code review: is it acceptable to induce an infinite loop? - python

Stumbled across this coding challenge today and, the goal is to check if n is a power of two. Not all too happy with my solution although it does seem pass all tests.
For one, it doesn't really seem to match the Pseudo code written before it and when trying to compare n to a number greater than those used in the tests ie: while n < 10: I am hit with an infinite loop.
Having trouble wrapping my head around this one!
I've heard of purposefully inducing an indefinite loop; is this some sort of abstract rendition of that concept?
def is_power_of_two(n):
# Check if the number can be divided by two without a remainder
while n % 2 != n:
n = n / 2
# If after dividing by two the number is 1, it's a power of two
if n == 1:
return True
return False
print(is_power_of_two(0)) # Should be False
print(is_power_of_two(1)) # Should be True
print(is_power_of_two(8)) # Should be True
print(is_power_of_two(9)) # Should be False

The code seems to work well for many inputs, but it relies on floating point numbers, by applying a (non-integer) division by 2. If in the end this nicely ends up with n being 1, then indeed the original number was a power of 2.
However, because of floating point limitations, this will break far large enough inputs. You'll get false positives.
For instance:
is_power_of_two((1<<80) + 1)
This should return False, as there are clearly two 1-bits in this number. But your function will return True, as if the input had been 1<<80.
To get a correct implementation, you should use integer division (//) and keep looping as long as the remainder is 0.
And to the topic of infinite loops: it could not loop infinitely for because n becomes smaller by the division, and eventually, it will get below the value of 2, when n % 2 == n.
Even when n is negative... in that case it will remain negative by the division, but again because of floating point limitations, the division will eventually give 0, and at that moment the loop condition is fulfilled.
The integer-based version, could loop forever if the input is 0, and would need protection for that case. We can use the opportunity to also capture negative inputs:
if n <= 0:
return False
while n % 2 == 0:
n = n // 2
Now the above test case will return the correct result.
Note that you can do this without explicit loop, using some bit wise operators:
return n > 0 and (n & -n == n)
Or possibly more readable:
return n > 0 and (1 << (n.bit_length() - 1) == n)

This algorithm can actually be solved without a loop at all.
If you choose to use bit shifting, the algorithm can look like:
def is_power_two(n):
if n < 1:
return False
return n == (1 << n.bit_length() - 1)
Give a number n, you can use a bit shift of 1 << number of bits - 1 along with a equality check to n. If the number is a power of two, zero (True) is returned, otherwise a non-zero value (False) is returned.
Example:
The number 8 occupies four bits: 0b1000. A bit left shifted three (1 << 3) with an equality check to 8 (0b1000 == 8) returns True. However, the number 10 also occupies four bits: 0b1010. Yet, a bit left shifted three (0b1000), an equality check with 8 (0b1010 == 8) returns False.
Testing:
for i in range(65):
print(i, is_power_two(i))
0 False
1 True # 2**0
2 True
3 False
4 True
5 False
6 False
7 False
8 True
9 False
...
62 False
63 False
64 True

This works for smaller numbers:
def is_power_of_two(n):
while n > 1:
n /= 2
return n == 1
print(is_power_of_two(0)) # False
print(is_power_of_two(1)) # True
print(is_power_of_two(8)) # True
print(is_power_of_two(9)) # False
But for bigger numbers, its accuracy is compromised by Python's floating point accuracy. So, you can use this:
def is_power_of_two(n):
return bin(n).count('1') == 1
print(is_power_of_two(0)) # False
print(is_power_of_two(1)) # True
print(is_power_of_two(8)) # True
print(is_power_of_two(9)) # False
print(is_power_of_two(2**54)) # True
print(is_power_of_two(2**54 - 1)) # False
print(is_power_of_two(2**54 + 1)) # False
This works by using the fact that a number is a power of two if in binary it has no other 1s after the leading digit (e.g. 2 = 10, 4
= 100, 8 = 1000, etc.)

Related

How To Find Division Without Using Division Operator In Python?

I've Found How to do it for normal numbers which gives quotient above 1
How to find value for which we will get quotient below 1
For example if 28 divided by 500 it gives 0.056
How to implement above example without using division operator
There is not a way to do this, unless you count reciprocals. However, these are fractions which means they use divide.
For example:
>>> 30 / 5 # original calculation
6
>>> 30 * 0.2 # using the reciprocal of 5 – but no division sign visible!
6
However, this option clearly uses division. If you don't see it, here's how:
def divide(x, y):
return x * (1/y)
Because to make a number a reciprocal, you have to divide. But take into consideration that every whole number uses divide: 5 = 5/1, so it's just the same with a different denominator...
#in this case 18/2
e=18
t=2
o=0
l=t
count=0
t=0
for i in range(0,e):
t+=l
count+=1
if t==e:
o=1
print(count)
break
if (t+l) > e:
break
if o!=1:
c=e-t
print(count,'reminder of',c)
You indicate you already have something without division that handles cases with quotients greater than 1. If so, you can reduce your as yet unsolved case like 28/500 by doing 2800/500 and then getting around dividing by 100 (at least directly) by adding two decimal places. Since you want two significant figures, it seems, you actually would want to do 28000/500, at least if you did things as I am guessing you did.
Here's how that plays out in code:
def algorithm_you_already_have(a, b):
"""I assume a>b>0 you can add logic to handle negatives or check for b == 0
you say you already have something that works if a divided by b is greater than 1
Here is one thing you might have done, repeated subtraction"""
assert a > b # this was only working and for use when quotient was greater than 1, you said
assert b > 0 # cannot divide by 0, and not dealing with negatives here, could higher up
result = 0
while a >= b:
a -= b
result += 1
if a + a >= b: # round up if remainder is at least half of divisor
result += 1
return result
# assumes positives, you can add cases as needed
def algorithm_you_need(a, b):
assert a > 0
assert b > 0
temp_result = 0
if a == b:
return 1
if a > b:
return algorithm_you_already_have(a, b)
# still here, then a < b, which is the new case you need
places_shifted = 0
while a < b:
a *= 10
places_shifted += 1
if a == b:
temp_result = 1
else:
temp_result = algorithm_you_already_have(10 * a, b) # times 10 to get a second figure as desired
# but do not count is as a shift, because you are putting the next figure, if any, beyond the first
# process as string
temp_result = str(temp_result)
while places_shifted > 1:
temp_result = '0' + temp_result
places_shifted -= 1
temp_result ="0." + temp_result
return float(temp_result)
print(algorithm_you_need(28,500))

How to check whether or not an integer is a perfect square? [duplicate]

