Related
Hi could someone point me what I do wrong: some time bokeh does not display color. If run the script there will be only red points, but when I change the 'green' to the 'lime' there will be points of two colors - why? what do I wrong?
import numpy as np
from scipy.signal import find_peaks
# Find peaks
max_peaks, max_other = find_peaks(price, height=0.1)
print(len(max_peaks))
min_peaks, min_other = find_peaks(-price)
print(len(min_peaks))
colors = np.full(len(price), 'None')
colors[max_peaks] = 'red'
colors[min_peaks] = 'green'
from bokeh.models import CrosshairTool
crosshair = CrosshairTool(dimensions='both')
width=1000
height = 600
price_dates = df['date'].to_numpy()
price_dates_dt = np.apply_over_axes(convert_int_to_datetime, price_dates, axes=0)
price_dates_str = np.apply_over_axes(convert_int_to_datetime_to_str, price_dates, axes=0)
price_source = ColumnDataSource(data=dict(
date = price_dates_dt,
date_str = price_dates_str,
price=df['close'].to_numpy(),
color=colors
))
f1 = figure(title=f'price', x_axis_type='datetime', tools='pan,wheel_zoom,box_zoom,reset,save,box_select,zoom_in,zoom_out, hover', sizing_mode='stretch_width',plot_width=width, plot_height=height)
f1.toolbar.logo = None
f1.add_tools(crosshair)
price_l = f1.line(source=price_source, x='date', y='price', legend_label='price', line_color='gray', line_dash='solid', line_width=0.8)
price_s = f1.scatter(source=price_source, x='date', y='price', legend_label='price', fill_color='color', line_color='color', size=2)
f1.add_tools(HoverTool(renderers=[price_s, price_l], tooltips=[
('index', '$index'),
('(x,y)', '($x{%F}, $y{0.00})'),
# ('date', '#date'),
('date_str', '#date_str'),
('price', '#price{0.00}')],
formatters={
'#date': 'datetime',
'#{price}': 'printf', }))
f1.legend.location = 'top_left'
f1.legend.click_policy = 'hide'
f1.xaxis.axis_label = 'Time'
f1.yaxis.axis_label = 'price'
f1.background_fill_color = '#dfe9f0'
# f1.background_fill_alpha = 0.5
f1.xgrid.grid_line_color='white'
f1.ygrid.grid_line_color='white'
show(f1)
I am trying to get to something like this but with more cats for each scenario (I have 4 scenarios but many cats):
I can only achieve this when the number of 'Cat's is equal to the number of 'Scenario's. I don't fully understand how the factors line in the code is working and I think the answer lies within that.
whenever I add more Cats I get this error:
IndexError: list index out of range
The code I have is follows:
from bokeh.models import ColumnDataSource, FactorRange
from bokeh.models import Range1d
from calendar import month_abbr
import numpy as np
from bokeh.palettes import Spectral3
from bokeh.transform import factor_cmap
systems = ["Scenario1", "Scenario2", "Scenario3", "Scenario4"]
subsystems =["Cat1","Cat2", "Cat3", "Cat4"]#, "Cat5", "Cat6"]
factors =[(systems[ind],subsystem) for ind, subsystem in enumerate(subsystems) for subsystem in subsystems]
count_closed = [52,52,49,26,9,8, 32,20]#,33,66,9,8]
count_open = [0,0,1, 0]
count_waived = [3,1,0,0]
statuses = ["count_closed", "count_open", "count_waived"]
data = dict(factors = factors, count_closed=count_closed, count_open=count_open, count_waived=count_waived )
source = ColumnDataSource(data=data)
p = figure(x_range = FactorRange(*factors), plot_height=250, title="Repeat 10 cats for each scenario",
toolbar_location = 'right',
tools = "hover", tooltips="$name #subsystems: #$name")
p.vbar_stack(statuses, x="factors", width=0.9, alpha = 0.5, color=["navy","red","pink"], source=source, legend_label=statuses)
p.y_range.start = 0
p.x_range.range_padding = 0.1
p.xaxis.major_label_orientation = 1
p.xgrid.grid_line_color = None
p.legend.location = "top_center"
p.legend.orientation = "horizontal"
show(p)
To generate a list with tuples of all combinations, your variable factors, you can use
from itertools import product
factors = list(product(systems, subsystems))
This will create a list which is understood by bokehs FactorRange.
