I have a list of items from PDF text extraction in this way:
['performed three times. Data represent the mean±SEM of threeindependent experiments. *P<0.05, **P<0.005, ***P<0.001.', 'B','O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', 'actin', 'C','T', 'L', 'D', 'O', 'N', 'T', 'M', 'G', 'C', 'T', 'L', 'D', 'O', 'N','T', 'M', 'G', 'HaCaT HeLa', 'O', '-G', 'lN', 'A', 'c', 'le', 'v','e', 'l', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L','0.0', '2.5', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O','N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', '**', '***', 'S','R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'a', 'C', 'a','T', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a','T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0','F', 'A', 'S', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O','N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', 'A', 'C', 'C','(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '2.5','1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a','C', 'a', 'T', 'T', 'M', 'G', '2.0', 'O', '-G', 'lc', 'N', 'A', 'c','le', 'v', 'e', 'l', '(A', '.U', ')', 'H', 'e', 'L', 'a', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N','H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', '***', 'S', 'R', 'E','B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'e', 'L', 'a', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N','H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', 'F', 'A', 'S', '(A','.U', ')', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0','0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T','M', 'G', '2.0', '***', 'A', 'C', 'C', '(A', '.U', ')', 'H', 'e', 'L','a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a','D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', '***','***', '***', '***', '***', '***', '*** ***', '***', 'O-GlcNAc','AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', '�-actin', 'O', '-G', 'lN','A', 'c', 'le', 'v', 'e', 'l', '(A', '.U', ')', 'C', 'T', 'L', 'H','a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r','H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '2.0','Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'p', 'A', 'M', 'P', 'K', '(A','.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5','1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', 'H', 'e', 'L', 'a', '2.5 ***', 'Q', 'u', 'e', 'r', 'H', 'e', 'L','a', 'S', 'R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'C', 'T','L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u','e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a','**', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'A', 'C', 'C', '(A','.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5','1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', 'H', 'e', 'L', 'a', '2.0', '***', 'Q', 'u', 'e', 'r', 'H', 'e','L', 'a', 'F', 'A', 'S', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a','C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H','a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '***', 'Q','u', 'e', 'r', 'H', 'e', 'L', 'a', '2.0', '***', '*** ***', '*','******* *******', 'HaCaT HeLa', 'CTL Quer CTL Quer', 'A', 'Fig. 4.Quercetin regulates SREBP1 and its target proteins']
In this list, I would like to remove all groups of adjacent elements (length of group > N) for which no element has length > M.
A pseudo code would be:
for item in list:
if len(item) <= M:
buffer.append(item_index)
active = True
if len(item) > M and active == True:
active = False
if len(buffer) > N:
list.replace_at_index(buffer_by_index,'')
buffer.clear()
Thanks for helping
Here is how you can use the built-in enumerate method to iterate through the elements in a list alongside each element's index:
lst = ['performed three times. Data represent the mean±SEM of threeindependent experiments. *P<0.05, **P<0.005, ***P<0.001.', 'B','O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', 'actin', 'C','T', 'L', 'D', 'O', 'N', 'T', 'M', 'G', 'C', 'T', 'L', 'D', 'O', 'N','T', 'M', 'G', 'HaCaT HeLa', 'O', '-G', 'lN', 'A', 'c', 'le', 'v','e', 'l', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L','0.0', '2.5', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O','N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', '**', '***', 'S','R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'a', 'C', 'a','T', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a','T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0','F', 'A', 'S', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O','N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', 'A', 'C', 'C','(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '2.5','1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a','C', 'a', 'T', 'T', 'M', 'G', '2.0', 'O', '-G', 'lc', 'N', 'A', 'c','le', 'v', 'e', 'l', '(A', '.U', ')', 'H', 'e', 'L', 'a', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N','H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', '***', 'S', 'R', 'E','B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'e', 'L', 'a', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N','H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', 'F', 'A', 'S', '(A','.U', ')', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0','0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T','M', 'G', '2.0', '***', 'A', 'C', 'C', '(A', '.U', ')', 'H', 'e', 'L','a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a','D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', '***','***', '***', '***', '***', '***', '*** ***', '***', 'O-GlcNAc','AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', '�-actin', 'O', '-G', 'lN','A', 'c', 'le', 'v', 'e', 'l', '(A', '.U', ')', 'C', 'T', 'L', 'H','a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r','H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '2.0','Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'p', 'A', 'M', 'P', 'K', '(A','.