Dropdown and Datatable in dash - python

I have the datepicker component which filters the datatable (top 10 songs on that specific date).Also I would like to have the bar chart which shows the total number of streamed songs of that top 10 songs (10 bars accordingly) preferably with dropdown core component with the options of the titles of songs that where filtered based on the date (the ones that datatable shows). with the below codem, the dropdown component shows all unique song titles thate are in the df but as I already said I want only the ones which will be picked after filtering on date.
Viz: https://imgur.com/a/i2FY83V
import dash
import dash_core_components as dcc
import dash_html_components as html
import dash_table
from dash.dependencies import Output, Input
import plotly.express as px
import dash_bootstrap_components as dbc
from datetime import date
import pandas as pd
df = pd.read_csv('bel.csv')
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.LITERA],
meta_tags=[{'name' : 'viewport',
'content': 'width=device-width, initial-scale=1.0' }]
)
# layout
app.layout = dbc.Container([
dbc.Row([
dbc.Col([
html.H1('Top songs in Belgium',className='text-center text-primary,mb-4'),
html.P ('Analyze the Top streamed songs in a month of between March & April',
className='text-center'),
], width= 12)
]),
dbc.Row([
dbc.Col([
dcc.DatePickerSingle(
id = 'my-date-picker-single',
min_date_allowed=date(2022,3,1),
max_date_allowed= date(2022,5,1),
initial_visible_month=date(2022,3,1),
date= date(2022,3,1)
),
dash_table.DataTable(
id ='datatable-interactivity',
columns=[
{"name": i, "id": i, "deletable": False, "selectable": True, "hideable": True}
if i == "iso_alpha3" or i == "year" or i == "id"
else {"name": i, "id": i, "deletable": False, "selectable": True}
for i in df.loc[0:4,['Rank', 'Title']]
],
data =df.to_dict('records'),
editable= False,
style_as_list_view=True,
style_header={
'backgroundColor': 'white',
'fontWeight': 'bold',
},
style_data={
'whiteSpace': 'normal',
'height':'auto',
'backgroundColor': 'rgb(50, 50, 50)',
'color': 'white'},
),
], width=5),
dbc.Col([
dcc.Dropdown(id='my-dpdn', multi=True,
placeholder="Select a title",
options=[{'label': x, 'value': x}
for x in sorted(df['Title'].unique())]),
dcc.Graph(id='bar-fig', figure={}),
], width ={'size':5})
]),
dbc.Row([
]),
], fluid= True)
def date_string_to_date(date_string):
return pd.to_datetime(date_string, infer_datetime_format=True)
#app.callback(
dash.dependencies.Output('datatable-interactivity', 'data'),
dash.dependencies.Input('my-date-picker-single','date')
)
def update_data (date):
data = df.to_dict('records')
if date:
mask = (date_string_to_date(df['Chart Date']) == date_string_to_date(date))
data= df.loc[mask].head(10).to_dict('records')
return data
# -------------------------------------------------------------------------
if __name__ == '__main__':
app.run_server(debug=True)