Complete Example
from itertools import product
import numpy as np
from bokeh.models import ColumnDataSource, FactorRange, Range1d
from bokeh.plotting import figure, show, output_notebook
output_notebook()
systems = ["Scenario1", "Scenario2", "Scenario3", "Scenario4"]
subsystems =["Cat1","Cat2", "Cat3", "Cat4", "Cat5", "Cat6"]
factors = list(product(systems, subsystems))
count_closed = np.random.randint(0,20, len(factors))
count_open = np.random.randint(0,20, len(factors))
count_waived = np.random.randint(0,20, len(factors))
statuses = ["count_closed", "count_open", "count_waived"]
data = dict(factors = factors, count_closed=count_closed, count_open=count_open, count_waived=count_waived )
source = ColumnDataSource(data=data)
p = figure(x_range = FactorRange(*factors), plot_height=250, title="Repeat 10 cats for each scenario",
toolbar_location = 'right',
tools = "hover", tooltips="$name #subsystems: #$name")
p.vbar_stack(statuses, x="factors", width=0.9, alpha = 0.5, color=["navy","red","pink"], source=source, legend_label=statuses)
p.y_range.start = 0
p.x_range.range_padding = 0.1
p.xaxis.major_label_orientation = 1
p.xgrid.grid_line_color = None
p.legend.location = "top_center"
p.legend.orientation = "horizontal"
show(p)
Output
I am currently trying to write a program that will switch between two sets of data when different options are chosen from the select widget. I am trying to make this program as autonomous as possible so in the future when people update the data they don't have to modify the code at all and the updates will happen automatically.
Currently, my issue is that when I select 'White' I want the plot to update but nothing is happening.
The two data sets are currently a dict of lists, one labeled 'White_dict' and the other labeled 'black_dict' solely to represent the color of the material for the data (I know its kinda ironic).
from bokeh.plotting import figure, curdoc
from bokeh.models import ColumnDataSource, Legend
from bokeh.models import Select
from bokeh.layouts import column
import pandas as pd
from plot_tools import add_hover
import itertools
from collections import defaultdict
bokeh_doc = curdoc()
material_types = pd.read_csv('data/material-information.csv')
df = pd.read_csv('data/Black_Materials_total_reflecatance.csv')
black_df = pd.read_csv('data/Black_Materials_total_reflecatance.csv')
white_df = pd.read_csv('data/SPIE18_white_all.csv')
names = []
w_names = []
black_dict = defaultdict(list)
white_dict = defaultdict(list)
for name, w_name in zip(df, white_df):
names.append(name)
w_names.append(w_name)
data = pd.read_csv('data/Black_Materials_total_reflecatance.csv', usecols = names)
w_data = pd.read_csv('data/SPIE18_white_all.csv', usecols = w_names)
for name, w_name in zip(names, w_names):
for i in range(0, 2250):
black_dict[name].append(data[name][i])
white_dict[w_name].append(w_data[w_name][i])
mySource = ColumnDataSource(data = black_dict)
#create total reflectance figure
total_fig = figure(plot_width = 650, plot_height = 350,
title = 'Total Reflectance',
x_axis_label = 'Wavelength(nm)', y_axis_label = 'Total Reflectance',
x_range = (250, 2500), y_range = (0,10),
title_location = 'above', sizing_mode = "scale_both",
toolbar_location = "below",
tools = "box_zoom, pan, wheel_zoom, save")
select = Select(title="Material Type", options=['Black', 'White'])
def update_plot(attr, old, new):
if new == 'White':
mySource.data = white_dict
else:
mySource.data = black_dict
for name, color in zip(mySource.data, Turbo256):
if name != 'nm':
total_fig.line('nm', name, line_width = .7, source = mySource, color = color)
select.on_change('value', update_plot)
bokeh_doc.add_root(total_fig)
bokeh_doc.add_root(select)
I'm currently using bokeh serve bokehWork.py to launch the server. If anyone has any idea on what I should fix it would be much appreciated! Thanks!