How could I check if a number is a perfect square?
Speed is of no concern, for now, just working.
See also: Integer square root in python.
The problem with relying on any floating point computation (math.sqrt(x), or x**0.5) is that you can't really be sure it's exact (for sufficiently large integers x, it won't be, and might even overflow). Fortunately (if one's in no hurry;-) there are many pure integer approaches, such as the following...:
def is_square(apositiveint):
x = apositiveint // 2
seen = set([x])
while x * x != apositiveint:
x = (x + (apositiveint // x)) // 2
if x in seen: return False
seen.add(x)
return True
for i in range(110, 130):
print i, is_square(i)
Hint: it's based on the "Babylonian algorithm" for square root, see wikipedia. It does work for any positive number for which you have enough memory for the computation to proceed to completion;-).
Edit: let's see an example...
x = 12345678987654321234567 ** 2
for i in range(x, x+2):
print i, is_square(i)
this prints, as desired (and in a reasonable amount of time, too;-):
152415789666209426002111556165263283035677489 True
152415789666209426002111556165263283035677490 False
Please, before you propose solutions based on floating point intermediate results, make sure they work correctly on this simple example -- it's not that hard (you just need a few extra checks in case the sqrt computed is a little off), just takes a bit of care.
And then try with x**7 and find clever way to work around the problem you'll get,
OverflowError: long int too large to convert to float
you'll have to get more and more clever as the numbers keep growing, of course.
If I was in a hurry, of course, I'd use gmpy -- but then, I'm clearly biased;-).
>>> import gmpy
>>> gmpy.is_square(x**7)
1
>>> gmpy.is_square(x**7 + 1)
0
Yeah, I know, that's just so easy it feels like cheating (a bit the way I feel towards Python in general;-) -- no cleverness at all, just perfect directness and simplicity (and, in the case of gmpy, sheer speed;-)...
Use Newton's method to quickly zero in on the nearest integer square root, then square it and see if it's your number. See isqrt.
Python ≥ 3.8 has math.isqrt. If using an older version of Python, look for the "def isqrt(n)" implementation here.
import math
def is_square(i: int) -> bool:
return i == math.isqrt(i) ** 2
Since you can never depend on exact comparisons when dealing with floating point computations (such as these ways of calculating the square root), a less error-prone implementation would be
import math
def is_square(integer):
root = math.sqrt(integer)
return integer == int(root + 0.5) ** 2
Imagine integer is 9. math.sqrt(9) could be 3.0, but it could also be something like 2.99999 or 3.00001, so squaring the result right off isn't reliable. Knowing that int takes the floor value, increasing the float value by 0.5 first means we'll get the value we're looking for if we're in a range where float still has a fine enough resolution to represent numbers near the one for which we are looking.
If youre interested, I have a pure-math response to a similar question at math stackexchange, "Detecting perfect squares faster than by extracting square root".
My own implementation of isSquare(n) may not be the best, but I like it. Took me several months of study in math theory, digital computation and python programming, comparing myself to other contributors, etc., to really click with this method. I like its simplicity and efficiency though. I havent seen better. Tell me what you think.
def isSquare(n):
## Trivial checks
if type(n) != int: ## integer
return False
if n < 0: ## positivity
return False
if n == 0: ## 0 pass
return True
## Reduction by powers of 4 with bit-logic
while n&3 == 0:
n=n>>2
## Simple bit-logic test. All perfect squares, in binary,
## end in 001, when powers of 4 are factored out.
if n&7 != 1:
return False
if n==1:
return True ## is power of 4, or even power of 2
## Simple modulo equivalency test
c = n%10
if c in {3, 7}:
return False ## Not 1,4,5,6,9 in mod 10
if n % 7 in {3, 5, 6}:
return False ## Not 1,2,4 mod 7
if n % 9 in {2,3,5,6,8}:
return False
if n % 13 in {2,5,6,7,8,11}:
return False
## Other patterns
if c == 5: ## if it ends in a 5
if (n//10)%10 != 2:
return False ## then it must end in 25
if (n//100)%10 not in {0,2,6}:
return False ## and in 025, 225, or 625
if (n//100)%10 == 6:
if (n//1000)%10 not in {0,5}:
return False ## that is, 0625 or 5625
else:
if (n//10)%4 != 0:
return False ## (4k)*10 + (1,9)
## Babylonian Algorithm. Finding the integer square root.
## Root extraction.
s = (len(str(n))-1) // 2
x = (10**s) * 4
A = {x, n}
while x * x != n:
x = (x + (n // x)) >> 1
if x in A:
return False
A.add(x)
return True
Pretty straight forward. First it checks that we have an integer, and a positive one at that. Otherwise there is no point. It lets 0 slip through as True (necessary or else next block is infinite loop).
The next block of code systematically removes powers of 4 in a very fast sub-algorithm using bit shift and bit logic operations. We ultimately are not finding the isSquare of our original n but of a k<n that has been scaled down by powers of 4, if possible. This reduces the size of the number we are working with and really speeds up the Babylonian method, but also makes other checks faster too.
The third block of code performs a simple Boolean bit-logic test. The least significant three digits, in binary, of any perfect square are 001. Always. Save for leading zeros resulting from powers of 4, anyway, which has already been accounted for. If it fails the test, you immediately know it isnt a square. If it passes, you cant be sure.
Also, if we end up with a 1 for a test value then the test number was originally a power of 4, including perhaps 1 itself.
Like the third block, the fourth tests the ones-place value in decimal using simple modulus operator, and tends to catch values that slip through the previous test. Also a mod 7, mod 8, mod 9, and mod 13 test.
The fifth block of code checks for some of the well-known perfect square patterns. Numbers ending in 1 or 9 are preceded by a multiple of four. And numbers ending in 5 must end in 5625, 0625, 225, or 025. I had included others but realized they were redundant or never actually used.
Lastly, the sixth block of code resembles very much what the top answerer - Alex Martelli - answer is. Basically finds the square root using the ancient Babylonian algorithm, but restricting it to integer values while ignoring floating point. Done both for speed and extending the magnitudes of values that are testable. I used sets instead of lists because it takes far less time, I used bit shifts instead of division by two, and I smartly chose an initial start value much more efficiently.
By the way, I did test Alex Martelli's recommended test number, as well as a few numbers many orders magnitude larger, such as:
x=1000199838770766116385386300483414671297203029840113913153824086810909168246772838680374612768821282446322068401699727842499994541063844393713189701844134801239504543830737724442006577672181059194558045164589783791764790043104263404683317158624270845302200548606715007310112016456397357027095564872551184907513312382763025454118825703090010401842892088063527451562032322039937924274426211671442740679624285180817682659081248396873230975882215128049713559849427311798959652681930663843994067353808298002406164092996533923220683447265882968239141724624870704231013642255563984374257471112743917655991279898690480703935007493906644744151022265929975993911186879561257100479593516979735117799410600147341193819147290056586421994333004992422258618475766549646258761885662783430625 ** 2
for i in range(x, x+2):
print(i, isSquare(i))
printed the following results:
1000399717477066534083185452789672211951514938424998708930175541558932213310056978758103599452364409903384901149641614494249195605016959576235097480592396214296565598519295693079257885246632306201885850365687426564365813280963724310434494316592041592681626416195491751015907716210235352495422858432792668507052756279908951163972960239286719854867504108121432187033786444937064356645218196398775923710931242852937602515835035177768967470757847368349565128635934683294155947532322786360581473152034468071184081729335560769488880138928479829695277968766082973795720937033019047838250608170693879209655321034310764422462828792636246742456408134706264621790736361118589122797268261542115823201538743148116654378511916000714911467547209475246784887830649309238110794938892491396597873160778553131774466638923135932135417900066903068192088883207721545109720968467560224268563643820599665232314256575428214983451466488658896488012211237139254674708538347237589290497713613898546363590044902791724541048198769085430459186735166233549186115282574626012296888817453914112423361525305960060329430234696000121420787598967383958525670258016851764034555105019265380321048686563527396844220047826436035333266263375049097675787975100014823583097518824871586828195368306649956481108708929669583308777347960115138098217676704862934389659753628861667169905594181756523762369645897154232744410732552956489694024357481100742138381514396851789639339362228442689184910464071202445106084939268067445115601375050153663645294106475257440167535462278022649865332161044187890625 True
1000399717477066534083185452789672211951514938424998708930175541558932213310056978758103599452364409903384901149641614494249195605016959576235097480592396214296565598519295693079257885246632306201885850365687426564365813280963724310434494316592041592681626416195491751015907716210235352495422858432792668507052756279908951163972960239286719854867504108121432187033786444937064356645218196398775923710931242852937602515835035177768967470757847368349565128635934683294155947532322786360581473152034468071184081729335560769488880138928479829695277968766082973795720937033019047838250608170693879209655321034310764422462828792636246742456408134706264621790736361118589122797268261542115823201538743148116654378511916000714911467547209475246784887830649309238110794938892491396597873160778553131774466638923135932135417900066903068192088883207721545109720968467560224268563643820599665232314256575428214983451466488658896488012211237139254674708538347237589290497713613898546363590044902791724541048198769085430459186735166233549186115282574626012296888817453914112423361525305960060329430234696000121420787598967383958525670258016851764034555105019265380321048686563527396844220047826436035333266263375049097675787975100014823583097518824871586828195368306649956481108708929669583308777347960115138098217676704862934389659753628861667169905594181756523762369645897154232744410732552956489694024357481100742138381514396851789639339362228442689184910464071202445106084939268067445115601375050153663645294106475257440167535462278022649865332161044187890626 False
And it did this in 0.33 seconds.
In my opinion, my algorithm works the same as Alex Martelli's, with all the benefits thereof, but has the added benefit highly efficient simple-test rejections that save a lot of time, not to mention the reduction in size of test numbers by powers of 4, which improves speed, efficiency, accuracy and the size of numbers that are testable. Probably especially true in non-Python implementations.
