I am trying to convert this matlab code to python:
#T2 = (sum((log(X(1:m,:)))'));
Here is my code in python:
T2 = sum(np.log(X[0:int(m),:]).T)
where m = 103 and X is a matrix:
f1 = np.float64(135)
f2 = np.float64(351)
X = np.float64(p[:, int(f1):int(f2)])
and p is dictionary (loaded data)
The problem is python gives me the exact same value with same dimension (216x103) like matlab before applying the sum function on (np.log(X[0:int(m), :]).T). However. after applying the sum function it gives me the correct value but wrong dimension (103x1). The correct dimension is (1x103). I have tried using transpose after getting the sum but it doesnt work. Any suggestions how to get my desired dimension?
A matrix in MATLAB consists of m rows and n columns, but a matrix in NumPy is an array of arrays. Each subarray is a flat vector having 1 dimension equal to the number of its elements n. MATLAB doesn't have flat vectors at all, a row is 1xn matrix, a column is mx1 matrix, and a scalar is 1x1 matrix.
So, back to the question, when you write T2 = sum(np.log(X[0:int(m),:]).T) in Python, it's neither 103x1 nor 1x103, it's a flat 103 vector. If you specifically want a 1x103 matrix like MATLAB, just reshape(1,-1) and you don't have to transpose since you can sum over the second axis.
import numpy as np
X = np.random.rand(216,103)
m = 103
T2 = np.sum(np.log(X[:m]), axis=1).reshape(1,-1)
T2.shape
# (1, 103)
Lets make a demo 2d array:
In [19]: x = np.arange(12).reshape(3,4)
In [20]: x
Out[20]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
And apply the base Python sum function (which isn't the same as numpy's own):
In [21]: sum(x)
Out[21]: array([12, 15, 18, 21])
The result is a (4,) shape array (not 4x1). Print sum(x).shape if you don't believe me.
The numpy.sum function adds all terms if no axis is given:
In [22]: np.sum(x)
Out[22]: 66
or with axis:
In [23]: np.sum(x, axis=0)
Out[23]: array([12, 15, 18, 21])
In [24]: np.sum(x, axis=1)
Out[24]: array([ 6, 22, 38])
The Python sum treats x as a list of arrays, and adds them together
In [25]: list(x)
Out[25]: [array([0, 1, 2, 3]), array([4, 5, 6, 7]), array([ 8, 9, 10, 11])]
In [28]: x[0]+x[1]+x[2]
Out[28]: array([12, 15, 18, 21])
Transpose, without parameter, switch axes. It does not add any dimensions:
In [29]: x.T # (4,3) shape
Out[29]:
array([[ 0, 4, 8],
[ 1, 5, 9],
[ 2, 6, 10],
[ 3, 7, 11]])
In [30]: sum(x).T
Out[30]: array([12, 15, 18, 21]) # still (4,) shape
Octave
>> x=reshape(0:11,4,3)'
x =
0 1 2 3
4 5 6 7
8 9 10 11
>> sum(x)
ans =
12 15 18 21
>> sum(x,1)
ans =
12 15 18 21
>> sum(x,2)
ans =
6
22
38
edit
The np.sum function has a keepdims parmeter:
In [32]: np.sum(x, axis=0, keepdims=True)
Out[32]: array([[12, 15, 18, 21]]) # (1,4) shape
In [33]: np.sum(x, axis=1, keepdims=True)
Out[33]:
array([[ 6], # (3,1) shape
[22],
[38]])
If I reshape the array to 3d, and sum, the result is 2d - unless I keepdims:
In [34]: np.sum(x.reshape(3,2,2), axis=0).shape
Out[34]: (2, 2)
In [36]: np.sum(x.reshape(3,2,2), axis=0,keepdims=True).shape
Out[36]: (1, 2, 2)
MATLAB/Octave on the other hand keeps the dims by default:
sum(reshape(x,3,2,2)) # (1,2,2)
unless I sum on that last, 3rd:
sum(reshape(x,3,2,2),3) # (3,2)
The key is that MATLAB everything is 2d, with the option of additional trailing dimensions, which aren't handled the same way. In numpy every number of dimensions, from 0 on up is handled the same way.
Related
I'm working on a linear regression with Python for my school project. And I want to merge my 7x12 2D array into a 1D list.