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5','1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', 'H', 'e', 'L', 'a', '2.5 ***', 'Q', 'u', 'e', 'r', 'H', 'e', 'L','a', 'S', 'R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'C', 'T','L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u','e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a','**', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'A', 'C', 'C', '(A','.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5','1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', 'H', 'e', 'L', 'a', '2.0', '***', 'Q', 'u', 'e', 'r', 'H', 'e','L', 'a', 'F', 'A', 'S', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a','C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H','a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '***', 'Q','u', 'e', 'r', 'H', 'e', 'L', 'a', '2.0', '***', '*** ***', '*','******* *******', 'HaCaT HeLa', 'CTL Quer CTL Quer', 'A', 'Fig. 4.Quercetin regulates SREBP1 and its target proteins']
N = 3
M = 5
buffer = []
for i, v in enumerate(lst):
if len(v) <= M:
buffer.append(i)
else:
if len(buffer) > N:
for i in buffer:
lst[i] = None
buffer.clear()
print(list(filter(None, lst)))
Output:
['performed three times. Data represent the mean±SEM of threeindependent experiments. *P<0.05, **P<0.005, ***P<0.001.', 'B', 'O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'HaCaT HeLa', '*** ***', '***', 'O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', '�-actin', '2.5 ***', '*** ***', '*', '******* *******', 'HaCaT HeLa', 'CTL Quer CTL Quer', 'A', 'Fig. 4.Quercetin regulates SREBP\xad1 and its target proteins']
It is unclear exactly what is desired. Below is some code of what I believe is being asked for. Hope this helps. If this is off... let me know.
Psuedo algorithm
Given a list of strings.
Identify the len of each string using class cntseq.
Identify sequence of strings having the same len
For each sequence, if the length of sequence
x = ['performed three times. Data represent the mean±SEM of three independent experiments. P<0.05, P<0.005, P<0.001.', 'B', 'O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', 'actin', 'C', 'T', 'L', 'D', 'O', 'N', 'T', 'M', 'G', 'C', 'T', 'L', 'D', 'O', 'N', 'T', 'M', 'G', 'HaCaT HeLa', 'O', '-G', 'lN', 'A', 'c', 'le', 'v', 'e', 'l', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '2.5', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', '', '', 'S', 'R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', 'F', 'A', 'S', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', 'A', 'C', 'C', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '2.5', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', 'O', '-G', 'lc', 'N', 'A', 'c', 'le', 'v', 'e', 'l', '(A', '.U', ')', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '', '', 'S', 'R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '', 'F', 'A', 'S', '(A', '.U', ')', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '', 'A', 'C', 'C', '(A', '.U', ')', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '', '', '', '', '', '', '', '* ', '', 'O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', '�-actin', 'O', '-G', 'lN', 'A', 'c', 'le', 'v', 'e', 'l', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '2.0', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'p', 'A', 'M', 'P', 'K', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '2.5 ', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'S', 'R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'A', 'C', 'C', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '2.0', '', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'F', 'A', 'S', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', '2.0', '', '* ', '', '***** *******', 'HaCaT HeLa', 'CTL Quer CTL Quer', 'A', 'Fig. 4. Quercetin regulates SREBP\xad1 and its target proteins']
df = pd.DataFrame(x, columns=['v'])
df['len'] = df.v.apply(len)
N = 2
M = 2
class cntseq(object):
'''
Define class to track sequences across the Column
'''
def __init__(self, **kwargs):
self.prevLen = -1
self.cnt = 0
self.start = None
def countN(self, r):
if r.len == self.prevLen:
# if adjcent sequence found, mark it's start with "len.start"
self.cnt += 1
if self.start == None :
self.start = int(r.name)-1
return '%d.%d'%(r.len, self.start)
else:
# non-adjcent sequence found, mark None.None"
self.prevLen = r.len
self.cnt = 0
self.start = None
return 'None.None'