Roughly 99% of all integers are rejected as non-Square before Babylonian root extraction is even implemented, and in 2/3 the time it would take the Babylonian to reject the integer. And though these tests dont speed up the process that significantly, the reduction in all test numbers to an odd by dividing out all powers of 4 really accelerates the Babylonian test.
I did a time comparison test. I tested all integers from 1 to 10 Million in succession. Using just the Babylonian method by itself (with my specially tailored initial guess) it took my Surface 3 an average of 165 seconds (with 100% accuracy). Using just the logical tests in my algorithm (excluding the Babylonian), it took 127 seconds, it rejected 99% of all integers as non-Square without mistakenly rejecting any perfect squares. Of those integers that passed, only 3% were perfect Squares (a much higher density). Using the full algorithm above that employs both the logical tests and the Babylonian root extraction, we have 100% accuracy, and test completion in only 14 seconds. The first 100 Million integers takes roughly 2 minutes 45 seconds to test.
EDIT: I have been able to bring down the time further. I can now test the integers 0 to 100 Million in 1 minute 40 seconds. A lot of time is wasted checking the data type and the positivity. Eliminate the very first two checks and I cut the experiment down by a minute. One must assume the user is smart enough to know that negatives and floats are not perfect squares.
import math
def is_square(n):
sqrt = math.sqrt(n)
return (sqrt - int(sqrt)) == 0
A perfect square is a number that can be expressed as the product of two equal integers. math.sqrt(number) return a float. int(math.sqrt(number)) casts the outcome to int.
If the square root is an integer, like 3, for example, then math.sqrt(number) - int(math.sqrt(number)) will be 0, and the if statement will be False. If the square root was a real number like 3.2, then it will be True and print "it's not a perfect square".
It fails for a large non-square such as 152415789666209426002111556165263283035677490.
My answer is:
def is_square(x):
return x**.5 % 1 == 0
It basically does a square root, then modulo by 1 to strip the integer part and if the result is 0 return True otherwise return False. In this case x can be any large number, just not as large as the max float number that python can handle: 1.7976931348623157e+308
It is incorrect for a large non-square such as 152415789666209426002111556165263283035677490.
This can be solved using the decimal module to get arbitrary precision square roots and easy checks for "exactness":
import math
from decimal import localcontext, Context, Inexact
def is_perfect_square(x):
# If you want to allow negative squares, then set x = abs(x) instead
if x < 0:
return False
# Create localized, default context so flags and traps unset
with localcontext(Context()) as ctx:
# Set a precision sufficient to represent x exactly; `x or 1` avoids
# math domain error for log10 when x is 0
ctx.prec = math.ceil(math.log10(x or 1)) + 1 # Wrap ceil call in int() on Py2
# Compute integer square root; don't even store result, just setting flags
ctx.sqrt(x).to_integral_exact()
# If previous line couldn't represent square root as exact int, sets Inexact flag
return not ctx.flags[Inexact]
For demonstration with truly huge values:
# I just kept mashing the numpad for awhile :-)
>>> base = 100009991439393999999393939398348438492389402490289028439083249803434098349083490340934903498034098390834980349083490384903843908309390282930823940230932490340983098349032098324908324098339779438974879480379380439748093874970843479280329708324970832497804329783429874329873429870234987234978034297804329782349783249873249870234987034298703249780349783497832497823497823497803429780324
>>> sqr = base ** 2
>>> sqr ** 0.5 # Too large to use floating point math
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
OverflowError: int too large to convert to float
>>> is_perfect_power(sqr)
True
>>> is_perfect_power(sqr-1)
False
>>> is_perfect_power(sqr+1)
False
If you increase the size of the value being tested, this eventually gets rather slow (takes close to a second for a 200,000 bit square), but for more moderate numbers (say, 20,000 bits), it's still faster than a human would notice for individual values (~33 ms on my machine). But since speed wasn't your primary concern, this is a good way to do it with Python's standard libraries.
Of course, it would be much faster to use gmpy2 and just test gmpy2.mpz(x).is_square(), but if third party packages aren't your thing, the above works quite well.
I just posted a slight variation on some of the examples above on another thread (Finding perfect squares) and thought I'd include a slight variation of what I posted there here (using nsqrt as a temporary variable), in case it's of interest / use:
import math
def is_square(n):
if not (isinstance(n, int) and (n >= 0)):
return False
else:
nsqrt = math.sqrt(n)
return nsqrt == math.trunc(nsqrt)
It is incorrect for a large non-square such as 152415789666209426002111556165263283035677490.
A variant of #Alex Martelli's solution without set
When x in seen is True:
In most cases, it is the last one added, e.g. 1022 produces the x's sequence 511, 256, 129, 68, 41, 32, 31, 31;
In some cases (i.e., for the predecessors of perfect squares), it is the second-to-last one added, e.g. 1023 produces 511, 256, 129, 68, 41, 32, 31, 32.
Hence, it suffices to stop as soon as the current x is greater than or equal to the previous one:
def is_square(n):
assert n > 1
previous = n
x = n // 2
while x * x != n:
x = (x + (n // x)) // 2
if x >= previous:
return False
previous = x
return True
x = 12345678987654321234567 ** 2
assert not is_square(x-1)
assert is_square(x)
assert not is_square(x+1)
Equivalence with the original algorithm tested for 1 < n < 10**7. On the same interval, this slightly simpler variant is about 1.4 times faster.
This is my method:
def is_square(n) -> bool:
return int(n**0.5)**2 == int(n)
Take square root of number. Convert to integer. Take the square. If the numbers are equal, then it is a perfect square otherwise not.
It is incorrect for a large square such as 152415789666209426002111556165263283035677489.
If the modulus (remainder) leftover from dividing by the square root is 0, then it is a perfect square.
def is_square(num: int) -> bool:
return num % math.sqrt(num) == 0
I checked this against a list of perfect squares going up to 1000.
It is possible to improve the Babylonian method by observing that the successive terms form a decreasing sequence if one starts above the square root of n.
def is_square(n):
assert n > 1
a = n
b = (a + n // a) // 2
while b < a:
a = b
b = (a + n // a) // 2
return a * a == n
If it's a perfect square, its square root will be an integer, the fractional part will be 0, we can use modulus operator to check fractional part, and check if it's 0, it does fail for some numbers, so, for safety, we will also check if it's square of the square root even if the fractional part is 0.
import math
def isSquare(n):
root = math.sqrt(n)
if root % 1 == 0:
if int(root) * int(root) == n:
return True
return False
isSquare(4761)
You could binary-search for the rounded square root. Square the result to see if it matches the original value.
You're probably better off with FogleBirds answer - though beware, as floating point arithmetic is approximate, which can throw this approach off. You could in principle get a false positive from a large integer which is one more than a perfect square, for instance, due to lost precision.
A simple way to do it (faster than the second one) :
def is_square(n):
return str(n**(1/2)).split(".")[1] == '0'
Another way:
def is_square(n):
if n == 0:
return True
else:
if n % 2 == 0 :
for i in range(2,n,2):
if i*i == n:
return True
else :
for i in range(1,n,2):
if i*i == n:
return True
return False
This response doesn't pertain to your stated question, but to an implicit question I see in the code you posted, ie, "how to check if something is an integer?"
The first answer you'll generally get to that question is "Don't!" And it's true that in Python, typechecking is usually not the right thing to do.
For those rare exceptions, though, instead of looking for a decimal point in the string representation of the number, the thing to do is use the isinstance function:
>>> isinstance(5,int)
True
>>> isinstance(5.0,int)
False
Of course this applies to the variable rather than a value. If I wanted to determine whether the value was an integer, I'd do this:
>>> x=5.0
>>> round(x) == x
True
But as everyone else has covered in detail, there are floating-point issues to be considered in most non-toy examples of this kind of thing.
If you want to loop over a range and do something for every number that is NOT a perfect square, you could do something like this:
def non_squares(upper):
next_square = 0
diff = 1
for i in range(0, upper):
if i == next_square:
next_square += diff
diff += 2
continue
yield i
If you want to do something for every number that IS a perfect square, the generator is even easier:
(n * n for n in range(upper))
I think that this works and is very simple:
import math
def is_square(num):
sqrt = math.sqrt(num)
return sqrt == int(sqrt)
It is incorrect for a large non-square such as 152415789666209426002111556165263283035677490.
a=int(input('enter any number'))
flag=0
for i in range(1,a):
if a==i*i:
print(a,'is perfect square number')
flag=1
break
if flag==1:
pass
else:
print(a,'is not perfect square number')
In kotlin :
It's quite easy and it passed all test cases as well.
really thanks to >> https://www.quora.com/What-is-the-quickest-way-to-determine-if-a-number-is-a-perfect-square
fun isPerfectSquare(num: Int): Boolean {
var result = false
var sum=0L
var oddNumber=1L
while(sum<num){
sum = sum + oddNumber
oddNumber = oddNumber+2
}
result = sum == num.toLong()
return result
}
def isPerfectSquare(self, num: int) -> bool:
left, right = 0, num
while left <= right:
mid = (left + right) // 2
if mid**2 < num:
left = mid + 1
elif mid**2 > num:
right = mid - 1
else:
return True
return False
This is an elegant, simple, fast and arbitrary solution that works for Python version >= 3.8:
from math import isqrt
def is_square(number):
if number >= 0:
return isqrt(number) ** 2 == number
return False
Decide how long the number will be.
take a delta 0.000000000000.......000001
see if the (sqrt(x))^2 - x is greater / equal /smaller than delta and decide based on the delta error.
import math
def is_square(n):
sqrt = math.sqrt(n)
return sqrt == int(sqrt)
It fails for a large non-square such as 152415789666209426002111556165263283035677490.
The idea is to run a loop from i = 1 to floor(sqrt(n)) then check if squaring it makes n.
bool isPerfectSquare(int n)
{
for (int i = 1; i * i <= n; i++) {
// If (i * i = n)
if ((n % i == 0) && (n / i == i)) {
return true;
}
}
return false;
}