Here's my original array.
y = df["fatalProb"].values.reshape(7,12)
print(y)
[[0.3725 0.4336 0.537 0.392 0.233 0.2892 0.2721 0.2392 0.2281 0.2689
0.2898 0.2825]
[0.3112 0.3936 0.3874 0.2793 0.2416 0.275 0.2802 0.2587 0.2583 0.258
0.2906 0.2927]
[0.3486 0.3278 0.3836 0.3041 0.2477 0.2734 0.276 0.2903 0.2531 0.2659
0.2928 0.2896]
[0.3044 0.4032 0.3665 0.3275 0.2939 0.2882 0.3089 0.2949 0.2547 0.2699
0.2973 0.2869]
[0.3488 0.3651 0.4307 0.3361 0.2833 0.3035 0.3051 0.2898 0.2695 0.271
0.2787 0.3034]
[0.3559 0.3357 0.4075 0.3428 0.2834 0.3156 0.2952 0.2992 0.2795 0.2806
0.2905 0.267 ]
[0.3965 0.3814 0.4735 0.3813 0.3089 0.3105 0.3282 0.3047 0.2834 0.2974
0.2737 0.2986]]
I wanted my y to be 12-length list.
It's a list with all the values added that has a same index in each lists.
e.g.:
[[a,b,c], [d,e,f], [g,h,i]] to [a+d+g, b+e+h, c+f+i]
I thought about using list comprehension, but I was not so happy to use:
y = [y[0][j] + y[1][j] + y[2][j] + y[3][j] + y[4][j] + y[5][j] + y[6][j] for j in range(len(y[0]))]
Here's your list comprehension:
[sum(el) for el in zip(*y)]
Result:
[2.4379, 2.6404, 2.9861999999999997, 2.3631, 1.8918, 2.0553999999999997, 2.0656999999999996, 1.9768, 1.8266, 1.9116999999999997, 2.0134, 2.0206999999999997]
Your y, derived from a dataframe, is 2d; a simpler example:
In [25]: y = np.arange(12).reshape(3,4)
In [26]: y
Out[26]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
With the sum method, you can add values vertically or horizontally:
In [27]: y.sum(axis=0)
Out[27]: array([12, 15, 18, 21])
In [28]: y.sum(axis=1)
Out[28]: array([ 6, 22, 38]
Check below code based on your e.g "[[a,b,c],[d,e,f],[g,h,i]] to [a+d+g,b+e+h,c+f+i]"
df = pd.DataFrame({'col':[1,2,3], 'col2':[3,4,5], 'col3':[6,7,8]})
list(df.values.sum(axis=1))
Output:
[10, 13, 16]
All you need to do after getting y is
y = y.sum(axis=0).tolist()
It will sum your (7,12) shaped matrix along the columns and give you a array of shape (1,12) which can be converted to a list. #hpaulj gave a detailed explaination.
I am trying to create a function and calculate the inner product using numpy.
I got the function to work however I am using explicit numbers in my np.reshape function and I need to make it to use based on input.
my code looks like this:
import numpy as np
X = np.array([[1,2],[3,4]])
Z = np.array([[1,4],[2,5],[3,6]])
# Calculating S
def calculate_S(X, n, m):
assert n == X.shape[0]
n,d1=X.shape
m,d2=X.shape
S = np.diag(np.inner(X,X))
return S
S= calculate_S(X,n,m)
S = S.reshape(2,1)
print(s)
output:
---------------------------------
[[ 5]
[25]]
So the output is correct however instead of specifying 2,1 I need that those values to be automatically placed there based on the shape of my matrix.
How do I do that?
In [163]: X = np.array([[1,2],[3,4]])
In [164]: np.inner(X,X)
Out[164]:
array([[ 5, 11],
[11, 25]])
In [165]: np.diag(np.inner(X,X))
Out[165]: array([ 5, 25])
reshape with -1 gets around having to specify the 2:
In [166]: np.diag(np.inner(X,X)).reshape(-1,1)
Out[166]:
array([[ 5],
[25]])
another way of adding dimension:
In [167]: np.diag(np.inner(X,X))[:,None]
Out[167]:
array([[ 5],
[25]])
You can get the "diagonal" directly with:
In [175]: np.einsum('ij,ij->i',X,X)
Out[175]: array([ 5, 25])
another
In [177]: (X[:,None,:]#X[:,:,None])[:,0,:]
Out[177]:
array([[ 5],
[25]])
I have a numpy matrix with 130 X 13. Say I want to select a specific set of rows meeting a condition and a subset of columns -
trainx[trainy==label,[0,6]]
The above code does not work and throws an error - IndexError: shape mismatch: indexing arrays could not be broadcast together with shapes (43,) (2,).
