Generate singular values of a matrix (Gaussian Random) using Quadrant law? - python

I need to generate Gaussian Random Matrices for a given rank and condition number in python.
For a given target condition number K=5, I select the largest singular value sigma_max uniformly at random in the interval [1, 500]. This sets the smallest singular value as sigma_min = sigma_max/K.
The remaining singular values need to be generated from the Quadrant law. Attached is the link to the paper for the reference( theorem 2)
On the singular values of Gaussian random
matrices by Jianhong Shen.
I can use SVD and QR decomposition to generate the final matrix.
Here is the code I'm working on in python.
rank=5
condn_num = 5(condition number)
sigma_max = np.random.uniform(1,500)
sigma_min = sigma_max / condn_num
U_ = np.random.normal(0, 1, (rows, rank))
q, r = np.linalg.qr(U_)
U = q
V_ = np.random.normal(0, 1, (cols, rank))
q, r = np.linalg.qr(V_)
V = q
final_matrix = U # s # V.transpose()
//s is a diagonal matrix of dimension(rank X rank)
I need to populate the diagonal matrix s with the remaining singular values from the Quadrant law mentioned in the paper above.
Do anybody know how this quadrant law is used to generate remaining singular values?

Related

Given A = S*D*S.T (D is a diagonal matrix , S/S.T an arbitrary nxn matrix) Shouldn't the eigenvalues of A correspond to the diagonal entries of D?

I was asked to write a function that generates a random symmetric positive definite 2D matrix.
Here is my attempt:
import numpy as np
from numpy import linalg as la
def random_spd(n):
"""Generates random 2D SPD matrix (symmetric positive definite)"""
while True:
S = np.random.rand(n,n)
if la.matrix_rank(S)==n: #Make sure that S has full rank.
break
D = np.diag(np.random.randint(0,10,size=n))
print(f"S:\n{S}\n\nD:\n{D}\n") #Only for debugging
return S#D#S.T
A = random_spd(2)
print(f"A:\n{A}\n")
ei_vals, ei_vecs = la.eig(A)
print(f"Eigenvalues:\n{ei_vals}\n\nEigenvectors:\n{ei_vecs}")
Output:
D:
[[6 0]
[0 5]]
A:
[[1.97478191 1.71620628]
[1.71620628 2.37372465]]
Eigenvalues:
[0.4464938 3.90201276]
Eigenvectors:
[[-0.74681018 -0.66503726]
[ 0.66503726 -0.74681018]]
As far as I know, the function works.
Now, if I try to calculate the eigenvalues of a randomly generated matrix, shouldn't they be the same as
the diagonal entries of the matrix D?
Can someone help me understand my misconception or mistake?
Thank you very much!
Best regards, Max :)
What you are applying is a congruency transform, it preserves definiteness.
A positive definite matrix P is one that for any (non-null) vector x of shape (N, 1), x.T # P # x.
Now if you replace x = S # y, in the above condition you get y.T # S.T # P # S # y, comparing the two you conclude that S.T # P # S is positive definite as well (semidefinite positive if S is not full-rank).
Similarly the eigenvalues are defined by the equation
A # v = lambda * v
If you replace v = S u the equation you get is
A # S # u = lambda * S # u
To place this equation in the same form as the eigenvalues equatios, left-multiply the equation for inv(S)
(inv(S) # A # S) # u = lambda * u
We say that the matrix obtained this way inv(S) # A # S is similar to A, and we call this a similarity transformation.
There are simpler ways to do create a positive definite matrix. One simple way
S = np.random.rand(n,n)
A = S.T # S + eps * np.eye(n)
S.T # S can be seen as a congruency transform of the identity matrix, thus positive semidefinite, adding eps * eye(n) will ensure that all eigen values are greater than eps. No matrix inversions, no eigen decomposition.

