How to detect checkboxes by removing noise using Python OpenCV? - python

I am trying to identify the checkboxes in the image
The top 4 are identified but the bottom 2 are not. At the same time I would like to be able to get rid of the peppering to avoid false positives as there are other docs that have checkmarks that are much smaller. I've tried various dilation and kernel sizes but I haven't been able to successful get the box.
I've tried to dilate it and then erode it
kernel = np.ones((2, 2), np.uint8)
image_dilat = cv2.dilate(image, kernel, iterations=1)
kernel = np.ones((4, 4), np.uint8)
image_erosion = cv2.erode(image_dilat2, kernel, iterations=1)
I've tried morphing it as well
kernel = np.ones((3, 3), np.uint8)
image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel, iterations=1)
kernel = np.ones((3, 3), np.uint8)
image = cv2.morphologyEx(image, cv2.cv2.MORPH_CLOSE, , kernel, iterations=1)
Any suggestion will be appreciated.

Here's a potential approach using simple image processing:
Obtain binary image. Load the image, convert to grayscale, and Otsu's threshold.
Remove small pixels of noise. Find contours and filter out noise using contour area filtering. We effectively remove the noise by "drawing in" the contours with black.
Repair checkbox walls. From here we create a horizontal and vertical repair kernel then perform morphological close to fix any holes in the checkbox walls.
Detect checkboxes. Next find contours on the repaired image then filter for checkbox contours using shape approximation and aspect ratio filtering. The idea is that a checkbox is a square and should have roughly the same width and height.
Binary image with noise -> Removed tiny noise
Repaired checkbox walls -> Detected checkboxes
Code
import cv2
# Load image, convert to grayscale, Otsu's threshold
image = cv2.imread('1.png')
original = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
cv2.imshow('thresh before', thresh)
# Find contours and filter using contour area filtering to remove noise
cnts, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2:]
AREA_THRESHOLD = 10
for c in cnts:
area = cv2.contourArea(c)
if area < AREA_THRESHOLD:
cv2.drawContours(thresh, [c], -1, 0, -1)
# Repair checkbox horizontal and vertical walls
repair_kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT, (5,1))
repair = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, repair_kernel1, iterations=1)
repair_kernel2 = cv2.getStructuringElement(cv2.MORPH_RECT, (1,5))
repair = cv2.morphologyEx(repair, cv2.MORPH_CLOSE, repair_kernel2, iterations=1)
# Detect checkboxes using shape approximation and aspect ratio filtering
cnts, _ = cv2.findContours(repair, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2:]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.05 * peri, True)
x,y,w,h = cv2.boundingRect(approx)
aspect_ratio = w / float(h)
if aspect_ratio > 0.9 and aspect_ratio < 1.1:
cv2.rectangle(original, (x, y), (x + w, y + h), (36,255,12), 3)
cv2.imshow('thresh', thresh)
cv2.imshow('repair', repair)
cv2.imshow('original', original)
cv2.waitKey()
Note: The assumption is that the checkboxes are square shaped and that there are no noise overlapping the checkboxes. Depending on the image, you may want to add another layer of contour area filtering to ensure that you don't get false positives.