However if I do it in 2 steps - first subset rows and then columns, it works. Is it something weird or numpy works this way?
temp1 = trainx[trainy==label,:]
temp1 = temp1[:,[0,6]]
you can simply chain the indexing like
trainx[trainy==label][:, [0,6]]
Runable Example
arr = np.random.rand(130,13)
arr[arr[:,0]>0.5][:, [0,6]]
In [154]: x = np.arange(24).reshape(6,4)
In [155]: mask = np.array([1,0,1,0,1,0],bool)
With your two step approach:
In [156]: x[mask] # x[mask, :]
Out[156]:
array([[ 0, 1, 2, 3],
[ 8, 9, 10, 11],
[16, 17, 18, 19]])
In [157]: x[mask][:,[1,3]]
Out[157]:
array([[ 1, 3],
[ 9, 11],
[17, 19]])
Or the two indices could be combined with ix_:
In [158]: np.ix_(mask, [1,3])
Out[158]:
(array([[0],
[2],
[4]]), array([[1, 3]]))
In [159]: x[np.ix_(mask, [1,3])]
Out[159]:
array([[ 1, 3],
[ 9, 11],
[17, 19]])
Note that the first array in Out[158] is np.nonzero(mask)[0][:,None], the nonzero indices in column vector form. That (3,1) indexing array can broadcast with the (2,) column array to select a (3,2) array of elements. Or in your example a (43,2) array.
The boolean mask cannot be turned into a (6,1) array and used to mask x; that would only work if it was turned into a (6,4) mask, matching the shape of x.
So either use the 2 step indexing, or use ix_.
I am attempting to generalize some Python code to operate on arrays of arbitrary dimension. The operations are applied to each vector in the array. So for a 1D array, there is simply one operation, for a 2-D array it would be both row and column-wise (linearly, so order does not matter). For example, a 1D array (a) is simple:
b = operation(a)
where 'operation' is expecting a 1D array. For a 2D array, the operation might proceed as
for ii in range(0,a.shape[0]):
b[ii,:] = operation(a[ii,:])
for jj in range(0,b.shape[1]):
c[:,ii] = operation(b[:,ii])
I would like to make this general where I do not need to know the dimension of the array beforehand, and not have a large set of if/elif statements for each possible dimension.
Solutions that are general for 1 or 2 dimensions are ok, though a completely general solution would be preferred. In reality, I do not imagine needing this for any dimension higher than 2, but if I can see a general example I will learn something!
Extra information:
I have a matlab code that uses cells to do something similar, but I do not fully understand how it works. In this example, each vector is rearranged (basically the same function as fftshift in numpy.fft). Not sure if this helps, but it operates on an array of arbitrary dimension.
function aout=foldfft(ain)
nd = ndims(ain);
for k = 1:nd
nx = size(ain,k);
kx = floor(nx/2);
idx{k} = [kx:nx 1:kx-1];
end
aout = ain(idx{:});
In Octave, your MATLAB code does:
octave:19> size(ain)
ans =
2 3 4
octave:20> idx
idx =
{
[1,1] =
1 2
[1,2] =
1 2 3
[1,3] =
2 3 4 1
}
and then it uses the idx cell array to index ain. With these dimensions it 'rolls' the size 4 dimension.
For 5 and 6 the index lists would be:
2 3 4 5 1
3 4 5 6 1 2
The equivalent in numpy is:
In [161]: ain=np.arange(2*3*4).reshape(2,3,4)
In [162]: idx=np.ix_([0,1],[0,1,2],[1,2,3,0])
In [163]: idx
Out[163]:
(array([[[0]],
[[1]]]), array([[[0],
[1],
[2]]]), array([[[1, 2, 3, 0]]]))
In [164]: ain[idx]
Out[164]:
array([[[ 1, 2, 3, 0],
[ 5, 6, 7, 4],
[ 9, 10, 11, 8]],
[[13, 14, 15, 12],
[17, 18, 19, 16],
[21, 22, 23, 20]]])
Besides the 0 based indexing, I used np.ix_ to reshape the indexes. MATLAB and numpy use different syntax to index blocks of values.