Related

using hoverData in plotly dash to create hover go.Table

I am trying to use the hoverData of a plot with many traces to display a side table of values related to each trace. The main code runs as follows. (note this is not the full code, but i included the relevant info)
def plots(self,):
df_lists = self.df_lists
plots_names = ['weakness', 'std', 'std_average', 'std_weak', 'p_average', 'p_repitition_average', 'p_median','p_median_all', 'p_median_average','p_range', 'p_range_average']
colors = {'background': '#111111', 'text': '#7FDBFF'}
from dash import Dash, dcc, html, Input, Output, State
names = self.names
app = Dash()
app.layout = html.Div( children=[
html.H4('Dieharder Tests Plots'),
html.P('Chose Plot Type'),
dcc.RadioItems(plots_names, plots_names[0], id="plot-picker", ),
html.P('Test Description'),
dcc.Markdown(id='test-explain', link_target="_blank", ),
html.P("Filter by test:"),
dcc.Dropdown(names, names[0], id="test-picker", multi = True),
dcc.Graph(id="plot", style={'width':'75%', 'float': 'left','height': '70vh','display':'inline-block'}),
html.Div([dcc.Graph(id='hover-data', style ={'float':'right'})], style={'width':'20%', 'paddingTop':35}),
])
#app.callback(
Output("plot", "figure"),
[Input("plot-picker", "value"), Input("test-picker", "value")])
def update_bar_chart(plot_picker, picker_test):
i=0
if plot_picker == 'weakness':
data = []
for test in picker_test:
df = df_lists[test]
p_value = [x for x in df.columns if x.startswith('pva')]
n_rounds = len(p_value)
trace = go.Bar(x=df.test_name, y = df.weak_rate, name = '{}, #rounds: {}'.format(test,n_rounds))
data.append(trace)
layout = go.Layout(title = 'Fraction of weak and failed results per each Dieharder test')
fig = go.Figure(data, layout)
fig.update_yaxes(title_text='Failed/weak fractions')
fig.update_layout(legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01))
return fig
The hover data includes the number of the trace not its name, which i need to specify the df source of the data. I am using the following code to get the hover data to generate the table:
#app.callback(Output('hover-data', 'graph'),
[Input('plot', 'hoverData')] )
def hover_data(hoverData):
Die_test = hoverData['points'][0]['x']
curve_number = hoverData['points'][0]['curveNumber']
trace_name = app.layout['plot'].figure['data'][curve_number]['name']
df = df_lists[trace_name]
df = df[df['test_name'] == Die_test]
data = [go.Table(header=dict(values=['p_mean', 'p_median', 'range', 'std'], fill_color='paleturquoise', align='left'), cells=dict(values=[df['p_mean'], df['p_median'], df['range'], df['std']] ))]
fig = go.Figure(data,)
return fig
The problem it is not working. I am not seeing anything when i hover over the data. I am not sure where the problem is coming, but most probably from the trace_name variable as i am getting the error:
Callback error updating hover-data.graph
AttributeError: 'Graph' object has no attribute 'figure'.
I tried to include a [State('plot', 'figure')] in the input of the callback. and then use the .figure['data'][curve_number]['name'] directly (instead of using app.layout['plot'] first), but it also didn't work.
Any help is appreciated.
Thanks
I don't have your dataframe so I think you can refer my code to revise yours:
from dash import Dash, html, dcc, Input, Output
import pandas as pd
import plotly.express as px
import dash_bootstrap_components as dbc
app = Dash(__name__, external_stylesheets=[dbc.themes.LUX])
df = pd.read_csv('https://plotly.github.io/datasets/country_indicators.csv')
app.layout = html.Div([
dbc.Row([
dbc.Col([
dcc.Dropdown(
df['Indicator Name'].unique(),
'Fertility rate, total (births per woman)',
id='crossfilter-xaxis-column',
),