Related

How to detect text on an X-Ray image with OpenCV

I want to detect text on x-ray images. The goal is to extract the oriented bounding boxes as a matrix where each row is a detected bounding box and each row contains the coordinates of all four edges i.e. [x1, x2, y1, y2]. I'm using python 3 and OpenCV 4.2.0.
Here is a sample image:
The string "test word", "a" and "b" should be detected.
I followed this OpenCV tutorial about creating rotated boxes for contours and this stackoverflow answer about detecting a text area in an image.
The resulting boundary boxes should look something like this:
I was able to detect the text, but the result included a lot of boxes without text.
Here is what I tried so far:
img = cv2.imread(file_name)
## Open the image, convert it into grayscale and blur it to get rid of the noise.
img2gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
ret, mask = cv2.threshold(img2gray, 180, 255, cv2.THRESH_BINARY)
image_final = cv2.bitwise_and(img2gray, img2gray, mask=mask)
ret, new_img = cv2.threshold(image_final, 180, 255, cv2.THRESH_BINARY) # for black text , cv.THRESH_BINARY_INV
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
dilated = cv2.dilate(new_img, kernel, iterations=6)
canny_output = cv2.Canny(dilated, 100, 100 * 2)
cv2.imshow('Canny', canny_output)
## Finds contours and saves them to the vectors contour and hierarchy.
contours, hierarchy = cv2.findContours(canny_output, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Find the rotated rectangles and ellipses for each contour
minRect = [None] * len(contours)
for i, c in enumerate(contours):
minRect[i] = cv2.minAreaRect(c)
# Draw contours + rotated rects + ellipses
drawing = np.zeros((canny_output.shape[0], canny_output.shape[1], 3), dtype=np.uint8)
for i, c in enumerate(contours):
color = (255, 0, 255)
# contour
cv2.drawContours(drawing, contours, i, color)
# rotated rectangle
box = cv2.boxPoints(minRect[i])
box = np.intp(box) # np.intp: Integer used for indexing (same as C ssize_t; normally either int32 or int64)
cv2.drawContours(img, [box], 0, color)
cv2.imshow('Result', img)
cv2.waitKey()
Do I need to run the results through OCR to make sure whether it is text or not? What other approaches should I try?
PS: I'm quite new to computer vision and not familiar with most concepts yet.
Here's a simple approach:
Obtain binary image. Load image, create blank mask, convert to grayscale, Gaussian blur, then Otsu's threshold
Merge text into a single contour. Since we want to extract the text as one piece, we perform morphological operations to connect individual text contours into a single contour.
Extract text. We find contours then filter using contour area with cv2.contourArea and aspect ratio using cv2.arcLength + cv2.approxPolyDP. If a contour passes the filter, we find the rotated bounding box and draw this onto our mask.
Isolate text. We perform an cv2.bitwise_and operation to extract the text.
Here's a visualization of the process. Using this screenshotted input image (since your provided input image was connected as one image):
Input image -> Binary image
Morph close -> Detected text
Isolated text
Results with the other image
Input image -> Binary image + morph close
Detected text -> Isolated text
Code
import cv2
import numpy as np
# Load image, create mask, grayscale, Gaussian blur, Otsu's threshold
image = cv2.imread('1.png')
original = image.copy()
blank = np.zeros(image.shape[:2], dtype=np.uint8)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5,5), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
# Merge text into a single contour
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=3)
# Find contours
cnts = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
# Filter using contour area and aspect ratio
x,y,w,h = cv2.boundingRect(c)
area = cv2.contourArea(c)
ar = w / float(h)
if (ar > 1.4 and ar < 4) or ar < .85 and area > 10 and area < 500:
# Find rotated bounding box
rect = cv2.minAreaRect(c)
box = cv2.boxPoints(rect)
box = np.int0(box)
cv2.drawContours(image,[box],0,(36,255,12),2)
cv2.drawContours(blank,[box],0,(255,255,255),-1)
# Bitwise operations to isolate text
extract = cv2.bitwise_and(thresh, blank)
extract = cv2.bitwise_and(original, original, mask=extract)
cv2.imshow('thresh', thresh)
cv2.imshow('image', image)
cv2.imshow('close', close)
cv2.imshow('extract', extract)
cv2.waitKey()
I removed the text using the following comand (after the code of above):
gray2 = cv2.cvtColor(extract, cv2.COLOR_BGR2GRAY)
blur2 = cv2.GaussianBlur(gray2, (5,5), 0)
thresh2 = cv2.threshold(blur2, 0, 255, cv2.THRESH_BINARY)[1]
test = cv2.inpaint(original, thresh2, 7, cv2.INPAINT_TELEA)