The next step is to construct [0,1],[0,1,2],[1,2,3,0] with code, a straight forward translation.
I can use np.r_ as a short cut for turning 2 slices into an index array:
In [201]: idx=[]
In [202]: for nx in ain.shape:
kx = int(np.floor(nx/2.))
kx = kx-1;
idx.append(np.r_[kx:nx, 0:kx])
.....:
In [203]: idx
Out[203]: [array([0, 1]), array([0, 1, 2]), array([1, 2, 3, 0])]
and pass this through np.ix_ to make the appropriate index tuple:
In [204]: ain[np.ix_(*idx)]
Out[204]:
array([[[ 1, 2, 3, 0],
[ 5, 6, 7, 4],
[ 9, 10, 11, 8]],
[[13, 14, 15, 12],
[17, 18, 19, 16],
[21, 22, 23, 20]]])
In this case, where 2 dimensions don't roll anything, slice(None) could replace those:
In [210]: idx=(slice(None),slice(None),[1,2,3,0])
In [211]: ain[idx]
======================
np.roll does:
indexes = concatenate((arange(n - shift, n), arange(n - shift)))
res = a.take(indexes, axis)
np.apply_along_axis is another function that constructs an index array (and turns it into a tuple for indexing).
If you are looking for a programmatic way to index the k-th dimension an n-dimensional array, then numpy.take might help you.
An implementation of foldfft is given below as an example:
In[1]:
import numpy as np
def foldfft(ain):
result = ain
nd = len(ain.shape)
for k in range(nd):
nx = ain.shape[k]
kx = (nx+1)//2
shifted_index = list(range(kx,nx)) + list(range(kx))
result = np.take(result, shifted_index, k)
return result
a = np.indices([3,3])
print("Shape of a = ", a.shape)
print("\nStarting array:\n\n", a)
print("\nFolded array:\n\n", foldfft(a))
Out[1]:
Shape of a = (2, 3, 3)
Starting array:
[[[0 0 0]
[1 1 1]
[2 2 2]]
[[0 1 2]
[0 1 2]
[0 1 2]]]
Folded array:
[[[2 0 1]
[2 0 1]
[2 0 1]]
[[2 2 2]
[0 0 0]
[1 1 1]]]
You could use numpy.ndarray.flat, which allows you to linearly iterate over a n dimensional numpy array. Your code should then look something like this:
b = np.asarray(x)
for i in range(len(x.flat)):
b.flat[i] = operation(x.flat[i])
The folks above provided multiple appropriate solutions. For completeness, here is my final solution. In this toy example for the case of 3 dimensions, the function 'ops' replaces the first and last element of a vector with 1.
import numpy as np
def ops(s):
s[0]=1
s[-1]=1
return s
a = np.random.rand(4,4,3)
print '------'
print 'Array a'
print a
print '------'
for ii in np.arange(a.ndim):
a = np.apply_along_axis(ops,ii,a)
print '------'
print ' Axis',str(ii)
print a
print '------'
print ' '
The resulting 3D array has a 1 in every element on the 'border' with the numbers in the middle of the array unchanged. This is of course a toy example; however ops could be any arbitrary function that operates on a 1D vector.
Flattening the vector will also work; I chose not to pursue that simply because the book-keeping is more difficult and apply_along_axis is the simplest approach.
apply_along_axis reference page
I'm new to python and numpy in general. I read several tutorials and still so confused between the differences in dim, ranks, shape, aixes and dimensions. My mind seems to be stuck at the matrix representation. So if you say that A is a matrix that looks like this:
A =
1 2 3
4 5 6
then all I can think of is a 2x3 matrix (two rows and three columns). Here I understand that the shape is 2x3. But I really I am unable to go out side the thinking of a 2D matrices. I don't understand for example the dot() documentation when it says "For N dimensions it is a sum product over the last axis of a and the second-to-last of b". I'm so confused and unable to understand this. I don't understand like if V is a N:1 vector and M is N:N matrix, how dot(V,M) or dot(M,V) work and the difference between them.