Find SVD of a symmetric matrix in Python

I know np.linalg.svd(A) would return the SVD of matrix A.
A=u * np.diag(s) * v
However if it is a symmetric matrix you only need one unitary matrix:
A=v.T * np.diag(s) * v
In R we can use La.svd(A,nu=0) but is there any functions to accelerate the SVD process in Python for a symmetric matrix?
In SVD of symmetric matrices, U=V would be valid only if the eigenvalues of A are all positive. Otherwise V would be almost equal to U but not exactly equal to U, as some the columns of V corresponding to negative eigenvalues would be negatives of the corresponding columns of U. And so, A=v.T * np.diag(s) * v is valid only if A has all its eigenvalues positive.
Assuming the symmetric matrix is a real matrix, the U matrix of singular value decomposition is the eigenvector matrix itself, and the singular values would be absolute values of the eigenvalues of the matrix, and the V matrix would be the same as U matrix except that the columns corresponding to negative eigenvalues are the negative values of the columns of U.
And so, by finding out the eigenvalues and the eigenvectors, SVD can be computed.
Python code:
import numpy as np
def svd_symmetric(A):
[s,u] = np.linalg.eig(A) #eigenvalues and eigenvectors
v = u.copy()
v[:,s<0] = -u[:,s<0] #replacing the corresponding columns with negative sign
s = abs(s)
return [u, s, v.T]
n = 5
A = np.matrix(np.random.rand(n,n)) # a matrix of random numbers
A = A.T+A #making it a symmetric matrix
[u, s, vT] = svd_symmetric(A)
print(u * np.diag(s) * vT)
This prints the same matrix as A.
(Note: I don't know whether it works for complex matrices or not.)

