I want to draw some circles using `ax3.scatter(x1, y1, s=r1 , facecolors='none', edgecolors='r'), where:
x1 and y1 are the coordinates of these circles
r1 is the radius of these circles
I thought typing s = r1 I would get the correct radius, but that's not the case.
How can I fix this?
If you change the value of 'r' (now 5) to your desired radius, it works. This is adapted from the matplotlib.org website, "Scatter Plots With a Legend". Should be scatter plots with attitude!
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(19680801)
fig, ax = plt.subplots()
for color in ['tab:blue', 'tab:orange', 'tab:green']:
r = 5 #radius
n = 750 #number of circles
x, y = np.random.rand(2, n)
#scale = 200.0 * np.random.rand(n)
scale = 3.14159 * r**2 #CHANGE r
ax.scatter(x, y, c=color, s=scale, label=color,
alpha=0.3, edgecolors='none')
ax.legend()
ax.grid(True)
plt.show()
Related
I'd like to make a triangle plot in matplotlib with a mostly-transparent surface. I'm running the example code at https://matplotlib.org/mpl_examples/mplot3d/trisurf3d_demo.py:
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
n_radii = 8
n_angles = 36
# Make radii and angles spaces (radius r=0 omitted to eliminate duplication).
radii = np.linspace(0.125, 1.0, n_radii)
angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)
# Repeat all angles for each radius.
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
# Convert polar (radii, angles) coords to cartesian (x, y) coords.
# (0, 0) is manually added at this stage, so there will be no duplicate
# points in the (x, y) plane.
x = np.append(0, (radii*np.cos(angles)).flatten())
y = np.append(0, (radii*np.sin(angles)).flatten())
# Compute z to make the pringle surface.
z = np.sin(-x*y)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_trisurf(x, y, z, linewidth=0.2, antialiased=True)
plt.show()
I can set
ax.plot_trisurf(x, y, z, linewidth=0.2, alpha = 0.2, antialiased=True)
to set the opacity to 0.2, but then the lines disappear. Furthermore, when I change the linewidth, even without the alpha, I see no change in the thickness of the lines between the points. How can I have a triangle plot where the faces are mostly transparent and the lines are clearly visible?
I want to plot a map of specific sites to interpret their effects on the surrounding city environment. To do this, I would like to plot the sites as bubbles, with a decreasing gradient towards the edge of the circle, and where the gradient of the overlapping circles is the sum.
As an example I've used this:
# libraries
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
# create data
x = np.random.rand(15)
y = x+np.random.rand(15)
z = x+np.random.rand(15)
z=z*z
# Change color with c and alpha. I map the color to the X axis value.
plt.scatter(x, y, s=1500, c=z, cmap="Blues", alpha=0.4, edgecolors="grey", linewidth=1)
# Add titles (main and on axis)
plt.xlabel("the X axis")
plt.ylabel("the Y axis")
plt.title("A colored bubble plot")
plt.show();
which produces:
However, the color of the circles does not decay, nor do they seem to sum the intended way.
Is there any smart way to do this, or could it possibly be easier with some kind of heatmap solution, or using grids and a decaying effect on adjacent tiles?
Here is an approach with densities placed at each x and y, enlarged by the z value.
Depending on the distance to each x,y position a quantity is added.
import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import norm # calculate the length of a vector
# import seaborn as sns
# create data
x = np.random.rand(15)
y = x+np.random.rand(15)
z = x+np.random.rand(15)
z=z*z
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12,5))
# Change color with c and alpha. I map the color to the X axis value.
ax1.scatter(x, y, s=1500, c=z, cmap="Blues", alpha=0.4, edgecolors="grey", linewidth=1)
ax1.set_xlabel("the X axis")
ax1.set_ylabel("the Y axis")
ax1.set_title("A colored bubble plot")
centers = np.dstack((x, y))[0]
xmin = min(x)-0.2
xmax = max(x)+0.2
ymin = min(y)-0.2
ymax = max(y)+0.2
zmin = min(z)
zmax = max(z)
xx, yy = np.meshgrid(np.linspace(xmin, xmax, 100),
np.linspace(ymin, ymax, 100))
xy = np.dstack((xx, yy))
zz = np.zeros_like(xx)
for ci, zi in zip(centers, z):
sigma = zi / zmax * 0.3
sigma2 = sigma ** 2
zz += np.exp(- norm(xy - ci, axis=-1) ** 2 / sigma2 / 2)
img = ax2.imshow(zz, extent=[xmin, xmax, ymin, ymax], origin='lower', aspect='auto', cmap='Blues')
#plt.colorbar(img, ax=ax2)
ax2.set_xlabel("the X axis")
ax2.set_ylabel("the Y axis")
ax2.set_title("Density depending on z")
plt.show()
The plot compares the two approaches using the same random data.