Can anyone then please explain to me what is a N dimensional array, what's a shape, what's an axis and how does it relate to the documentation of the dot() function? It would be great if the explanation visualizes the ideas.
Dimensionality of NumPy arrays must be understood in the data structures sense, not the mathematical sense, i.e. it's the number of scalar indices you need to obtain a scalar value.(*)
E.g., this is a 3-d array:
>>> X = np.arange(24).reshape(2, 3, 4)
>>> X
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
Indexing once gives a 2-d array (matrix):
>>> X[0]
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
Indexing twice gives a 1-d array (vector), and indexing three times gives a scalar.
The rank of X is its number of dimensions:
>>> X.ndim
3
>>> np.rank(X)
3
Axis is roughly synonymous with dimension; it's used in broadcasting operations:
>>> X.sum(axis=0)
array([[12, 14, 16, 18],
[20, 22, 24, 26],
[28, 30, 32, 34]])
>>> X.sum(axis=1)
array([[12, 15, 18, 21],
[48, 51, 54, 57]])
>>> X.sum(axis=2)
array([[ 6, 22, 38],
[54, 70, 86]])
To be honest, I find this definition of "rank" confusing since it matches neither the name of the attribute ndim nor the linear algebra definition of rank.
Now regarding np.dot, what you have to understand is that there are three ways to represent a vector in NumPy: 1-d array, a column vector of shape (n, 1) or a row vector of shape (1, n). (Actually, there are more ways, e.g. as a (1, n, 1)-shaped array, but these are quite rare.) np.dot performs vector multiplication when both arguments are 1-d, matrix-vector multiplication when one argument is 1-d and the other is 2-d, and otherwise it performs a (generalized) matrix multiplication:
>>> A = np.random.randn(2, 3)
>>> v1d = np.random.randn(2)
>>> np.dot(v1d, A)
array([-0.29269547, -0.52215117, 0.478753 ])
>>> vrow = np.atleast_2d(v1d)
>>> np.dot(vrow, A)
array([[-0.29269547, -0.52215117, 0.478753 ]])
>>> vcol = vrow.T
>>> np.dot(vcol, A)
Traceback (most recent call last):
File "<ipython-input-36-98949c6de990>", line 1, in <module>
np.dot(vcol, A)
ValueError: matrices are not aligned
The rule "sum product over the last axis of a and the second-to-last of b" matches and generalizes the common definition of matrix multiplication.
(*) Arrays of dtype=object are a bit of an exception, since they treat any Python object as a scalar.
np.dot is a generalization of matrix multiplication.
In regular matrix multiplication, an (N,M)-shape matrix multiplied with a (M,P)-shaped matrix results in a (N,P)-shaped matrix. The resultant shape can be thought of as being formed by squashing the two shapes together ((N,M,M,P)) and then removing the middle numbers, M (to produce (N,P)). This is the property that np.dot preserves while generalizing to arrays of higher dimension.
When the docs say,
"For N dimensions it is a sum product over the last axis of a and the
second-to-last of b".
it is speaking to this point. An array of shape (u,v,M) dotted with an array of shape (w,x,y,M,z) would result in an array of shape (u,v,w,x,y,z).
Let's see how this rule looks when applied to
In [25]: V = np.arange(2); V
Out[25]: array([0, 1])
In [26]: M = np.arange(4).reshape(2,2); M
Out[26]:
array([[0, 1],
[2, 3]])
First, the easy part:
In [27]: np.dot(M, V)
Out[27]: array([1, 3])
There is no surprise here; this is just matrix-vector multiplication.
Now consider
In [28]: np.dot(V, M)
Out[28]: array([2, 3])
Look at the shape of V and M:
In [29]: V.shape
Out[29]: (2,)
In [30]: M.shape
Out[30]: (2, 2)
So np.dot(V,M) is like matrix multiplication of a (2,)-shaped matrix with a (2,2)-shaped matrix, which should result in a (2,)-shaped matrix.
The last (and only) axis of V and the second-to-last axis of M (aka the first axis of M) are multiplied and summed over, leaving only the last axis of M.