Plane fitting in a 3d point cloud

I am trying to find planes in a 3d point cloud, using the regression formula Z= aX + bY +C
I implemented least squares and ransac solutions,
but the 3 parameters equation limits the plane fitting to 2.5D- the formula can not be applied on planes parallel to the Z-axis.
My question is how can I generalize the plane fitting to full 3d?
I want to add the fourth parameter in order to get the full equation
aX +bY +c*Z + d
how can I avoid the trivial (0,0,0,0) solution?
Thanks!
The Code I'm using:
from sklearn import linear_model
def local_regression_plane_ransac(neighborhood):
"""
Computes parameters for a local regression plane using RANSAC
"""
XY = neighborhood[:,:2]
Z = neighborhood[:,2]
ransac = linear_model.RANSACRegressor(
linear_model.LinearRegression(),
residual_threshold=0.1
)
ransac.fit(XY, Z)
inlier_mask = ransac.inlier_mask_
coeff = model_ransac.estimator_.coef_
intercept = model_ransac.estimator_.intercept_
Update
This functionality is now integrated in https://github.com/daavoo/pyntcloud and makes the plane fitting process much simplier:
Given a point cloud:
You just need to add a scalar field like this:
is_floor = cloud.add_scalar_field("plane_fit")
Wich will add a new column with value 1 for the points of the plane fitted.
You can visualize the scalar field:
Old answer
I think that you could easily use PCA to fit the plane to the 3D points instead of regression.
Here is a simple PCA implementation:
def PCA(data, correlation = False, sort = True):
""" Applies Principal Component Analysis to the data
Parameters
----------
data: array
The array containing the data. The array must have NxM dimensions, where each
of the N rows represents a different individual record and each of the M columns
represents a different variable recorded for that individual record.
array([
[V11, ... , V1m],
...,
[Vn1, ... , Vnm]])
correlation(Optional) : bool
Set the type of matrix to be computed (see Notes):
If True compute the correlation matrix.
If False(Default) compute the covariance matrix.
sort(Optional) : bool
Set the order that the eigenvalues/vectors will have
If True(Default) they will be sorted (from higher value to less).
If False they won't.
Returns
-------
eigenvalues: (1,M) array
The eigenvalues of the corresponding matrix.
eigenvector: (M,M) array
The eigenvectors of the corresponding matrix.
Notes
-----
The correlation matrix is a better choice when there are different magnitudes
representing the M variables. Use covariance matrix in other cases.
"""
mean = np.mean(data, axis=0)
data_adjust = data - mean
#: the data is transposed due to np.cov/corrcoef syntax
if correlation:
matrix = np.corrcoef(data_adjust.T)
else:
matrix = np.cov(data_adjust.T)
eigenvalues, eigenvectors = np.linalg.eig(matrix)
if sort:
#: sort eigenvalues and eigenvectors
sort = eigenvalues.argsort()[::-1]
eigenvalues = eigenvalues[sort]
eigenvectors = eigenvectors[:,sort]
return eigenvalues, eigenvectors
And here is how you could fit the points to a plane:
def best_fitting_plane(points, equation=False):
""" Computes the best fitting plane of the given points
Parameters
----------
points: array
The x,y,z coordinates corresponding to the points from which we want
to define the best fitting plane. Expected format:
array([
[x1,y1,z1],
...,
[xn,yn,zn]])
equation(Optional) : bool
Set the oputput plane format:
If True return the a,b,c,d coefficients of the plane.
If False(Default) return 1 Point and 1 Normal vector.
Returns
-------
a, b, c, d : float
The coefficients solving the plane equation.
or
point, normal: array
The plane defined by 1 Point and 1 Normal vector. With format:
array([Px,Py,Pz]), array([Nx,Ny,Nz])
"""
w, v = PCA(points)
#: the normal of the plane is the last eigenvector
normal = v[:,2]
#: get a point from the plane
point = np.mean(points, axis=0)
if equation:
a, b, c = normal
d = -(np.dot(normal, point))
return a, b, c, d
else:
return point, normal
However as this method is sensitive to outliers you could use RANSAC to make the fit robust to outliers.
There is a Python implementation of ransac here.
And you should only need to define a Plane Model class in order to use it for fitting planes to 3D points.
In any case if you can clean the 3D points from outliers (maybe you could use a KD-Tree S.O.R filter to that) you should get pretty good results with PCA.
Here is an implementation of an S.O.R:
def statistical_outilier_removal(kdtree, k=8, z_max=2 ):
""" Compute a Statistical Outlier Removal filter on the given KDTree.
Parameters
----------
kdtree: scipy's KDTree instance
The KDTree's structure which will be used to
compute the filter.
k(Optional): int
The number of nearest neighbors wich will be used to estimate the
mean distance from each point to his nearest neighbors.
Default : 8
z_max(Optional): int
The maximum Z score wich determines if the point is an outlier or
not.
Returns
-------
sor_filter : boolean array
The boolean mask indicating wherever a point should be keeped or not.
The size of the boolean mask will be the same as the number of points
in the KDTree.
Notes
-----
The 2 optional parameters (k and z_max) should be used in order to adjust
the filter to the desired result.
A HIGHER 'k' value will result(normally) in a HIGHER number of points trimmed.
A LOWER 'z_max' value will result(normally) in a HIGHER number of points trimmed.
"""
distances, i = kdtree.query(kdtree.data, k=k, n_jobs=-1)
z_distances = stats.zscore(np.mean(distances, axis=1))
sor_filter = abs(z_distances) < z_max
return sor_filter
You could feed the function with a KDtree of your 3D points computed maybe using this implementation
import pcl
cloud = pcl.PointCloud()
cloud.from_array(points)
seg = cloud.make_segmenter_normals(ksearch=50)
seg.set_optimize_coefficients(True)
seg.set_model_type(pcl.SACMODEL_PLANE)
seg.set_normal_distance_weight(0.05)
seg.set_method_type(pcl.SAC_RANSAC)
seg.set_max_iterations(100)
seg.set_distance_threshold(0.005)
inliers, model = seg.segment()
you need to install python-pcl first. Feel free to play with the parameters. points here is a nx3 numpy array with n 3d points. Model will be [a, b, c, d] such that ax + by + cz + d = 0

Generating random vectors of Euclidean norm <= 1 in Python?

