I have two 2D point clouds, both of them are matched on another. That means I already know that point X in the source-pointcloud is represented by point Y on the target pointcloud. My goal is to create a transformation-matrix by which I will not only be able to match the source to the target pointcloud but also use the matrix to calculate the corresponding position of other additional points on the target-pc that are added to the source-pc later on.
I already tried using a self-written simple rigid-transformation(involving stretching/rotation/movement of one PC), but as transformation between the two PCs involves some kind of irregular stretching, this solution is not accurate enough for me. For reference see 1 for two example-PCs, 2 represents my rigid-transformation-try. I figure that a non-rigid-transformation is necessary.
Therefore I have already looked into different python libraries, for example the different elastix-toolkits or other projects like probreg(https://github.com/neka-nat/probreg).
The problem is that all these either take images as input and no point coordinates and/or (correct me if I'm wrong) only do the registration and do not create a transformation-matrix by which I could later transform additional points.
Do you know any useful python libs and/or can you point me in the right direction for creating a such matrix?
Thanks for your help
Related
I do not know if there is already an standard name for this concept, so do not hesitate to point me to the right direction. I was looking on the internet but the "sync" and "mirror" concepts are different from what I am looking for:
I want to find a way to syncrhonise positions and areas between arrays. See the following diagram:
Here we can see 3 different arrays stored in 3 different variables (x, y, z). Each array has 9 positions. I want to create them in a way that if value in x2 is changed, it is also changed in z4. The same applies for x7:8<->y8:7:-1.
From the bases I think it is not possible, as arrays only store pointers and those pointers are directed to the python ints/floats/etc. It might be possible if using custom objects, but memory wise is probably not wise as every possition would require an individual object.
So lets say I have a objects like a face. I take multiple pictures of the face all at different angles and from far and close. I have a sort of idea of how to make a 3d model out of these pictures but don't know how to accomplish them. My idea goes likes this.
First make code that gets the image object and gets rid of all background "noise".
Second find what part of the 3d model the picture is about and place a tag on the image for where it should fit.
Third collect and overlap all the images together to create a 3d object.
Anyone have any idea how to accomplish any of these steps or any ideas how to create a 3d model out of a series of images? I use python 3.10.4.
It seems that you are asking if there are some Python modules that would help to implement a complete photogrammetry process.
Please note that, even in the existing (and commercial) photogrammetry solutions, the process is not always fully-automated, sometimes it require some manual tweaking & point cloud selection.
Anyway, to the best of my knowledge, what you asked requires to implement the following steps:
detecting common features between the different photographs
infer the position in space of the camera that took each photograph
generate a point cloud of the photographs based on their relative position in space and the common features
convert the point cloud in a 3D mesh.
Possibly, all of these steps can be implemented in Python but I'm not aware that such a "off-the-shelf" module does exist.
There's this commercial solution called: Metashape from Agisoft, it has a python module you can use, but beware that it has its pitfalls (it threw segmentation fault for me at the end of processing which makes things... icky) and the support kind of ignores bigger problems and you can expect that they would ignore your ticket. Still, does the job quite well.
I'm working on a panel method code at the moment. To keep us from being bogged down in the minutia, I won't show the code - this is a question about overall program structure.
Currently, I solve my system by:
Generating the corresponding rows of the A matrix and b vector in an explicit component for each boundary condition
Assembling the partial outputs into the full A, b.
Solving the linear system, Ax=b, using a LinearSystemComp.
Here's a (crude) diagram:
I would prefer to be able to do this by just writing one implicit component to represent each boundary condition, vectorising the inputs/outputs to represent multiple rows/cols in the matrix, then allowing openMDAO to solve for the x while driving the residual for each boundary condition to 0.
I've run into trouble trying to make this work, as each implicit component is underdetermined (more rows in the output vector x than the component output residuals; that is, A1.x - b1= R1, length(R1) < length(x). Essentially, I would like openMDAO to take each of these underdetermined implicit systems, and find the value of x that solves the determined full system - without needing to do all of the assembling stuff myself.
Something like this:
To try and make my goal clearer, I'll explain what I actually want from the perspective of my panel method. I'd like a component, let's say Influence, that computes the potential induced by a given panel at a given point in the panel's reference frame. I'd like to vectorise the input panels and points such that it can compute the influence coefficent of many panels on one point, of many points on one panel, or of many points on many panels.
I'd then like a system of implicit boundary conditions to find the correct value of mu to solve the system. These boundary conditions, again, should be able to be vectorised to compute the violation of the boundary condition at many points under the influence of many panels.
I get confused again at this part. Not every boundary condition will use the influence coefficient values - some, like the Kutta condition, are just enforced on the mu vector, e.g .
How would I implement this as an implicit component? It has no inputs, and doesn't output the full mu vector.
I appreciate that the question is rather long and rambling, but I'm pretty confused. To summarise:
How can I use openMDAO to solve multiple individually underdetermined (but combined, fully determined) implicit systems?
How can I use openMDAO to write an implicit component that takes no inputs and only uses a portion of the overall solution vector?
In the OpenMDAO docs there is a close analog to what you are trying to accomplish, with the node-voltage analysis tutorial. In that code, the balance comp is used to create an implicit relationship that is similar to what you're describing. Its singular on its own, but part of a larger group is a well defined system.
You'll need to find a way to build similar components for your model. Each "row" in your equation will be associated with one state variables (one entry in your x vector).
In the simplest case, each row (or set of rows) would have one input which is the associated row of the A matrix, and a second input which is ALL of the other values for x, and a final input which is the entry of the b vector (right hand side vector). Then you could evaluate the residual for that specific row, which would be the following
R['x_i'] = np.sum(A*x_full) - b
where x_full is the assembly of the full x-vector from the x_other input and the x_i state variable.