An image is worth a thousand words :
https://www.harrisgeospatial.com/docs/html/images/colorbars.png
I want to obtain the same color bar than the one on the right with matplotlib.
Default behavior use the same color for "upper"/"lower" and adjacent cell...
Thank you for your help!
Here is the code I have:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors
N = 100
X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
fig, ax = plt.subplots(1, 1, figsize=(8, 8))
# even bounds gives a contour-like effect
bounds = np.linspace(-1, 1, 10)
norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256)
pcm = ax.pcolormesh(X, Y, Z,
norm=norm,
cmap='RdBu_r')
fig.colorbar(pcm, ax=ax, extend='both', orientation='vertical')
In order to have the "over"/"under"-color of a colormap take the first/last color of that map but still be different from the last color inside the colormapped range you can get one more color from a colormap than you have boundaries in the BoundaryNorm and use the first and last color as the respective colors for the "over"/"under"-color.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
N = 100
X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
fig, ax = plt.subplots(1, 1, figsize=(8, 8))
# even bounds gives a contour-like effect
bounds = np.linspace(-1, 1, 11)
# get one more color than bounds from colormap
colors = plt.get_cmap('RdBu_r')(np.linspace(0,1,len(bounds)+1))
# create colormap without the outmost colors
cmap = mcolors.ListedColormap(colors[1:-1])
# set upper/lower color
cmap.set_over(colors[-1])
cmap.set_under(colors[0])
# create norm from bounds
norm = mcolors.BoundaryNorm(boundaries=bounds, ncolors=len(bounds)-1)
pcm = ax.pcolormesh(X, Y, Z, norm=norm, cmap=cmap)
fig.colorbar(pcm, ax=ax, extend='both', orientation='vertical')
plt.show()
As suggested in my comment you can change the color map with
pcm = ax.pcolormesh(X, Y, Z, norm=norm, cmap='rainbow_r')
That gives:
You can define your own color map as shown here: Create own colormap using matplotlib and plot color scale
I am trying to 3d plot below data, with height being the respecitive joint probability from probability mass function. The idea is to visualize covariance. I had to go 3D because, the probabilities varies for different combinations of sample. The bars or boxes overlap each other in weird ways that I am unable to infer a proper 3d perspective in different angles. If you look at below gif you will know (box suddenly grows over each other at few angles out of nowhere). Kindly help how to resolve this issue. Also alpha is not working.