If you want to visualize this: np.dot(V, M) looks as though V has 1 row and 2 columns:
[[0, 1]] * [[0, 1],
[2, 3]]
and so, when V is multiplied by M, np.dot(V, M) equals
[[0*0 + 1*2], [2,
[0*1 + 1*3]] = 3]
However, I don't really recommend trying to visualize NumPy arrays this way -- at least I never do. I focus almost exclusively on the shape.
(2,) * (2,2)
\ /
\ /
(2,)
You just think about the "middle" axes being dotted, and disappearing from the resultant shape.
np.sum(arr, axis=0) tells NumPy to sum the elements in arr eliminating the 0th axis. If arr is 2-dimensional, the 0th axis are the rows. So for example, if arr looks like this:
In [1]: arr = np.arange(6).reshape(2,3); arr
Out[1]:
array([[0, 1, 2],
[3, 4, 5]])
then np.sum(arr, axis=0) will sum along the columns, thus eliminating the 0th axis (i.e. the rows).
In [2]: np.sum(arr, axis=0)
Out[2]: array([3, 5, 7])
The 3 is the result of 0+3, the 5 equals 1+4, the 7 equals 2+5.
Notice arr had shape (2,3), and after summing, the 0th axis is removed so the result is of shape (3,). The 0th axis had length 2, and each sum is composed of adding those 2 elements. The shape (2,3) "becomes" (3,). You can know the resultant shape in advance! This can help guide your thinking.
To test your understanding, consider np.sum(arr, axis=1). Now the 1-axis is removed. So the resultant shape will be (2,), and element in the result will be the sum of 3 values.
In [3]: np.sum(arr, axis=1)
Out[3]: array([ 3, 12])
The 3 equals 0+1+2, and the 12 equals 3+4+5.
So we see that summing an axis eliminates that axis from the result. This has bearing on np.dot, since the calculation performed by np.dot is a sum of products. Since np.dot performs a summing operation along certain axes, that axis is removed from the result. That is why applying np.dot to arrays of shape (2,) and (2,2) results in an array of shape (2,). The first 2 in both arrays is summed over, eliminating both, leaving only the second 2 in the second array.
In your case,
A is a 2D array, namely a matrix, with its shape being (2, 3). From docstring of numpy.matrix:
A matrix is a specialized 2-D array that retains its 2-D nature through operations.
numpy.rank return the number of dimensions of an array, which is quite different from the concept of rank in linear algebra, e.g. A is an array of dimension/rank 2.
np.dot(V, M), or V.dot(M) multiplies matrix V with M. Note that numpy.dot do the multiplication as far as possible. If V is N:1 and M is N:N, V.dot(M) would raise an ValueError.
e.g.:
In [125]: a
Out[125]:
array([[1],
[2]])
In [126]: b
Out[126]:
array([[2, 3],
[1, 2]])
In [127]: a.dot(b)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-127-9a1f5761fa9d> in <module>()
----> 1 a.dot(b)
ValueError: objects are not aligned
EDIT:
I don't understand the difference between Shape of (N,) and (N,1) and it relates to the dot() documentation.
V of shape (N,) implies an 1D array of length N, whilst shape (N, 1) implies a 2D array with N rows, 1 column:
In [2]: V = np.arange(2)
In [3]: V.shape
Out[3]: (2,)
In [4]: Q = V[:, np.newaxis]
In [5]: Q.shape
Out[5]: (2, 1)
In [6]: Q
Out[6]:
array([[0],
[1]])
As the docstring of np.dot says:
For 2-D arrays it is equivalent to matrix multiplication, and for 1-D
arrays to inner product of vectors (without complex conjugation).
It also performs vector-matrix multiplication if one of the parameters is a vector. Say V.shape==(2,); M.shape==(2,2):
In [17]: V
Out[17]: array([0, 1])
In [18]: M
Out[18]:
array([[2, 3],
[4, 5]])
In [19]: np.dot(V, M) #treats V as a 1*N 2D array
Out[19]: array([4, 5]) #note the result is a 1D array of shape (2,), not (1, 2)
In [20]: np.dot(M, V) #treats V as a N*1 2D array
Out[20]: array([3, 5]) #result is still a 1D array of shape (2,), not (2, 1)
In [21]: Q #a 2D array of shape (2, 1)
Out[21]:
array([[0],
[1]])
In [22]: np.dot(M, Q) #matrix multiplication
Out[22]:
array([[3], #gets a result of shape (2, 1)
[5]])