EDIT:
Adding data for Black_materials_total_reflectance.csv
Black Reflectance Data sample
Adding data for White_all.csv
White Reflectance Data sample
There are two main issues with your code:
You read the same files multiple times and you do a lot of work that Pandas and Bokeh can already do for you
(the main one) You do not take into account the fact that different CSV files have different column names
Here's a fixed version. Notice also the usage of the palette. With just Turbo256 you were getting almost the same color for all lines.
import pandas as pd
from bokeh.models import ColumnDataSource, Select
from bokeh.palettes import turbo
from bokeh.plotting import figure, curdoc
black_ds = ColumnDataSource(pd.read_csv('/home/p-himik/Downloads/Black_material_data - Sheet1.csv').set_index('nm'))
white_ds = ColumnDataSource(pd.read_csv('/home/p-himik/Downloads/White Materials Sample - Sheet1.csv').set_index('nm'))
total_fig = figure(plot_width=650, plot_height=350,
title='Total Reflectance',
x_axis_label='Wavelength(nm)', y_axis_label='Total Reflectance',
title_location='above', sizing_mode="scale_both",
toolbar_location="below",
tools="box_zoom, pan, wheel_zoom, save")
total_fig.x_range.range_padding = 0
total_fig.x_range.only_visible = True
total_fig.y_range.only_visible = True
palette = turbo(len(black_ds.data) + len(white_ds.data))
def plot_lines(ds, color_offset, visible):
renderers = []
for name, color in zip(ds.data, palette[color_offset:]):
if name != 'nm':
r = total_fig.line('nm', name, line_width=.7, color=color,
source=ds, visible=visible)
renderers.append(r)
return renderers
black_renderers = plot_lines(black_ds, 0, True)
white_renderers = plot_lines(white_ds, len(black_ds.data), False)
select = Select(title="Material Type", options=['Black', 'White'], value='Black')
def update_plot(attr, old, new):
wv = new == 'White'
for r in white_renderers:
r.visible = wv
for r in black_renderers:
r.visible = not wv
select.on_change('value', update_plot)
bokeh_doc = curdoc()
bokeh_doc.add_root(total_fig)
bokeh_doc.add_root(select)
I am creating a bokeh plot with a slider to refresh plot accordingly. There are 2 issues with the code posted.
1. The plot is not refreshed as per the slider. Please help in providing a fix for this issue.
2. Plot is not displayed with curdoc() when bokeh serve --show fn.ipynb is used
I'm trying to visualise this CSV file.
import pandas as pd
import numpy as np
from bokeh.models import ColumnDataSource, CategoricalColorMapper, HoverTool, Slider
from bokeh.plotting import figure, curdoc
from bokeh.palettes import viridis
from bokeh.layouts import row, widgetbox
#Importing and processing data file
crop = pd.read_csv('crop_production.csv')
#Cleaning Data
crop.fillna(np.NaN)
crop['Season'] = crop.Season.str.strip()
#Removing Whitespace #Filtering the dataset by Season
crop_season = crop[crop.Season == 'Whole Year']
crop_dt = crop_season.groupby(['State_Name', 'District_Name', 'Crop_Year']).mean().round(1)
#Creating Column Data Source
source = ColumnDataSource({
'x' : crop_dt[crop_dt.index.get_level_values('Year')==2001].loc[(['ABC']), :].Area,
'y' : crop_dt[crop_dt.index.get_level_values('Year')==2001].loc[(['ABC']), :].Production,
'state' : crop_dt[crop_dt.index.get_level_values('Year')==2001].loc[(['ABC']), :].index.get_level_values('State_Name'),
'district' : crop_dt[crop_dt.index.get_level_values('Year')==2001].loc[(['ABC']), :].index.get_level_values('District_Name')
})
#Creating color palette for plot
district_list = crop_dt.loc[(['Tamil Nadu']), :].index.get_level_values('District_Name').unique().tolist()
call_colors = viridis(len(district_list))
color_mapper = CategoricalColorMapper(factors=district_list, palette=call_colors)
# Creating the figure
#xmin, xmax = min(data.Crop_Year), max(data.Crop_Year)
#ymin, ymax = min(data.Production), max(data.Production)
p = figure(
title = 'Crop Area vs Production',
x_axis_label = 'Area',
y_axis_label = 'Production',
plot_height=900,
plot_width=1200,
tools = [HoverTool(tooltips='#district')]
)
p.circle(x='x', y='y', source=source, size=12, alpha=0.7,
color=dict(field='district', transform=color_mapper),
legend='district')
p.legend.location = 'top_right'
def update_plot(attr, old, new):
yr = slider.value
new_data = {
'x' : crop_dt[crop_dt.index.get_level_values('Year')==yr].loc[(['ABC']), :].Area,
'y' : crop_dt[crop_dt.index.get_level_values('Year')==yr].loc[(['ABC']), :].Production,
'state' : crop_dt[crop_dt.index.get_level_values('Year')==yr].loc[(['ABC']), :].index.get_level_values('State_Name'),
'district' : crop_dt[crop_dt.index.get_level_values('Year')==yr].loc[(['ABC']), :].index.get_level_values('District_Name')
}
source.data = new_data
#Creating Slider for Year
start_yr = min(crop_dt.index.get_level_values('Crop_Year'))
end_yr = max(crop_dt.index.get_level_values('Crop_Year'))
slider = Slider(start=start_yr, end=end_yr, step=1, value=start_yr, title='Year')
slider.on_change('value',update_plot)
layout = row(widgetbox(slider), p)
curdoc().add_root(layout)
show(layout)
Also tried a different option using CustomJS as below, but still no luck.