dcc.RadioItems(
['Linear', 'Log'],
'Linear',
id='crossfilter-xaxis-type',
labelStyle={'display': 'inline-block', 'marginTop': '5px'}
)
], width={'size': 6, "offset": 0, 'order': 1}),
dbc.Col([
dcc.Dropdown(
df['Indicator Name'].unique(),
'Life expectancy at birth, total (years)',
id='crossfilter-yaxis-column'
),
dcc.RadioItems(
['Linear', 'Log'],
'Linear',
id='crossfilter-yaxis-type',
labelStyle={'display': 'inline-block', 'marginTop': '5px'}
)
], width={'size': 6, "offset": 0, 'order': 1})
], style={'padding': '10px 5px'}, className='p-2 align-items-center'),
dbc.Row([
dbc.Col([
dcc.Graph(
id='crossfilter-indicator-scatter',
hoverData={'points': [{'customdata': 'Japan'}]}
)
], width={'size': 6, "offset": 0, 'order': 1}),
dbc.Col([
dash_table.DataTable(id='table',
columns=[{"name": i, "id": i} for i in df.columns],
data=[],
style_table={'height': 550},
style_header={'backgroundColor': 'orange', 'padding': '10px', 'color': '#000000'},
style_cell={'textAlign': 'center', 'font_size': '12px',
'whiteSpace': 'normal', 'height': 'auto'},
editable=True, # allow editing of data inside all cells
filter_action="native", # allow filtering of data by user ('native') or not ('none)
sort_action="native", # enables data to be sorted per-column by user or not ('none')
sort_mode="single", # sort across 'multi' or 'single' columns
column_selectable="multi", # allow users to select 'multi' or 'single' columns
row_selectable="multi", # allow users to select 'multi' or 'single' rows
row_deletable=True, # choose if user can delete a row (True) or not (False)
selected_columns=[], # ids of columns that user selects
selected_rows=[], # indices of rows that user selects
page_action="native",
export_headers='display')
], width={'size': 6, "offset": 0, 'order': 1}),
], className='p-2 align-items-center'),
dbc.Row([
dbc.Col([
dcc.Slider(
df['Year'].min(),
df['Year'].max(),
step=None,
id='crossfilter-year--slider',
value=df['Year'].max(),
marks={str(year): str(year) for year in df['Year'].unique()}
)
], width={'size': 6, "offset": 0, 'order': 1})
], className='p-2 align-items-center')
])
#app.callback(
Output('crossfilter-indicator-scatter', 'figure'),
Input('crossfilter-xaxis-column', 'value'),
Input('crossfilter-yaxis-column', 'value'),
Input('crossfilter-xaxis-type', 'value'),
Input('crossfilter-yaxis-type', 'value'),
Input('crossfilter-year--slider', 'value'))
def update_graph(xaxis_column_name, yaxis_column_name,
xaxis_type, yaxis_type,
year_value):
dff = df[df['Year'] == year_value]
fig = px.scatter(x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'],
y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'],
hover_name=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'])
fig.update_traces(customdata=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'])
fig.update_xaxes(title=xaxis_column_name, type='linear' if xaxis_type == 'Linear' else 'log')
fig.update_yaxes(title=yaxis_column_name, type='linear' if yaxis_type == 'Linear' else 'log')
fig.update_layout(margin={'l': 40, 'b': 40, 't': 10, 'r': 0}, hovermode='closest')
return fig
#app.callback(
Output('table', 'data'),
Input('crossfilter-indicator-scatter', 'hoverData'),
Input('crossfilter-xaxis-column', 'value'),
Input('crossfilter-xaxis-type', 'value'))
def update_y_timeseries(hoverData, xaxis_column_name, axis_type):
country_name = hoverData['points'][0]['customdata']
dff = df[df['Country Name'] == country_name]
dff = dff[dff['Indicator Name'] == xaxis_column_name]
return dff.to_dict(orient='records')
if __name__ == '__main__':
app.run_server(debug=False, port=1414)
I think instead of return go.Table, you can use dash_table in your Div and then return filtered data frame. Hope this help.

