Multi-objective optimization in pyomo - python

could you please share a well-structured tutorial or guide to implement multi-objective optimization in Pyomo?
I just found some Q&A which was a bit vague

As far as I know, Pyomo does not have special facilities to handle multi-objective models. So there this nothing special to learn, and you can use any Pyomo text or tutorial.
You will need to formulate your problem in terms of single objective models. Arguably, the most popular schemes are a weighted objective or a lexicographic method. The last approach will require you to solve a number of models. Although the concepts may require a bit of thought, these methods are not difficult to implement.

Related

Can I include continuous variable when optimising with CPMpy?

I need to run a model, where I optimise a diet within a set of constraints and call all integer solutions in the end. I have found a diet example matching almost what I need here: hakank.org. However, in my case, my variables take continuous values, so in the examples this would be all the nutritional values and the cost, while only x take integer. However, it seems like I can only define either 'intvar' or 'boolvar' when defining by variables with this model. Is there a way to overcome this? Other would there be other more suitable models with examples that I can read online?
I'm new to constraint programming, so any help would be appreaciated!
Thanks.
Most Constraint Programming tools and solvers only work with integers. That is where their strength is. If you have a mixture of continuous and discrete variables, it is a good idea to have a look at Mixed Integer Programming. MIP tools and solvers are widely available.
The diet model is a classic example of an LP (Linear Programming) Model. When adding integer restrictions, you end up with a MIP model.
To answer your question: CPMpy does not support float variables (and I'm not sure that it's in the pipeline for future extensions).
Another take - than using MIP solvers as Erwin suggest - would be to write a MiniZinc (https://www.minizinc.org/) model of the problem and use some of its solvers. See my MiniZinc version of the diet problem: http://hakank.org/minizinc/diet1.mzn. And see the MiniZinc version of Stigler's Diet problem though it's float vars only: http://hakank.org/minizinc/stigler.mzn.
There are some MiniZinc CP solvers that also supports float variables, e.g. Gecode, JaCoP, and OptimathSAT. However, depending on the exact constraints - such as the relation with the float vars and the integer vars - they might struggle to find solutions fast. In contrast to some MIP solvers, generating all solutions is one of the general features of CP solvers.
Perhaps all these diverse suggestions more confuse than help you. Sorry about that. It might help if you give some more details about your problem.

Particle swarm optimization with both continuous and discrete variables

So I want to try to solve my optimization problem using particle swarm optimiztion algorithm. As I comoratable with python I was looking into PySwarms toolkit. The issue is I am not really experienced in this field and don't really know how to account for integrality constraints of my problem. I was looking for advice on what are some approches to dealing with integral variables in PSO. And maybe some examples with PySwarms or any good alternative packages?
You can try pymoo module, which is an excellent multi-objective optimization tool. It can also solve mixed variable problems. Despite pymoo is first of all designed to solve such problems using genetic algorithms, there is an implementation of PSO (single-objective with continuous variables). Maybe you'll find it useful to try to solve your mixed variable problem using genetic algorithm or one of its modifications (e.g. NSGAII).

How does PuLP linear programming solver work?

I am curious about the algorithm in the PuLP
Is this LPsolver is using the simplex method?
PuLP provides a convenient frontend for a number of solvers. Some of these solvers may use simplex, others may not. You can specify the solver in order to better control this, but you'd need to look at the details for the individual solvers to figure out if any meet your criteria.

Difference between scipy.optimize.fmin and scipy.optimize.minimize

I'm learning python to make models these days. I read the documentation of scipy.optimize.fmin. It also recommends scipy.optimize.minimize. It seems that scipy.optimize.minimize is a more advanced method. Real wonder what's the difference between these two.
scipy.optimize.minimize is a high-level interface that lets you choose from a broad range of solvers, one of which is Nelder–Mead. scipy.optimize.fmin is a special solver using Nelder–Mead. For a specific subdocumentation of minimize with Nelder–Mead, see here.

Using Pyomo with heuristic solvers

I am using Pyomo to model my optimization problem (MILP) and solve it using Gurobi.
What would be the best, fastest or easiest way to find a heuristic solution using the Pyomo model, knowing that I do not care about the Gap bounds.
Note: I know that Gurobi has a heuristic solver but it doesn't tell what heuristic algorithm they are using!
Finding a heuristic solution to some MILP problem is complexity-wise as hard as optimizing it!
There is no best, fastest, easiest way in general. You always want to exploit some problem-characteristics.
As start, just use any MIP-solver and tune the params to reflect your needs. If you want just any heuristic solution, tune the solver for feasibility, probably meaning a higher frequency of heuristic-steps and early-stop with the first feasible solution.
Yes, you won't know what's Gurobi using internally. But knowing all of the code would not help much either. It's surely not something which you can find on wikipedia then (except for classic stuff like the feasibility pump or Relaxation induced neighborhood search).
If you want to know more about these methods, check out papers on MIP-heuristics in general! You will see, that most Heuristics are tightly coupled with the MIP-nature of the problem (although i expect some SAT-solver-usage internally too in commercial ones).

Categories

Resources