Finding max of ANDing between two numbers in Python

I am a beginner to Python coding. I have two numbers A and B from user.
My problem is to find the max(P AND Q) where A <= P < Q <= B
I have two solutions right now for this.
Solution 1 : # ANDing with all combinations, This solution works if combinations are less. For higher values, it throws memory exceeding error.
given = raw_input()
n= list(map(int,given.split()))
A = n[0]
B = n[1]
newlist = range(B+1)
# print newlist
# Finding all combinations
comb = list(itertools.combinations(newlist,2))
# print comb
# ANDing
l = []
for i in com:
x = i[0] & i[1]
l.append(x)
# print l
print max(l)
Solution 2: After observing many input-outputs, when B == Odd, max(value) = B-1 and for B == Even, max(value) = B-2.
given = raw_input()
n= list(map(int,given.split()))
A = n[0]
B = n[1]
if B % 2 == 0:
print (B - 2)
else:
print (B -1)
According to the problem statement I am not using any ANDing for Solution 2. Still I am getting correct output.
But I am looking for much easier and Pythonic logic. Is there any other way/logic to solve this?
Your second solution is the optimal solution. But why? First, consider that a logical AND is performed on the binary representation of a number, and it is only possible to produce a number less than or equal to the smallest operand of the AND operator. For instance, 9 is represented as 1001, and there is no number that 9 can be anded with that produces a number higher than 9. Indeed, the only possible outputs for anding another number with 9 would be 9, 8, 1 and 0. Or alternatively, the biggest result from anding 9 with a number smaller than 9, is 9 less its least significant bit (so 8). If you're not sure of the binary representation of a number you can always use the bin function. eg. bin(9) => '0b1001'.
Let's start with odd numbers (as they're the easiest). Odd numbers are easy because they always have a bit in the unit position. So the maximum possible number that we can get is B less that bit in the unit position (so B - 1 is the maximum). For instance, 9 is represented as 1001. Get rid of the unit bit and we have 1000 or 8. 9 and 8 == 8, so the maximum result is 8.
Now let's try something similar with evens. For instance, 14 is represented as 1110. The maximum number we can get from anding 14 with another number would be 1100 (or 12). Like with odds, we must always lose one bit, and the smallest possible bit that can be lost is the bit in 2s position. Here, we're fortunate as 14 already as a bit in the 2s position. But what about numbers that don't? Let's try 12 (represented as 1100). If we lost the smallest bit from 12, we would have 1000 or 8. However, this is not the maximum possible. And we can easily prove this, because the maximum for 11 is 10 (since we have shown the maximum for an odd number is the odd number less 1).
We have already shown that the biggest number that can be produced from anding two different numbers is the bigger number less its least significant bit. So if that bit has a value of 2 (in the case of 14), when we can just lose that bit. If that bit has a value higher than 2 (in the case of 12), then we know the maximum is the maximum of the biggest odd number less than B (which is 1 less than the odd number and 2 less than B).
So there we have it. The maximum for an odd number is the number less 1. And the maximum for an even number is the number less 2.
def and_max(A, B): # note that A is unused
if B & 1: # has a bit in the 1 position (odd)
P, Q = B - 1, B
else:
P, Q = B - 2, B - 1
# print("P = ", P, "Q = ", Q)
return P & Q # essentially, return P
Note that none of this covers negative numbers. This is because most representations of negative numbers are in two's complement. What this means is that all negative numbers are represented as constant negative number plus a positive number. For instance, using an 4-bit representation of integers the maximum possible number would be 0111 (or 7, 4 + 2 + 1). Negative numbers would be represented as -8 plus some positive number. This negative part is indicated by a leading bit. Thus -8 is 1000 (-8 + 0) and -1 is 1111 (-8 + 7). And that's the important part. As soon as you have -1, you have an all 1s bitmask which is guaranteed to lose the negative part when anded with a positive number. So the maximum for max(P and Q) where A <= P < Q <= B and A < 0 is always B. Where B < 0, we can no longer lose the negative bit and so must maximise the positive bits again.
I think this should work:
given = raw_input()
a, b = tuple(map(int,given.split()))
print(max([p & q for q in range(a,b+1) for p in range(a,q)]))
long a,b,c,ans;
for(int i=0;i<n;i++){
a=s.nextLong();
b=s.nextLong();
if(b%2==0)
ans=b-2;
else
ans=b-1;
if(ans>=a)
System.out.println(ans);
else
System.out.println(a&b);
}

Rounding error in generating perfect squares python [duplicate]

