).argmax(axis=-1), y_pred[:, 1])
Note that the score needed to compute ROC is the probability of the positive class, which is the second element of the softmax output. This is why only the second column of the predictions is used to make the AUC.
What about this?
def buildModel():
from keras.models import Model
from keras.layers import Dense, Flatten
from keras.optimizers import adam
input_model = applications.xception.Xception(
include_top=False,
weights='imagenet',
input_tensor=None,
input_shape=input_sizes["xception"],
pooling='avg', # 1
classes=2)
base_model = input_model
x = base_model.output
# x = Flatten()(x) # 2
predictions = Dense(2, activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=predictions)
for layer in base_model.layers:
layer.trainable = False
model.compile(optimizer=adam(lr=0.01),
loss='categorical_crossentropy', # 3
metrics=['accuracy'])
return model
class Histories(keras.callbacks.Callback):
def __init__(self, val_data):
super(Histories, self).__init__()
self.x_batch = []
self.y_batch = []
for i in range(len(val_data)):
x, y = val_data.__getitem__(i)
self.x_batch.extend(x)
self.y_batch.extend(np.ndarray.astype(y, int))
self.aucs = []
self.specificity = []
self.sensitivity = []
self.losses = []
return
def on_train_begin(self, logs={}):
initFile("results/xception_results_adam_3.txt")
return
def on_train_end(self, logs={}):
return
def on_epoch_begin(self, epoch, logs={}):
return
def on_epoch_end(self, epoch, logs={}):
self.losses.append(logs.get('loss'))
y_pred = self.model.predict(np.asarray(self.x_batch))
con_mat = confusion_matrix(np.asarray(self.y_batch).argmax(axis=-1), y_pred.argmax(axis=-1))
tn, fp, fn, tp = con_mat.ravel()
sens = tp/(tp+fn)
spec = tn/(tn+fp)
auc_score = roc_auc_score(np.asarray(self.y_batch).argmax(axis=-1), y_pred.argmax(axis=-1))
print("Specificity: %f Sensitivity: %f AUC: %f"%(spec, sens, auc_score))
print(con_mat)
self.sensitivity.append(sens)
self.specificity.append(spec)
self.aucs.append(auc_score)
writeToFile("results/xception_results_adam_3.txt", epoch, auc_score, spec, sens, self.losses[epoch])
return
# What follows is data from the Jupyter Notebook that I actually use to evaluate
#%% Initialize data
trainDirectory = 'RetinaMasks/train'
valDirectory = 'RetinaMasks/val'
testDirectory = 'RetinaMasks/test'
train_datagen = ImageDataGenerator(rescale=1. / 255)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
trainDirectory,
target_size=(299, 299),
batch_size=16,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
valDirectory,
target_size=(299, 299),
batch_size=16,
class_mode='categorical')
test_generator = test_datagen.flow_from_directory(
testDirectory,
target_size=(299, 299),
batch_size=16,
class_mode='categorical')
#%% Create model
model = buildModel("xception")
#%% Initialize metrics
from keras.callbacks import EarlyStopping
from MetricsCallback import Histories
import keras
metrics = Histories(validation_generator)
es = EarlyStopping(monitor='val_loss',
min_delta=0,
patience=20,
verbose=0,
mode='auto',
baseline=None,
restore_best_weights=False)
mcp = keras.callbacks.ModelCheckpoint("saved_models/xception.adam.lr0.1_{epoch:02d}.hdf5",
monitor='val_loss',
verbose=0,
save_best_only=False,
save_weights_only=False,
mode='auto',
period=1)
#%% Load saved model
from keras.models import load_model
# model = load_model("saved_models/vgg16.10.hdf5") # 4
#%% Train model
from StaticDataAugmenter import superDirectorySize
history = model.fit_generator(
train_generator,
steps_per_epoch=superDirectorySize(trainDirectory) // 16,
epochs=100,
validation_data=validation_generator,
validation_steps=superDirectorySize(valDirectory) // 16,
callbacks=[metrics, es, mcp],
workers=8,
shuffle=False
)
For 1 and 2,I think it doesn't make sense to use FC layer right after ReLU without use a pooling layer, never try it so it might not help anything.
For 3, why are you using BCE when your generators are using class_mode='categorical'?
For 4, as I comment above, this mean you are loading your VGG model and train it, instead of using the Xception from buildModel().

Categories

Resources