How to get rectangular box contours when there are overlapping distractions using OpenCV

I pieced together a quick algorithm in python to get the input boxes from a handwritten invoice.
# some preprocessing
img = np.copy(orig_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img = cv2.GaussianBlur(img,(5,5),0)
_, img = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# get contours
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for i, cnt in enumerate(contours):
approx = cv2.approxPolyDP(cnt, 0.01*cv2.arcLength(cnt,True), True)
if len(approx) == 4:
cv2.drawContours(orig_img, contours, i, (0, 255, 0), 2)
It fails to get the 2nd one in this example because the handwriting crosses the box boundary.
Note that this picture could be taken with a mobile phone, so aspect ratios may be a little funny.
So, what are some neat recipes to get around my problem?
And as a bonus. These boxes are from an A4 page with a lot of other stuff going on. Would you recommend a whole different approach to getting the handwritten numbers out?
EDIT
This might be interesting. If I don't filter for 4 sided polys, I get the contours but they go all around the hand-drawn digit. Maybe there's a way to make contours have water-like cohesion so that they pinch off when they get close to themselves?
FURTHER EDIT
Here is the original image without bounding boxes drawn on
Here's a potential solution:
Obtain binary image. We load the image, convert to grayscale, apply a Gaussian blur, and then Otsu's threshold
Detect horizontal lines. We create a horizontal kernel and draw detected horizontal lines onto a mask
Detect vertical lines. We create a vertical kernel and draw detected vertical lines onto a mask
Perform morphological opening. We create a rectangular kernel and perform morph opening to smooth out noise and separate any connected contours
Find contours, draw rectangle, and extract ROI. We find contours and draw the bounding rectangle onto the image
Here's a visualization of each step:
Binary image
Detected horizontal and vertical lines drawn onto a mask
Morphological opening
Result
Individual extracted saved ROI
Note: To extract only the hand written numbers/letters out of each ROI, take a look at a previous answer in Remove borders from image but keep text written on borders (preprocessing before OCR)
Code
import cv2
import numpy as np
# Load image, grayscale, blur, Otsu's threshold
image = cv2.imread('1.png')
original = image.copy()
mask = np.zeros(image.shape, dtype=np.uint8)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5,5), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Find horizontal lines
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (50,1))
detect_horizontal = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=2)
cnts = cv2.findContours(detect_horizontal, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(mask, [c], -1, (255,255,255), 3)
# Find vertical lines
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,50))
detect_vertical = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, vertical_kernel, iterations=2)
cnts = cv2.findContours(detect_vertical, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(mask, [c], -1, (255,255,255), 3)
# Morph open
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7,7))
opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)
# Draw rectangle and save each ROI
number = 0
cnts = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
x,y,w,h = cv2.boundingRect(c)
cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)
ROI = original[y:y+h, x:x+w]
cv2.imwrite('ROI_{}.png'.format(number), ROI)
number += 1
cv2.imshow('thresh', thresh)
cv2.imshow('mask', mask)
cv2.imshow('opening', opening)
cv2.imshow('image', image)
cv2.waitKey()
Since the squares have a quite straight lines, it's good to use Hough transform:
1- Make the image grayscale, then do an Otsu threshold on it, then reverse the binary image
2- Do Hough transform (HoughLinesP) and draw the lines on a new image
3- With findContours and drawContours, make the 3 roi clean
4- Erode the final image a little to make the boxes neater
I wrote the code in C++, it's easily convertible to python:
Mat img = imread("D:/1.jpg", 0);
threshold(img, img, 0, 255, THRESH_OTSU);
imshow("Binary image", img);
img = 255 - img;
imshow("Reversed binary image", img);
Mat img_1 = Mat::zeros(img.size(), CV_8U);
Mat img_2 = Mat::zeros(img.size(), CV_8U);
vector<Vec4i> lines;
HoughLinesP(img, lines, 1, 0.1, 95, 10, 1);
for (size_t i = 0; i < lines.size(); i++)
line(img_1, Point(lines[i][0], lines[i][1]), Point(lines[i][2], lines[i][3]),
Scalar(255, 255, 255), 2, 8);
imshow("Hough Lines", img_1);
vector<vector<Point>> contours;
findContours(img_1,contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
for (int i = 0; i< contours.size(); i++)
drawContours(img_2, contours, i, Scalar(255, 255, 255), -1);
imshow("final result after drawcontours", img_2); waitKey(0);
Thank you to those who shared solutions. I ended up taking a slightly different path in the end.
Grayscale, Gaussian Blur, Otsu threshold
Get contours
Filter contours by aspect ratio and extent
Return the minimum upright bounding box of the contour.
Remove any bounding boxes that encapsulate smaller bounding boxes (because you get two boxes, one for the inside contour, and one for the outside).
Here's the code if anyone's interested (except for step 5 - that was just basic numpy manipulation)
orig_img = cv2.imread('example0.jpg')
img = np.copy(orig_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img = cv2.GaussianBlur(img,(5,5),0)
_, img = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
boxes = list()
for i, cnt in enumerate(contours):
x,y,w,h = cv2.boundingRect(cnt)
aspect_ratio = float(w)/h
area = cv2.contourArea(cnt)
rect_area = w*h
extent = float(area)/rect_area
if abs(aspect_ratio - 1) < 0.1 and extent > 0.7:
boxes.append((x,y,w,h))
And here's an example of what came out when cutting out the boundary boxes from the original image.