Is it possible to use zoom from one graph in a Dash app to select input for second graph

I have a dash app that plots a dataframe which has a date component, and an entry that is either true or false. There are two graphs in the dashboard, one with the data vs date, and one with a percentage of True/False like below:
I can zoom in on the date range and select a subset clicking with the mouse.
I would like to feed this range back into the second graph.
At the moment to produce the above dashboard the relevant part of the code looks like:
from re import template
import pandas as pd
import plotly.express as px
from dash import Dash, Input, Output, dcc, html
from flask import globals
def init_dashboard(server):
evicted_df = pd.read_csv("app/data/evicted_jobs_node.csv", sep="\t")
all_df = pd.read_csv("app/data/all_jobs_node.csv", sep="\t")
all_df["datetime"] = pd.to_datetime(all_df["datetime"])
all_df = all_df.set_index(["datetime"])
all_df["evicted"] = all_df["id_job"].isin(evicted_df["id_job"])
app = Dash(__name__, server=server, routes_pathname_prefix="/dash/")
app.layout = html.Div(
[
html.Div(
className="row",
children=[
html.Div(
className="six columns",
children=[dcc.Graph(id="graph-with-dropdown")],
style=dict(width="75%"),
),
html.Div(
className="six columns",
children=[dcc.Graph(id="graph-with-dropdown2")],
style=dict(width="25%"),
),
],
style=dict(display="flex"),
),
html.Div(
className="row",
children=[
html.Div(
className="six columns",
children=[
dcc.Dropdown(
id="partition-dropdown",
options=[
"Partition (default is all)",
*all_df["partition"].unique(),
],
value="Partition (default is all)",
clearable=False,
searchable=False,
)
],
style={
"width": "50%",
"justify-content": "center",
},
),
html.Div(
className="six columns",
children=[
dcc.Dropdown(
id="node-dropdown",
options=[
"Number of Nodes (default is all)",
*sorted(
[
int(nodes)
for nodes in all_df["nodes_alloc"].unique()
]
),
],
value="Number of Nodes (default is all)",
clearable=False,
searchable=False,
)
],
style=dict(width="50%"),
),
],
style=dict(display="flex"),
),
]
)
init_callbacks(app, df, all_df)
return app.server
def init_callbacks(app, df, all_df):
#app.callback(
Output("graph-with-dropdown2", "figure"),
[Input("node-dropdown", "value"), Input("partition-dropdown", "value")],
)
def update_evicted_fig(selected_nodes, selected_partition):
if selected_nodes != "Number of Nodes (default is all)":
filtered_df = all_df[all_df["nodes_alloc"] == selected_nodes]
else:
filtered_df = all_df
if selected_partition != "Partition (default is all)":
filtered_df = filtered_df[filtered_df["partition"] == selected_partition]
x = ["Not Evicted", "Evicted"]
df1 = filtered_df.groupby(["evicted"]).count().reset_index()
fig = px.bar(
df1,
y=[
100
* filtered_df[filtered_df["evicted"] == False].size
/ filtered_df.size,
100
* filtered_df[filtered_df["evicted"] == True].size
/ filtered_df.size,
],
x=x,
color="evicted",
color_discrete_map={True: "red", False: "green"},
labels={"x": "Job Status", "y": "% of Jobs"},
)
fig.update_layout(transition_duration=500)
return fig
#app.callback(
Output("graph-with-dropdown", "figure"),
[Input("node-dropdown", "value"), Input("partition-dropdown", "value")],
)
def update_evicted_fig(selected_nodes, selected_partition):
if selected_nodes != "Number of Nodes (default is all)":
filtered_df = all_df[all_df["nodes_alloc"] == selected_nodes]
else:
filtered_df = all_df
if selected_partition != "Partition (default is all)":
filtered_df = filtered_df[filtered_df["partition"] == selected_partition]