How could I check if a number is a perfect square?
Speed is of no concern, for now, just working.
See also: Integer square root in python.
The problem with relying on any floating point computation (math.sqrt(x), or x**0.5) is that you can't really be sure it's exact (for sufficiently large integers x, it won't be, and might even overflow). Fortunately (if one's in no hurry;-) there are many pure integer approaches, such as the following...:
def is_square(apositiveint):
x = apositiveint // 2
seen = set([x])
while x * x != apositiveint:
x = (x + (apositiveint // x)) // 2
if x in seen: return False
seen.add(x)
return True
for i in range(110, 130):
print i, is_square(i)
Hint: it's based on the "Babylonian algorithm" for square root, see wikipedia. It does work for any positive number for which you have enough memory for the computation to proceed to completion;-).
Edit: let's see an example...
x = 12345678987654321234567 ** 2
for i in range(x, x+2):
print i, is_square(i)
this prints, as desired (and in a reasonable amount of time, too;-):
152415789666209426002111556165263283035677489 True
152415789666209426002111556165263283035677490 False
Please, before you propose solutions based on floating point intermediate results, make sure they work correctly on this simple example -- it's not that hard (you just need a few extra checks in case the sqrt computed is a little off), just takes a bit of care.
And then try with x**7 and find clever way to work around the problem you'll get,
OverflowError: long int too large to convert to float
you'll have to get more and more clever as the numbers keep growing, of course.
If I was in a hurry, of course, I'd use gmpy -- but then, I'm clearly biased;-).
>>> import gmpy
>>> gmpy.is_square(x**7)
1
>>> gmpy.is_square(x**7 + 1)
0
Yeah, I know, that's just so easy it feels like cheating (a bit the way I feel towards Python in general;-) -- no cleverness at all, just perfect directness and simplicity (and, in the case of gmpy, sheer speed;-)...
Use Newton's method to quickly zero in on the nearest integer square root, then square it and see if it's your number. See isqrt.
Python ≥ 3.8 has math.isqrt. If using an older version of Python, look for the "def isqrt(n)" implementation here.
import math
def is_square(i: int) -> bool:
return i == math.isqrt(i) ** 2
Since you can never depend on exact comparisons when dealing with floating point computations (such as these ways of calculating the square root), a less error-prone implementation would be
import math
def is_square(integer):
root = math.sqrt(integer)
return integer == int(root + 0.5) ** 2
Imagine integer is 9. math.sqrt(9) could be 3.0, but it could also be something like 2.99999 or 3.00001, so squaring the result right off isn't reliable. Knowing that int takes the floor value, increasing the float value by 0.5 first means we'll get the value we're looking for if we're in a range where float still has a fine enough resolution to represent numbers near the one for which we are looking.
If youre interested, I have a pure-math response to a similar question at math stackexchange, "Detecting perfect squares faster than by extracting square root".
My own implementation of isSquare(n) may not be the best, but I like it. Took me several months of study in math theory, digital computation and python programming, comparing myself to other contributors, etc., to really click with this method. I like its simplicity and efficiency though. I havent seen better. Tell me what you think.
def isSquare(n):
## Trivial checks
if type(n) != int: ## integer
return False
if n < 0: ## positivity
return False
if n == 0: ## 0 pass
return True
## Reduction by powers of 4 with bit-logic
while n&3 == 0:
n=n>>2
## Simple bit-logic test. All perfect squares, in binary,
## end in 001, when powers of 4 are factored out.
if n&7 != 1:
return False
if n==1:
return True ## is power of 4, or even power of 2
## Simple modulo equivalency test
c = n%10
if c in {3, 7}:
return False ## Not 1,4,5,6,9 in mod 10
if n % 7 in {3, 5, 6}:
return False ## Not 1,2,4 mod 7
if n % 9 in {2,3,5,6,8}:
return False
if n % 13 in {2,5,6,7,8,11}:
return False
## Other patterns
if c == 5: ## if it ends in a 5
if (n//10)%10 != 2:
return False ## then it must end in 25
if (n//100)%10 not in {0,2,6}:
return False ## and in 025, 225, or 625
if (n//100)%10 == 6:
if (n//1000)%10 not in {0,5}:
return False ## that is, 0625 or 5625
else:
if (n//10)%4 != 0:
return False ## (4k)*10 + (1,9)
## Babylonian Algorithm. Finding the integer square root.
## Root extraction.
s = (len(str(n))-1) // 2
x = (10**s) * 4
A = {x, n}
while x * x != n:
x = (x + (n // x)) >> 1
if x in A:
return False
A.add(x)
return True
Pretty straight forward. First it checks that we have an integer, and a positive one at that. Otherwise there is no point. It lets 0 slip through as True (necessary or else next block is infinite loop).
The next block of code systematically removes powers of 4 in a very fast sub-algorithm using bit shift and bit logic operations. We ultimately are not finding the isSquare of our original n but of a k<n that has been scaled down by powers of 4, if possible. This reduces the size of the number we are working with and really speeds up the Babylonian method, but also makes other checks faster too.
The third block of code performs a simple Boolean bit-logic test. The least significant three digits, in binary, of any perfect square are 001. Always. Save for leading zeros resulting from powers of 4, anyway, which has already been accounted for. If it fails the test, you immediately know it isnt a square. If it passes, you cant be sure.
Also, if we end up with a 1 for a test value then the test number was originally a power of 4, including perhaps 1 itself.
Like the third block, the fourth tests the ones-place value in decimal using simple modulus operator, and tends to catch values that slip through the previous test. Also a mod 7, mod 8, mod 9, and mod 13 test.
The fifth block of code checks for some of the well-known perfect square patterns. Numbers ending in 1 or 9 are preceded by a multiple of four. And numbers ending in 5 must end in 5625, 0625, 225, or 025. I had included others but realized they were redundant or never actually used.
Lastly, the sixth block of code resembles very much what the top answerer - Alex Martelli - answer is. Basically finds the square root using the ancient Babylonian algorithm, but restricting it to integer values while ignoring floating point. Done both for speed and extending the magnitudes of values that are testable. I used sets instead of lists because it takes far less time, I used bit shifts instead of division by two, and I smartly chose an initial start value much more efficiently.
By the way, I did test Alex Martelli's recommended test number, as well as a few numbers many orders magnitude larger, such as:
x=1000199838770766116385386300483414671297203029840113913153824086810909168246772838680374612768821282446322068401699727842499994541063844393713189701844134801239504543830737724442006577672181059194558045164589783791764790043104263404683317158624270845302200548606715007310112016456397357027095564872551184907513312382763025454118825703090010401842892088063527451562032322039937924274426211671442740679624285180817682659081248396873230975882215128049713559849427311798959652681930663843994067353808298002406164092996533923220683447265882968239141724624870704231013642255563984374257471112743917655991279898690480703935007493906644744151022265929975993911186879561257100479593516979735117799410600147341193819147290056586421994333004992422258618475766549646258761885662783430625 ** 2