How to detect paragraphs in a text document image for a non-consistent text structure in Python OpenCV

I am trying to identify paragraphs of text in a .pdf document by first converting it into an image then using OpenCV. But I am getting bounding boxes on lines of text instead of paragraphs. How can I set some threshold or some other limit to get paragraphs instead of lines?
Here is the sample input image:
Here is the output I am getting for the above sample:
I am trying to get a single bounding box on the paragraph in the middle. I am using this code.
import cv2
import numpy as np
large = cv2.imread('sample image.png')
rgb = cv2.pyrDown(large)
small = cv2.cvtColor(rgb, cv2.COLOR_BGR2GRAY)
# kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
kernel = np.ones((5, 5), np.uint8)
grad = cv2.morphologyEx(small, cv2.MORPH_GRADIENT, kernel)
_, bw = cv2.threshold(grad, 0.0, 255.0, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1))
connected = cv2.morphologyEx(bw, cv2.MORPH_CLOSE, kernel)
# using RETR_EXTERNAL instead of RETR_CCOMP
contours, hierarchy = cv2.findContours(connected.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
#For opencv 3+ comment the previous line and uncomment the following line
#_, contours, hierarchy = cv2.findContours(connected.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
mask = np.zeros(bw.shape, dtype=np.uint8)
for idx in range(len(contours)):
x, y, w, h = cv2.boundingRect(contours[idx])
mask[y:y+h, x:x+w] = 0
cv2.drawContours(mask, contours, idx, (255, 255, 255), -1)
r = float(cv2.countNonZero(mask[y:y+h, x:x+w])) / (w * h)
if r > 0.45 and w > 8 and h > 8:
cv2.rectangle(rgb, (x, y), (x+w-1, y+h-1), (0, 255, 0), 2)
cv2.imshow('rects', rgb)
cv2.waitKey(0)
This is a classic situation for dilate. Whenever you want to connect multiple items together, you can dilate them to join adjacent contours into a single contour. Here's a simple approach:
Obtain binary image. Load the image, convert to grayscale, Gaussian blur, then Otsu's threshold to obtain a binary image.
Connect adjacent words together. We create a rectangular kernel and dilate to merge individual contours together.
Detect paragraphs. From here we find contours, obtain the rectangular bounding rectangle coordinates and highlight the rectangular contours.
Otsu's threshold to obtain a binary image
Here's where the magic happens. We can assume that a paragraph is a section of words that are close together, to achieve this we dilate to connect adjacent words
Result
import cv2
import numpy as np
# Load image, grayscale, Gaussian blur, Otsu's threshold
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (7,7), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Create rectangular structuring element and dilate
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
dilate = cv2.dilate(thresh, kernel, iterations=4)
# Find contours and draw rectangle
cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
x,y,w,h = cv2.boundingRect(c)
cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)
cv2.imshow('thresh', thresh)
cv2.imshow('dilate', dilate)
cv2.imshow('image', image)
cv2.waitKey()