print(
filtered_df[filtered_df["evicted"] == True]
.groupby([pd.Grouper(freq="6H")])
.sum(numeric_only=True)["node_hours"]
)
fig = px.bar(
x=filtered_df[filtered_df["evicted"] == False]
.groupby([pd.Grouper(freq="6H")])
.sum(numeric_only=True)["node_hours"]
.index,
y=filtered_df[filtered_df["evicted"] == False]
.groupby([pd.Grouper(freq="6H")])
.sum(numeric_only=True)["node_hours"],
labels={
"x": "Date",
"y": "Node hours",
},
title="Job Status",
barmode="stack",
)
fig.add_bar(
name="Evicted",
x=filtered_df[filtered_df["evicted"] == True]
.groupby([pd.Grouper(freq="6H")])
.sum(numeric_only=True)["node_hours"]
.index,
y=filtered_df[filtered_df["evicted"] == True]
.groupby([pd.Grouper(freq="6H")])
.sum(numeric_only=True)["node_hours"],
)
fig.update_layout(transition_duration=500)
return fig
return app.server
Is what I am hoping to do possible, and if so is there some documentation or a worked example someone could highlight for me?
I don't have you df so maybe you can refer my code to revise yours:
import pandas as pd
import numpy as np
import plotly.express as px
import dash
import dash_html_components as html
from dash import dcc
from dash_extensions.enrich import Input, Output, State, ServersideOutput
import dash_bootstrap_components as dbc
from dash.exceptions import PreventUpdate
df_2 = df[(df['BAS_DT'] >= '2022-01-01')]
df5 = df_2.pivot_table(values='USD_XC_BL',
index=['BAS_DT'],
aggfunc=np.sum).reset_index()
fig_3 = px.bar(df5,
x='BAS_DT',
y='USD_XC_BL',
labels='BAS_DT',
hover_name='BAS_DT', color_discrete_sequence=px.colors.qualitative.Alphabet)
fig_3.update_layout(xaxis_title="", yaxis_title="", plot_bgcolor='rgba(0,0,0,0)', margin=dict(l=0, r=0, t=0, b=0))
fig_3.update_xaxes(showline=False, showgrid=False),
fig_3.update_yaxes(showline=False, showgrid=False, separatethousands=True, tickformat=',.0f')
app = dash.Dash(__name__)
app.layout = html.Div([
dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardBody([
dbc.Row([
dbc.Col([
html.H5('Amount by Currency', style={"text-align": "center"}),
dcc.Loading(children=[dcc.Graph(id='histogram_map', figure=fig_3)], color='#119DFF',
type='dot')
], width={'size': 12, 'offset': 0, 'order': 2}, style={"text-align": "left"}),
]),
])
]),
], xs=6),
dbc.Col([
dbc.Card([
dbc.CardBody([
dbc.Row([
dbc.Col([
html.H5('Overdue Status', style={"text-align": "center"}),
dcc.Loading(children=[dcc.Graph(id='overdue_map', figure={})], color='#119DFF', type='dot')
], width={'size': 12, 'offset': 0, 'order': 2}, style={"text-align": "left"}),
]),
])
]),
], xs=6),
], className='p-2 align-items-stretch')
])
#app.callback(
Output('overdue_map', 'figure'),
Input('histogram_map', 'clickData'))
def update_y_timeseries(clickData):
if clickData:
country_name = clickData['points'][0]['hovertext']
df_3 = df[df['BAS_DT'] == country_name]
df_4 = df_3.pivot_table(values='CLOC_CUR_XC_BL',
index=['APL_DTL_NAME'],
aggfunc=pd.Series.nunique).reset_index()
fig = px.bar(df_4,
x='APL_DTL_NAME',
y='CLOC_CUR_XC_BL'
, color_discrete_sequence=px.colors.qualitative.Alphabet)
fig.update_layout(xaxis_title="", yaxis_title="", plot_bgcolor='rgba(0,0,0,0)') # plot_bgcolor='rgba(0,0,0,0)'
fig.update_xaxes(showline=False, showgrid=False),
fig.update_yaxes(showline=False, showgrid=False, separatethousands=True)
fig.update_traces(width=0.3)
return fig
else:
raise PreventUpdate
if __name__ == "__main__":
app.run_server(debug=True)
I'm using clickData to return point as date, and then use this date to filter data and then make new bar graph.
Hope this help.