#########
Having proposed the above solution, I have to say that I don't think this is a particularly efficient way to build or solve this linear system. It is modular, and might give you some flexibility, but you're jumping through a lot of hoops to avoid doing some index-math, and shoving everything into a matrix.
Granted, the derivatives might be a bit easier in your design, because the matrix assembly is going to get handled "magically" by the connections you have to create between the various row-components. So maybe its worth the trade... but i would say you might be better of trying a more traditional coding approach and using JAX or some other AD code to make the derivatives easier.
I am modeling electrical current through various structures with the help of FiPy. To do so, I solve Laplace's equation for the electrical potential. Then, I use Ohm's law to derive the field and with the help of the conductivity, I obtain the current density.
FiPy stores the potential as a cell-centered variable and its gradient as a face-centered variable which makes sense to me. I have two questions concerning face-centered variables:
If I have a two- or three-dimensional problem, FiPy computes the gradient in all directions (ddx, ddy, ddz). The gradient is a FaceVariable which is always defined on the face between two cell centers. For a structured (quadrilateral) grid, only one of the derivates should be greater than zero since for any face, the position of the two cell-centers involved should only differ in one coordinate. In my simulations however, it occurs frequently that more than one of the derivates (ddx, ddy, ddz) is greater than zero, even for a structured grid.
The manual gives the following explanation for the FaceGrad-Method:
Return gradient(phi) as a rank-1 FaceVariable using differencing for the normal direction(second-order gradient).
I do not see, how this differs from my understanding pointed out above.
What makes it even more problematic: Whenever "too many" derivates are included, current does not seem to be conserved, even in the simplest structures I model...
Is there a clever way to access the data stored in the face-centered variable? Let's assume I would want to compute the electrical current going through my modeled structure.
As of right now, I save the data stored in the FaceVariable as a tsv-file. This yields a table with (x,y,z)-positions and (ddx, ddy, ddz)-values. I read the file and save the data into arrays to use it in Python. This seems counter-intuitive and really inconvenient. It would be a lot better to be able to access the FaceVariable along certain planes or at certain points.
The documentation does not make it clear, but .faceGrad includes tangential components which account for more than just the neighboring cell center values.
Please see this Jupyter notebook for explicit expressions for the different types of gradients that FiPy can calculate (yes, this stuff should go into the documentation: #560).
The value is accessible with myFaceVar.value and the coordinates with myFaceVar.mesh.faceCenters. FiPy is designed around unstructured meshes and so taking arbitrary slices is not trivial. CellVariable objects support interpolation by calling myCellVar((xs, ys, zs)), but FaceVariable objects do not. See this discussion.
Lowest/Highest Combined Surface(s)
I'm looking for a methodology (and/or preferably a software approach) to create what I'm calling the Lowest (or highest) combined surface for a set of polygons.
So if our input was these two polygons that partially overlap and definitely intersect
My Lowest Combined output would be these three polygons
Given a number of "surfaces" (3d polygons)
We've gone through a variety of approaches and the best solution we could come up with involved applying a point grid to each polygon and performing calculations to return the lowest sets of points at each grid location. The problem is that the original geometry is lost in this approach which doesn't give us a working solution.
Background
I'm looking at a variety of "surfaces" that can be represented by 3d faces (cad Speak) or polygons and usually are distributed in a shapefile (.shp). When there are two surfaces that interact I'm interested in taking either the lowest combined or highest combined surface. I'm able to do this in CAD by manually tracing out new polygons for the interaction zones - but once I get into more than a handful of surfaces this becomes too labor intensive.
The current Approach
My current approach which falls somewhere in the terrible category is to generate a point cloud from each surface on a 1m grid and then do a grid cell based comparison of the points.
I do this by using AutoCAD Civl 3D's surface Generation Tools to create a TIN from each polygon surface and then using its Surface. This is then exported to a 1m DEM file which I believe is a gridded output format.
Next each DEM file is brought into Global Mapper where I generate a single point at the center of each "elevation grid cell". Next this data is exported to a .csv file where each point contains a variety of attributes such as what the name of the surface this point came from and what its altitude is
Next once I have a set of CSV files I run them through a python script that will export the lowest point (and associated attributes) at each grid. I do everything in UTM because the UTM grid is based on meters and it makes everything easier.
Lastly we bring the point file back into global mapper - coloring each point by what surface it started from.
There a variety of issues with this approach - sometimes things don't line up perfectly and there is a variety of cleanup I have to do
Also the edges end up being jagged - as is the case because I've converted nice straight lines into a point cloud
Alternatively we came up with a similar approach in Arc GIS using the Surface Comparison tool, however it had similar limitations to what we ran into with my approach.
What I'm looking for is a way to do this automatically with a variable number of inputs. I'm willing to use just about any tool to have this done, as it seems like it shouldn't be too difficult a process
Software?
When I look at this problem from a programmers point of view it looks rather straight forward - but I'm at a total loss how to proceed. I'm assuming Stack Overflow is the correct stack exchange for this question - but if it should be somewhere else - I'm happy to move it to a different exchange.
I wasn't sure if something like Mathematica (which i have zero experience) with could handle this situation or whether there was some fancy 3d math library in python that could chop polygons up by how they interact and then give me the lowest for co-located polys.
In any case I'm willing to try anything out so please if you have an idea of what tools and/or libraries I can use to do this please share! I have to assume that there is SOMETHING out there that can handle this type of 3d geometric processing
Thanks
EDIT
Because the commenters seem confused I am not asking for code - I am asking for methodologies, libraries, support tools, or even software packages that can perform these operations. I plan to write software to do this, however, I am hoping I don't need to pull out my trig books and write all these operations by hand. I have to assume there is somebody out there that has dealt with something similar before.