How to detect and find checkboxes in a form using Python OpenCV?

I have several images for which I need to do OMR by detecting checkboxes using computer vision.
I'm using findContours to draw contours only on the checkboxes in scanned document. But the algorithm extracts each and every contours of the text.
from imutils.perspective import four_point_transform
from imutils import contours
import numpy as np
import argparse, imutils, cv2, matplotlib
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
image = cv2.imread("1.jpg")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(blurred, 75, 200)
im_test = [blurred, cv2.GaussianBlur(gray, (7, 7), 0), cv2.GaussianBlur(gray, (5, 5), 5), cv2.GaussianBlur(gray, (11, 11), 0)]
im_thresh = [ cv2.threshold(i, 127, 255, 0) for i in im_test ]
im_thresh_0 = [i[1] for i in im_thresh ]
im_cnt = [cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[0] for thresh in im_thresh_0]
im_drawn = [cv2.drawContours(image.copy(), contours, -1, (0,255,0), 1) for contours in im_cnt]
plt.imshow(im_drawn[0])
plt.show()
Input Image:
Obtain binary image. Load the image, grayscale, Gaussian blur, and Otsu's threshold to obtain a binary black/white image.
Remove small noise particles. Find contours and filter using contour area filtering to remove noise.
Repair checkbox horizontal and vertical walls. This step is optional but in the case where the checkboxes may be damaged, we repair the walls for easier detection. The idea is to create a rectangular kernel then perform morphological operations.
Detect checkboxes. From here we find contours, obtain the bounding rectangle coordinates, and filter using shape approximation + aspect ratio. The idea is that a checkbox is essentially a square so its contour dimensions should be within a range.
Input image -> Binary image
Detected checkboxes highlighted in green
Checkboxes: 52
Another input image -> Binary image
Detected checkboxes highlighted in green
Checkboxes: 2
Code
import cv2
# Load image, convert to grayscale, Gaussian blur, Otsu's threshold
image = cv2.imread('1.jpg')
original = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (3,3), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Find contours and filter using contour area filtering to remove noise
cnts, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2:]
AREA_THRESHOLD = 10
for c in cnts:
area = cv2.contourArea(c)
if area < AREA_THRESHOLD:
cv2.drawContours(thresh, [c], -1, 0, -1)
# Repair checkbox horizontal and vertical walls
repair_kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT, (5,1))
repair = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, repair_kernel1, iterations=1)
repair_kernel2 = cv2.getStructuringElement(cv2.MORPH_RECT, (1,5))
repair = cv2.morphologyEx(repair, cv2.MORPH_CLOSE, repair_kernel2, iterations=1)
# Detect checkboxes using shape approximation and aspect ratio filtering
checkbox_contours = []
cnts, _ = cv2.findContours(repair, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2:]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.035 * peri, True)
x,y,w,h = cv2.boundingRect(approx)
aspect_ratio = w / float(h)
if len(approx) == 4 and (aspect_ratio >= 0.8 and aspect_ratio <= 1.2):
cv2.rectangle(original, (x, y), (x + w, y + h), (36,255,12), 3)
checkbox_contours.append(c)
print('Checkboxes:', len(checkbox_contours))
cv2.imshow('thresh', thresh)
cv2.imshow('repair', repair)
cv2.imshow('original', original)
cv2.waitKey()
Well... Are the checkboxes always in that region of the image? The checkboxes Always maintain the same size area on the image?
If yes, you can run findContours only in that region of the image...
Or maybe the Template Matching with Multiple Objects, example from OpenCV docs: https://docs.opencv.org/3.4.3/d4/dc6/tutorial_py_template_matching.html