for i in range(x, x+2):
print(i, isSquare(i))
printed the following results:
1000399717477066534083185452789672211951514938424998708930175541558932213310056978758103599452364409903384901149641614494249195605016959576235097480592396214296565598519295693079257885246632306201885850365687426564365813280963724310434494316592041592681626416195491751015907716210235352495422858432792668507052756279908951163972960239286719854867504108121432187033786444937064356645218196398775923710931242852937602515835035177768967470757847368349565128635934683294155947532322786360581473152034468071184081729335560769488880138928479829695277968766082973795720937033019047838250608170693879209655321034310764422462828792636246742456408134706264621790736361118589122797268261542115823201538743148116654378511916000714911467547209475246784887830649309238110794938892491396597873160778553131774466638923135932135417900066903068192088883207721545109720968467560224268563643820599665232314256575428214983451466488658896488012211237139254674708538347237589290497713613898546363590044902791724541048198769085430459186735166233549186115282574626012296888817453914112423361525305960060329430234696000121420787598967383958525670258016851764034555105019265380321048686563527396844220047826436035333266263375049097675787975100014823583097518824871586828195368306649956481108708929669583308777347960115138098217676704862934389659753628861667169905594181756523762369645897154232744410732552956489694024357481100742138381514396851789639339362228442689184910464071202445106084939268067445115601375050153663645294106475257440167535462278022649865332161044187890625 True
1000399717477066534083185452789672211951514938424998708930175541558932213310056978758103599452364409903384901149641614494249195605016959576235097480592396214296565598519295693079257885246632306201885850365687426564365813280963724310434494316592041592681626416195491751015907716210235352495422858432792668507052756279908951163972960239286719854867504108121432187033786444937064356645218196398775923710931242852937602515835035177768967470757847368349565128635934683294155947532322786360581473152034468071184081729335560769488880138928479829695277968766082973795720937033019047838250608170693879209655321034310764422462828792636246742456408134706264621790736361118589122797268261542115823201538743148116654378511916000714911467547209475246784887830649309238110794938892491396597873160778553131774466638923135932135417900066903068192088883207721545109720968467560224268563643820599665232314256575428214983451466488658896488012211237139254674708538347237589290497713613898546363590044902791724541048198769085430459186735166233549186115282574626012296888817453914112423361525305960060329430234696000121420787598967383958525670258016851764034555105019265380321048686563527396844220047826436035333266263375049097675787975100014823583097518824871586828195368306649956481108708929669583308777347960115138098217676704862934389659753628861667169905594181756523762369645897154232744410732552956489694024357481100742138381514396851789639339362228442689184910464071202445106084939268067445115601375050153663645294106475257440167535462278022649865332161044187890626 False
And it did this in 0.33 seconds.
In my opinion, my algorithm works the same as Alex Martelli's, with all the benefits thereof, but has the added benefit highly efficient simple-test rejections that save a lot of time, not to mention the reduction in size of test numbers by powers of 4, which improves speed, efficiency, accuracy and the size of numbers that are testable. Probably especially true in non-Python implementations.
Roughly 99% of all integers are rejected as non-Square before Babylonian root extraction is even implemented, and in 2/3 the time it would take the Babylonian to reject the integer. And though these tests dont speed up the process that significantly, the reduction in all test numbers to an odd by dividing out all powers of 4 really accelerates the Babylonian test.
I did a time comparison test. I tested all integers from 1 to 10 Million in succession. Using just the Babylonian method by itself (with my specially tailored initial guess) it took my Surface 3 an average of 165 seconds (with 100% accuracy). Using just the logical tests in my algorithm (excluding the Babylonian), it took 127 seconds, it rejected 99% of all integers as non-Square without mistakenly rejecting any perfect squares. Of those integers that passed, only 3% were perfect Squares (a much higher density). Using the full algorithm above that employs both the logical tests and the Babylonian root extraction, we have 100% accuracy, and test completion in only 14 seconds. The first 100 Million integers takes roughly 2 minutes 45 seconds to test.
EDIT: I have been able to bring down the time further. I can now test the integers 0 to 100 Million in 1 minute 40 seconds. A lot of time is wasted checking the data type and the positivity. Eliminate the very first two checks and I cut the experiment down by a minute. One must assume the user is smart enough to know that negatives and floats are not perfect squares.
import math
def is_square(n):
sqrt = math.sqrt(n)
return (sqrt - int(sqrt)) == 0
A perfect square is a number that can be expressed as the product of two equal integers. math.sqrt(number) return a float. int(math.sqrt(number)) casts the outcome to int.
If the square root is an integer, like 3, for example, then math.sqrt(number) - int(math.sqrt(number)) will be 0, and the if statement will be False. If the square root was a real number like 3.2, then it will be True and print "it's not a perfect square".
It fails for a large non-square such as 152415789666209426002111556165263283035677490.
My answer is:
def is_square(x):
return x**.5 % 1 == 0
It basically does a square root, then modulo by 1 to strip the integer part and if the result is 0 return True otherwise return False. In this case x can be any large number, just not as large as the max float number that python can handle: 1.7976931348623157e+308
It is incorrect for a large non-square such as 152415789666209426002111556165263283035677490.
This can be solved using the decimal module to get arbitrary precision square roots and easy checks for "exactness":
import math
from decimal import localcontext, Context, Inexact
def is_perfect_square(x):
# If you want to allow negative squares, then set x = abs(x) instead
if x < 0:
return False
# Create localized, default context so flags and traps unset
with localcontext(Context()) as ctx:
# Set a precision sufficient to represent x exactly; `x or 1` avoids
# math domain error for log10 when x is 0
ctx.prec = math.ceil(math.log10(x or 1)) + 1 # Wrap ceil call in int() on Py2
# Compute integer square root; don't even store result, just setting flags
ctx.sqrt(x).to_integral_exact()
# If previous line couldn't represent square root as exact int, sets Inexact flag
return not ctx.flags[Inexact]
For demonstration with truly huge values:
# I just kept mashing the numpad for awhile :-)
>>> base = 100009991439393999999393939398348438492389402490289028439083249803434098349083490340934903498034098390834980349083490384903843908309390282930823940230932490340983098349032098324908324098339779438974879480379380439748093874970843479280329708324970832497804329783429874329873429870234987234978034297804329782349783249873249870234987034298703249780349783497832497823497823497803429780324
>>> sqr = base ** 2
>>> sqr ** 0.5 # Too large to use floating point math
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
OverflowError: int too large to convert to float
>>> is_perfect_power(sqr)
True
>>> is_perfect_power(sqr-1)
False
>>> is_perfect_power(sqr+1)
False
If you increase the size of the value being tested, this eventually gets rather slow (takes close to a second for a 200,000 bit square), but for more moderate numbers (say, 20,000 bits), it's still faster than a human would notice for individual values (~33 ms on my machine). But since speed wasn't your primary concern, this is a good way to do it with Python's standard libraries.
Of course, it would be much faster to use gmpy2 and just test gmpy2.mpz(x).is_square(), but if third party packages aren't your thing, the above works quite well.
I just posted a slight variation on some of the examples above on another thread (Finding perfect squares) and thought I'd include a slight variation of what I posted there here (using nsqrt as a temporary variable), in case it's of interest / use:
import math
def is_square(n):
if not (isinstance(n, int) and (n >= 0)):
return False
else:
nsqrt = math.sqrt(n)
return nsqrt == math.trunc(nsqrt)
It is incorrect for a large non-square such as 152415789666209426002111556165263283035677490.
A variant of #Alex Martelli's solution without set
When x in seen is True:
In most cases, it is the last one added, e.g. 1022 produces the x's sequence 511, 256, 129, 68, 41, 32, 31, 31;
In some cases (i.e., for the predecessors of perfect squares), it is the second-to-last one added, e.g. 1023 produces 511, 256, 129, 68, 41, 32, 31, 32.
Hence, it suffices to stop as soon as the current x is greater than or equal to the previous one:
def is_square(n):
assert n > 1
previous = n
x = n // 2
while x * x != n:
x = (x + (n // x)) // 2
if x >= previous:
return False
previous = x
return True
x = 12345678987654321234567 ** 2
assert not is_square(x-1)
assert is_square(x)
assert not is_square(x+1)
Equivalence with the original algorithm tested for 1 < n < 10**7. On the same interval, this slightly simpler variant is about 1.4 times faster.
This is my method:
def is_square(n) -> bool:
return int(n**0.5)**2 == int(n)
Take square root of number. Convert to integer. Take the square. If the numbers are equal, then it is a perfect square otherwise not.
It is incorrect for a large square such as 152415789666209426002111556165263283035677489.
If the modulus (remainder) leftover from dividing by the square root is 0, then it is a perfect square.
def is_square(num: int) -> bool:
return num % math.sqrt(num) == 0
I checked this against a list of perfect squares going up to 1000.
It is possible to improve the Babylonian method by observing that the successive terms form a decreasing sequence if one starts above the square root of n.
def is_square(n):
assert n > 1
a = n
b = (a + n // a) // 2
while b < a:
a = b
b = (a + n // a) // 2
return a * a == n
If it's a perfect square, its square root will be an integer, the fractional part will be 0, we can use modulus operator to check fractional part, and check if it's 0, it does fail for some numbers, so, for safety, we will also check if it's square of the square root even if the fractional part is 0.
import math
def isSquare(n):
root = math.sqrt(n)
if root % 1 == 0:
if int(root) * int(root) == n:
return True
return False
isSquare(4761)
You could binary-search for the rounded square root. Square the result to see if it matches the original value.
You're probably better off with FogleBirds answer - though beware, as floating point arithmetic is approximate, which can throw this approach off. You could in principle get a false positive from a large integer which is one more than a perfect square, for instance, due to lost precision.
A simple way to do it (faster than the second one) :
def is_square(n):
return str(n**(1/2)).split(".")[1] == '0'
Another way:
def is_square(n):
if n == 0:
return True
else:
if n % 2 == 0 :
for i in range(2,n,2):
if i*i == n:
return True
else :
for i in range(1,n,2):
if i*i == n:
return True
return False
This response doesn't pertain to your stated question, but to an implicit question I see in the code you posted, ie, "how to check if something is an integer?"
The first answer you'll generally get to that question is "Don't!" And it's true that in Python, typechecking is usually not the right thing to do.
For those rare exceptions, though, instead of looking for a decimal point in the string representation of the number, the thing to do is use the isinstance function:
>>> isinstance(5,int)
True
>>> isinstance(5.0,int)
False
Of course this applies to the variable rather than a value. If I wanted to determine whether the value was an integer, I'd do this:
>>> x=5.0
>>> round(x) == x
True
But as everyone else has covered in detail, there are floating-point issues to be considered in most non-toy examples of this kind of thing.
If you want to loop over a range and do something for every number that is NOT a perfect square, you could do something like this:
def non_squares(upper):
next_square = 0
diff = 1
for i in range(0, upper):
if i == next_square:
next_square += diff
diff += 2
continue
yield i
If you want to do something for every number that IS a perfect square, the generator is even easier:
(n * n for n in range(upper))
I think that this works and is very simple:
import math
def is_square(num):
sqrt = math.sqrt(num)
return sqrt == int(sqrt)
It is incorrect for a large non-square such as 152415789666209426002111556165263283035677490.
a=int(input('enter any number'))
flag=0
for i in range(1,a):
if a==i*i:
print(a,'is perfect square number')
flag=1
break
if flag==1:
pass
else:
print(a,'is not perfect square number')
In kotlin :
It's quite easy and it passed all test cases as well.
really thanks to >> https://www.quora.com/What-is-the-quickest-way-to-determine-if-a-number-is-a-perfect-square
fun isPerfectSquare(num: Int): Boolean {
var result = false
var sum=0L
var oddNumber=1L
while(sum<num){
sum = sum + oddNumber
oddNumber = oddNumber+2
}
result = sum == num.toLong()
return result
}
def isPerfectSquare(self, num: int) -> bool:
left, right = 0, num
while left <= right:
mid = (left + right) // 2
if mid**2 < num:
left = mid + 1
elif mid**2 > num:
right = mid - 1
else:
return True
return False
This is an elegant, simple, fast and arbitrary solution that works for Python version >= 3.8:
from math import isqrt
def is_square(number):
if number >= 0:
return isqrt(number) ** 2 == number
return False
Decide how long the number will be.
take a delta 0.000000000000.......000001
see if the (sqrt(x))^2 - x is greater / equal /smaller than delta and decide based on the delta error.
import math
def is_square(n):
sqrt = math.sqrt(n)
return sqrt == int(sqrt)
It fails for a large non-square such as 152415789666209426002111556165263283035677490.
The idea is to run a loop from i = 1 to floor(sqrt(n)) then check if squaring it makes n.
bool isPerfectSquare(int n)
{
for (int i = 1; i * i <= n; i++) {
// If (i * i = n)
if ((n % i == 0) && (n / i == i)) {
return true;
}
}
return false;
}