# Identify sequences of adjcent lengths.
cs = cntseq()
df['seq'] = df.apply(lambda r : cs.countN(r),axis=1)
print("\nOriginal DF info")
print(df.describe())
print("\nOriginal DF ")
print(df.head())
# Compute lookup of duplicate information
df2 = pd.DataFrame(df.groupby('seq').seq.count())
df2.columns=['M']
df2 = df2.reset_index()
n = df2[df2.seq == 'None.None'].index[0]
df2 = df2.drop(78, axis=0)
print("\nLookup DF, seq has count and index for start of 'adjcent elements'")
print(df2.head())
# Compute final DF without duplicates
df3 = df[df.seq.isin(list(df2[df2.M > M].seq))].head()
print("\nFinal DF without duplicated")
print(df3)
print("\nOriginal DF info")
print(df3.describe())
output:
Original DF info
len
count 578.000000
mean 1.730104
std 5.284275
min 0.000000
25% 1.000000
50% 1.000000
75% 1.000000
max 110.000000
Original DF
v len seq
0 performed three times. Data represent the mean... 110 None.None
1 B 1 None.None
2 O-GlcNAc 8 None.None
3 AMPK 4 None.None
4 pAMPK 5 None.None
Lookup DF, seq has count and index for start of 'adjcent elements'
seq M
0 0.221 1
1 0.325 6
2 0.70 1
3 1.111 2
4 1.116 8
Final DF without duplicated
v len seq
10 T 1 1.9
11 L 1 1.9
12 D 1 1.9
13 O 1 1.9
14 N 1 1.9
Original DF info
len
count 5.0
mean 1.0
std 0.0
min 1.0
25% 1.0
50% 1.0
75% 1.0
max 1.0
So I'm trying to add a new list to a 2d array inside a for loop, by taking the last letter of the list and putting it to the start, and adding this new list to the 2d array.
But although the new lists work, when I append to the 2d array, it just appends the normal alphabet, not my new one.
Can anybody see what I'm doing wrong?
def tabulaRecta():
import string
alpha = list(string.ascii_uppercase)
l2d = []
l2d.append(alpha)
for i in range(26):
temp = alpha[len(alpha)-1]
alpha.pop()
alpha.insert(0,temp)
l2d.append(alpha)
print(l2d)
tabulaRecta()
The program is supposed to output something like this, but all of these within a list:
['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']
['Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y']
['Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X']
['X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W']
['W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V']
['V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U']
['U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T']
['T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S']
['S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R']
['R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q']
['Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P']
['P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O']
['O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N']
['N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M']
['M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L']
['L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']
['K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']
['J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']
['I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']
['H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G']
['G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F']
['F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E']
['E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C', 'D']
['D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B', 'C']
['C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A', 'B']
['B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'A']
['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']
instead it prints this 26 times in a list:
['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']
Instead of saying print(...) you can append it to a list and print it when the loop is finished
s = list(string.ascii_uppercase)
>>> for i in range(len(s),-1,-1):
... print(s[i:]+s[:i])
['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']
['Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y']
['Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X']
['X', 'Y', 'Z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W']
.
.
.
.
A 2d array is an array of pointers to arrays, and in your code each one points to the same list, that you are modifying 26 times eventually coming back to the original one.
You have to make a copy of the list each time you modify it.
For example, add a alpha = list(alpha) at the beginning of the for loop:
def tabulaRecta():
import string
alpha = list(string.ascii_uppercase)
l2d = []
l2d.append(alpha)
for i in range(26):
alpha = list(alpha)
temp = alpha[len(alpha) - 1]
alpha.pop()
alpha.insert(0, temp)
l2d.append(alpha)
print(l2d)
tabulaRecta()
You could also just do this:
import string
def tabula_rect():
alpha = list(string.ascii_uppercase)
l2d = []
l2d.append(alpha)
for i in range(len(alpha)):
temp = alpha[len(alpha)-1]
alpha = alpha[:-1]
alpha.insert(0, temp)
l2d.append(alpha)
return l2d