Square detection in image

I am trying to detect all the squared shaped dice images so that i can crop them individually and use that for OCR.
Below is the Original image:
Here is the code i have got but it is missing some squares.
def find_squares(img):
img = cv2.GaussianBlur(img, (5, 5), 0)
squares = []
for gray in cv2.split(img):
for thrs in range(0, 255, 26):
if thrs == 0:
bin = cv2.Canny(gray, 0, 50, apertureSize=5)
bin = cv2.dilate(bin, None)
else:
_retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
bin, contours, _hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
cnt_len = cv2.arcLength(cnt, True)
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in range(4)])
#print(cnt)
a = (cnt[1][1] - cnt[0][1])
if max_cos < 0.1 and a < img.shape[0]*0.8:
squares.append(cnt)
return squares
dice = cv2.imread('img1.png')
squares = find_squares(dice)
cv2.drawContours(dice, squares, -1, (0, 255, 0), 3)
Here are the Output images:
As per my analysis, some squares are missing due to missing canny edges along the dice because of smooth intensity transition between dice and background.
Given the constraint that there will always be 25 dices in square grid pattern (5*5) can we predict the missing square positions based on recognised squares?
Or can we modify above algorithm for square detection algorithm?
Sharpen square edges. Load the image, convert to grayscale, median blur to smooth, and sharpen to enhance edges.
Obtain binary image and remove noise. We threshold to obtain a black/white binary image. Depending on the image, Otsu's thresholding or adaptive thresholding would work. From here we create a rectangular kernel and perform morphological transformations to remove noise and enhance the square contours.
Detect and extract squares. Next we find contours and filter using minimum/maximum threshold area. Any contours that pass our filter will be our squares so to extract each ROI, we obtain the bounding rectangle coordinates, crop using Numpy slicing, and save each square image.
Sharpen image with
cv2.filter2D() using a generic sharpening kernel, other kernels can be found here.
Now threshold to get a binary image
There's little particles of noise so to remove them, we perform morphological operations
Next find contours and filter using cv2.contourArea() with minimum/maximum threshold values.
We can crop each desired square region using Numpy slicing and save each ROI like this
x,y,w,h = cv2.boundingRect(c)
ROI = image[y:y+h, x:x+w]
cv2.imwrite('ROI_{}.png'.format(image_number), ROI)
import cv2
import numpy as np
# Load image, grayscale, median blur, sharpen image
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.medianBlur(gray, 5)
sharpen_kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
sharpen = cv2.filter2D(blur, -1, sharpen_kernel)
# Threshold and morph close
thresh = cv2.threshold(sharpen, 160, 255, cv2.THRESH_BINARY_INV)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
# Find contours and filter using threshold area
cnts = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
min_area = 100
max_area = 1500
image_number = 0
for c in cnts:
area = cv2.contourArea(c)
if area > min_area and area < max_area:
x,y,w,h = cv2.boundingRect(c)
ROI = image[y:y+h, x:x+w]
cv2.imwrite('ROI_{}.png'.format(image_number), ROI)
cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)
image_number += 1
cv2.imshow('sharpen', sharpen)
cv2.imshow('close', close)
cv2.imshow('thresh', thresh)
cv2.imshow('image', image)
cv2.waitKey()
That extra piece of information is absolutely golden. Yes, given the 5x5 matrix of dice, you can nail the positions quite well. The dice you can identify give you the center, size, and orientation of the dice. Simply continue those patterns along both axes. For your second pass, increase the contrast in each "region of interest" where you expect to find the edge of a douse (never say die!). You know within a few pixels where the edges will be: simply attenuate the image until you identify those edges.

Categories

Resources