finding the sum of even numbers in the Fibonacci series

I came across this solution for this problem and don't understand a couple of lines in it. What does the n<=1 and 1 part mean in the definition of fib(n) and, the bigger one, why is it not in the if not fib(i)%2? How does that not mean "if the given Fibonacci number is not even, then we add it to our total"?
cache = {}
def fib(n):
cache[n] = cache.get(n, 0) or (n<=1 and 1
or fib(n-1)+fib(n-2))
return cache[n]
i = 0
n = 0
# we have to pretend the series doesn't go beyond 4 mil
while fib(i) <= (4000000):
if not fib(i) % 2:
n = n + fib(i)
i = i + 1
print n
Let's break this down a bit:
(n <= 1) and 1 or (fib(n - 1) + fib(n - 2))
This is a way that python programmers used to emulate the conditional ternary operator that is typically available in C but not in Python. So basically the condition shows that if n is less than equal to 1, return 1, or do fib(n - 1) + fib(n - 2).
Second question:
This has to do with how python (and other some languages) convert numbers into a boolean condition. For integers, 0 evaluates to False and every other integers evaluate to True. In this case, taking the modulo 2 of an even number results in 0, and odd number results in 1, meaning it really checks for whether a number is odd, and there it wants a not odd number, i.e. even number.
Fibonacci series start with 1. At that part code checks whether the given value is smaller than or equals to 1 or not.
1 1 2 3 5 8 13 ...
As you can see the Fibonacci function is a partial function:

Categories

Resources