Issues:
1. Weird 3d boxes rendering
2. Alpha also not working
Problematic output:
MWE (jupyter):
%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from itertools import product
from mpl_toolkits.mplot3d import Axes3D
X , Y = [100,250], [0,100,200]
xb, yb = 175, 125
import pandas as pd
matrix = np.array([
[0.20, 0.10, 0.20],
[0.05, 0.15, 0.30]
])
df = pd.DataFrame(matrix, columns=Y)
df.index = [100, 250]
top = 1
fig = plt.figure(figsize=(15,5))
ax1 = fig.add_subplot(121)
for xy in product(X,Y):
x,y = xy[0], xy[1]
z = df.loc[x,y]
d1, d2 = xb - x, yb - y
color = 'green' if d1*d2 > 0 else 'red'
ax1.add_patch(patches.Rectangle((x, y), d1, d2, alpha=z, facecolor=color))
ax1.scatter(x,y,color='black')
ax1.axvline(x=Xb, ls=':', color='blue')
ax1.axhline(y=Yb, ls=':', color='blue')
ax1.set_xticks(X)
ax1.set_yticks(Y)
ax1.set_xlim([min(X)-50,max(X)+50])
ax1.set_ylim([min(Y)-50,max(Y)+50])
ax2 = fig.add_subplot(122, projection='3d')
ax2.view_init(elev=30., azim=-50)
for xy in product(X,Y):
x ,y = xy[0], xy[1]
z = df.loc[x,y]
# print(x, y, z)
width = x - 175
depth = y - 125
pro = width*depth
top = z
bottom = np.zeros_like(top)
if pro > 0: #positive
color='#B9F6CA'
else:
color='#EF9A9A'
ax2.bar3d(x, y, bottom, -width, -depth, top, color=color)
ax2.scatter(x, y, z, color='blue')
def rotate(angle):
ax2.view_init(azim=angle)
from matplotlib import animation
ani = animation.FuncAnimation(fig, rotate, frames=np.arange(0,362,2),interval=100)
from IPython.display import HTML
plt.close()
HTML(ani.to_jshtml())
Related math problem:
I want to plot a donut and my script is
import numpy as np
import matplotlib.pyplot as plt
pi,sin,cos = np.pi,np.sin,np.cos
r1 = 1
r2 = 2
theta = np.linspace(0,2*pi,36)
x1 = r1*cos(theta)
y1 = r1*sin(theta)
x2 = r2*cos(theta)
y2 = r2*sin(theta)
How to get a donut with red filled area ?
You can traverse the boundaries of the area in closed curve, and use fill method to fill the area inside this closed area:
import numpy as np
import matplotlib.pyplot as plt
n, radii = 50, [.7, .95]
theta = np.linspace(0, 2*np.pi, n, endpoint=True)
xs = np.outer(radii, np.cos(theta))
ys = np.outer(radii, np.sin(theta))
# in order to have a closed area, the circles
# should be traversed in opposite directions
xs[1,:] = xs[1,::-1]
ys[1,:] = ys[1,::-1]
ax = plt.subplot(111, aspect='equal')
ax.fill(np.ravel(xs), np.ravel(ys), edgecolor='#348ABD')
plt.show()
This can easily be applied to any shape, for example, a pentagon inside or outside of a circle:
You can do this by plotting the top and bottom halves separately:
import numpy as np
import matplotlib.pyplot as plt
inner = 5.
outer = 10.
x = np.linspace(-outer, outer, 1000, endpoint=True)
yO = outer*np.sin(np.arccos(x/outer)) # x-axis values -> outer circle
yI = inner*np.sin(np.arccos(x/inner)) # x-axis values -> inner circle (with nan's beyond circle)
yI[np.isnan(yI)] = 0. # yI now looks like a boulder hat, meeting yO at the outer points
ax = plt.subplot(111)
ax.fill_between(x, yI, yO, color="red")
ax.fill_between(x, -yO, -yI, color="red")
plt.show()
Or you can use polar coordinates, though whether this is beneficial depends on the broader context:
import numpy as np
import matplotlib.pyplot as plt
theta = np.linspace(0., 2.*np.pi, 80, endpoint=True)
ax = plt.subplot(111, polar=True)
ax.fill_between(theta, 5., 10., color="red")
plt.show()
It's a bit of a hack but the following works:
import numpy as np
import matplotlib.pyplot as plt
pi,sin,cos = np.pi,np.sin,np.cos
r1 = 1
r2 = 2
theta = np.linspace(0,2*pi,36)
x1 = r1*cos(theta)
y1 = r1*sin(theta)
x2 = r2*cos(theta)
y2 = r2*sin(theta)
fig, ax = plt.subplots()
ax.fill_between(x2, -y2, y2, color='red')
ax.fill_between(x1, y1, -y1, color='white')
plt.show()
It plots the whole area of your donut in red and then plots the central "hole" in white.
The answer given by tom10 is ten ;)
But if you want to define the circle (donut) origin is simple, just add the position x,y in the x, yI, yO and -yO and -yI, like this:
...
pos = [4,2]
ax.fill_between(x+pos[0], yI+pos[1], yO+pos[1], color=color)
ax.fill_between(x+pos[0], -yO+pos[1], -yI+pos[1], color=color)
...
REF Example: https://pastebin.com/8Ew4Vthb