Dropdown menu isn't searchable with images as labels

Adding images to dropdown labels as described in paragraph Components as Option Labels in
https://dash.plotly.com/dash-core-components/dropdown
makes labels not searchable even though searchable=True is set.
Is there workaround to make labels searchable as usual?
Minimal working code:
import pandas as pd
import plotly
import plotly.express as px
import json
import dash_bootstrap_components as dbc
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
df = pd.read_csv('data_bdo.csv', index_col=0)
temp=[
{
"label": html.Div(
[
html.Img(src="/assets/1.png", height=20),
html.Div("Python", style={'font-size': 15, 'padding-left': 10}),
], style={'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}
),
"value": "Python",
},
{
"label": html.Div(
[
html.Img(src="/assets/2.png", height=20),
html.Div("Julia", style={'font-size': 15, 'padding-left': 10}),
], style={'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}
),
"value": "Julia",
},]
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.DARKLY],update_title = None )
app.layout = html.Div([
html.Div([
dcc.Dropdown(id='my_dropdown',
options=temp,
searchable=True #allow user-searching of dropdown values
)],className='three columns')])
#app.callback(
Output(component_id='the_graph', component_property='figure'),
[Input(component_id='my_dropdown', component_property='value')]
)
def update_bar_chart(my_dropdown):
df = pd.read_csv('data_bdo.csv', index_col=0)
fig = px.bar(df[["name", my_dropdown]].dropna().sort_values(by=my_dropdown,ascending=False),
x="name",
y=my_dropdown,
template = 'plotly_dark',
text=my_dropdown,
labels={my_dropdown:"Amount of "+ str(my_dropdown)}
)
fig.update_traces(textfont_size=13, textposition="outside", cliponaxis=False)
return fig
if __name__ == '__main__':
app.run_server(debug=True, use_reloader=False)
Dropdown with options of the form [{'label': 'Python', 'value': 'Python'}] is searchable though...

Plotly/Dash -- range filter resets on hoverData

I am trying capture mouse hover events using Dash. I capture the position of the mouse using hoverData.
The problem appears when I filter the time series using the range selector or the range slider. The plot correctly reduces to the selected time, but when I hover it with the mouse it resets to the main view (whole main series).
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import plotly.graph_objs as go
from dash.dependencies import Input, Output
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv")
app.layout = html.Div([
dcc.Graph(
id='stock-plot'
),
], className="container")
#app.callback(
Output('stock-plot', 'figure'),
[Input('stock-plot', 'hoverData')])
def drawStockPrice(hoverData):
traces = [go.Scatter(
x=df.Date,
y=df['AAPL.High'],
mode='lines',
opacity=0.7,
connectgaps=True),
]
return {'data': traces,
'layout': go.Layout(colorway=["#5E0DAC", '#FF4F00', '#375CB1', '#FF7400', '#FFF400', '#FF0056'],
height=600,
title=f"Closing prices",
xaxis={"title": "Date",
'rangeselector': {'buttons': list([{'count': 1, 'label': '1M',
'step': 'month',
'stepmode': 'backward'},
{'count': 6, 'label': '6M',
'step': 'month',
'stepmode': 'backward'},
{'step': 'all'}])},
'rangeslider': {'visible': True}, 'type': 'date'},
yaxis={"title": "Price (USD)"},
)}
if __name__ == '__main__':
app.run_server(debug=True)
I am sure there should be a better solution but this is what I got (Dash v1.6.0):
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import plotly.graph_objs as go
from dash.dependencies import Input, Output, State
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv")
layout = go.Layout( colorway=["#5E0DAC", '#FF4F00', '#375CB1', '#FF7400', '#FFF400', '#FF0056'],
height=600,
title=f"Closing prices",
xaxis={"title": "Date",
'rangeselector': {'buttons': list([{'count': 1, 'label': '1M',
'step': 'month',
'stepmode': 'backward'},
{'count': 6, 'label': '6M',
'step': 'month',
'stepmode': 'backward'},
{'step': 'all'}]
),
},
'rangeslider': {'visible': True},
'type': 'date',
},
yaxis={"title": "Price (USD)"},
)
traces = [go.Scatter( x=df.Date,
y=df['AAPL.High'],
mode='lines',
opacity=0.7,
connectgaps=True
)]
app.layout = html.Div([
dcc.Graph(
id='stock-plot',
figure={
'data': traces,
'layout': layout
}
),
], className="container")
#app.callback(
Output('stock-plot', 'figure'),
[Input('stock-plot', 'hoverData'),
Input('stock-plot', 'relayoutData')],
[State('stock-plot', 'figure')]
)
def drawStockPrice(hoverData, selected, figure):
data = figure['data']
layout = figure['layout']
if selected is not None and 'xaxis.range' in selected:
layout['xaxis']['range'] = selected['xaxis.range']
return {'data': data,
'layout': layout
}
if __name__ == '__main__':
app.run_server(debug=True)