More specifically, given a natural number d, how can I generate random vectors in R^d such that each vector x has Euclidean norm <= 1?
Generating random vectors via numpy.random.rand(1,d) is no problem, but the likelihood of such a random vector having norm <= 1 is predictably bad for even not-small d. For example, even for d = 10 about 0.2% percent of such random vectors have appropriately small norm. So that seems like a silly solution.
EDIT: Re: Walter's comment, yes, I'm looking for a uniform distribution over vectors in the unit ball in R^d.
Based on the Wolfram Mathworld article on hypersphere point picking and Nate Eldredge's answer to a similar question on math.stackexchange.com, you can generate such a vector by generating a vector of d independent Gaussian random variables and a random number U uniformly distributed over the closed interval [0, 1], then normalizing the vector to norm U^(1/d).
Based on the answer by user2357112, you need something like this:
import numpy as np
...
inv_d = 1.0 / d
for ...:
gauss = np.random.normal(size=d)
length = np.linalg.norm(gauss)
if length == 0.0:
x = gauss
else:
r = np.random.rand() ** inv_d
x = np.multiply(gauss, r / length)
# conceptually: / length followed by * r
# do something with x
(this is my second Python program, so don't shoot at me...)
The tricks are that
the combination of d independent gaussian variables with same σ is a gaussian distribution in d dimensions, which, remarkably, has spherical symmetry,
the gaussian distribution in d dimensions can be projected onto the unit sphere by dividing by the norm, and
the uniform distribution in a d-dimensional unit sphere has cumulative radial distribution rd (which is what you need to invert)
this is the Python / Numpy code I am using. Since it does not use loops, is much faster:
n_vectors=1000
d=2
rnd_vec=np.random.uniform(-1, 1, size=(n_vectors, d)) # the initial random vectors
unif=np.random.uniform(size=n_vectors) # a second array random numbers
scale_f=np.expand_dims(np.linalg.norm(rnd_vec, axis=1)/unif, axis=1) # the scaling factors
rnd_vec=rnd_vec/scale_f # the random vectors in R^d
The second array of random numbers (unif) is needed as second scaling factor because otherwise all the vectors will have euclidean norm equal to one.

Spectral embedding - spectral clustering

I'm trying to perform spectral embedding/clustering using Normalized Cuts. I wrote the following code but I have stuck to a logical bottleneck. What do I have to do after clustering the eigenvectors? I don't know how to form the clusters on my original dataset. (A is my affinity matrix)
D = np.diag(np.sum(A, 0))
D_half_inv = np.diag(1.0 / np.sqrt(np.sum(A, 0)))
M = np.dot(D_half_inv, np.dot((D - A), D_half_inv))
# compute eigenvectors and eigenvalues
(w, v) = np.linalg.eigh(M)
# renorm eigenvectors to have norm 1
var = len(w)
v1 = np.array(np.zeros((var, var)))
for j in range(var):
v[:][j] = v[:][j]/np.sqrt(np.sum(A,0))
v[:][j] = v[:][j]/np.linalg.norm(v1[:][j])
v_trailing = v[:,1:45] #omit the corresponding eigenvector of the smallest eigenvalue which is 0 and 45 is my embedding dimension
k = 20 #number of clusters
centroids,idx = kmeans2(v_trailing, k)
After that, i get labels for each eigenvector. But how can i link these labels on my original dataset?
The output mapping to the original dataset corresponds to the indices of the labels in your modified set.
So if yi is in Cm then the ith entry of A will be in Am
or to put it another way
Let C1 ..... CM be the set of clusters generated by clustering the eigenvectors the clusters you want are : A1 ..... AM where Ai= { j | yj element of Ci }

Categories

Resources