API defined dataframe (dynamically generated) into Table (Dash_Table_Experiments)

Does anyone know how to dynamically generate a TABLE of data based on the user input using Dash_Table_Experiments (Python code)?
This code is static, however, I would like to find a way to make it dynamic. Thus, when a user enters a ticker symbol the TABLE will automatically update with the pertinent data below the chart.
The dataframe will change because it is generated from an api (i.e. Alpha Vantage), thus it cannot be defined as a static table. See code below.
import dash
import dash_core_components as dcc
import dash_html_components as html
import dash_table_experiments as dt
import json
import pandas as pd
from alpha_vantage.timeseries import TimeSeries
print(dcc.__version__) # 0.6.0 or above is required
app = dash.Dash()
ts = TimeSeries(key='', output_format='pandas')
data1, meta_data = ts.get_daily(symbol=inputsymbol, outputsize='full')
date=data1.reset_index(level=['date'])
df=(date.tail(10))
DF_SIMPLE = df
app.config.supress_callback_exceptions = True
app.scripts.config.serve_locally = True
app.layout = html.Div([
dcc.Location(id='url', refresh=False),
html.Div(id='page-content'),
html.Div(dt.DataTable(rows=[{}]), style={'display': 'none'})
])
index_page = html.Div([
html.H1('Page Home'),
html.Br(),
dcc.Link('Go to Home', href='/'),
html.Br(),
dcc.Link('Go to Page 1', href='/page-1'),
])
page_1_layout = html.Div([
html.H1('Page 1'),
html.Br(),
dcc.Link('Go back to home', href='/'),
html.H4('DataTable'),
dt.DataTable(
rows=DF_SIMPLE.to_dict('records'),
# optional - sets the order of columns
#columns=sorted(DF_SIMPLE.columns),
editable=False,
id='editable-table'
),
html.Div([
html.Pre(id='output', className="two columns"),
html.Div(
dcc.Graph(
id='graph',
style={
'overflow-x': 'wordwrap'
}
),
className="ten columns"
)
], className="row"),
])
#app.callback(
dash.dependencies.Output('output', 'children'),
[dash.dependencies.Input('editable-table', 'rows')])
def update_selected_row_indices(rows):
return json.dumps(rows, indent=2)
#app.callback(
dash.dependencies.Output('graph', 'figure'),
[dash.dependencies.Input('editable-table', 'rows')])
def update_figure(rows):
dff = pd.DataFrame(rows)
return {
'data': [{
'x': dff['x'],
'y': dff['y'],
}],
'layout': {
'margin': {'l': 10, 'r': 0, 't': 10, 'b': 20}
}
}
# Update the index
#app.callback(dash.dependencies.Output('page-content', 'children'),
[dash.dependencies.Input('url', 'pathname')])
def display_page(pathname):
if pathname == '/page-1':
return page_1_layout
else:
return index_page
app.css.append_css({
'external_url': 'https://codepen.io/chriddyp/pen/bWLwgP.css'
})
if __name__ == '__main__':
app.run_server(debug=True)

Categories

Resources