callback = CustomJS(args=dict(source=source), code="""
var data = source.data;
var yr = slider.value;
var x = data['x']
var y = data['y']
'x' = crop_dt[crop_dt.index.get_level_values('Crop_Year')==yr].loc[(['ABC']), :].Area;
'y' = crop_dt[crop_dt.index.get_level_values('Crop_Year')==yr].loc[(['ABC']), :].Production;
p.circle(x='x', y='y', source=source, size=12, alpha=0.7,
color=dict(field='district', transform=color_mapper),
legend='district');
}
source.change.emit();
""")
#Creating Slider for Year
start_yr = min(crop_dt.index.get_level_values('Crop_Year'))
end_yr = max(crop_dt.index.get_level_values('Crop_Year'))
yr_slider = Slider(start=start_yr, end=end_yr, step=1, value=start_yr, title='Year', callback=callback)
callback.args["slider"] = yr_slider
Had a lot of issues trying to execute your code and I have changed some things, so feel free to correct me if did something wrong.
The error was caused by the creation of the ColumnDataSource, I had to change the level value to Crop_Year instead of Year. The loc 'ABC' also caused an error so I removed that too (And I had to add source = ColumnDataSource({, you probably forgot to copy that)
I also added a dropdown menu so it's possible to only show the data from one district.
Also, I'm not quite sure if it's possible to start a bokeh server by supplying a .ipynb file to --serve. But don't pin me down on that, I never use notebooks. I've tested this with a .py file.
#!/usr/bin/python3
import pandas as pd
import numpy as np
from bokeh.models import ColumnDataSource, CategoricalColorMapper, HoverTool
from bokeh.plotting import figure, curdoc
from bokeh.palettes import viridis
from bokeh.layouts import row, widgetbox
from bokeh.models.widgets import Select, Slider
#Importing and processing data file
crop = pd.read_csv('crop_production.csv')
#Cleaning Data
crop.fillna(np.NaN)
crop['Season'] = crop.Season.str.strip()
#Removing Whitespace #Filtering the dataset by Season
crop_season = crop[crop.Season == 'Whole Year']
crop_dt = crop_season.groupby(['State_Name', 'District_Name', 'Crop_Year']).mean().round(1)
crop_dt_year = crop_dt[crop_dt.index.get_level_values('Crop_Year')==2001]
crop_dt_year_state = crop_dt_year[crop_dt_year.index.get_level_values('State_Name')=='Tamil Nadu']
#Creating Column Data Source
source = ColumnDataSource({
'x': crop_dt_year_state.Area.tolist(),
'y': crop_dt_year_state.Production.tolist(),
'state': crop_dt_year_state.index.get_level_values('State_Name').tolist(),
'district': crop_dt_year_state.index.get_level_values('District_Name').tolist()
})
#Creating color palette for plot
district_list = crop_dt.loc[(['Tamil Nadu']), :].index.get_level_values('District_Name').unique().tolist()
call_colors = viridis(len(district_list))
color_mapper = CategoricalColorMapper(factors=district_list, palette=call_colors)
# Creating the figure
p = figure(
title = 'Crop Area vs Production',
x_axis_label = 'Area',
y_axis_label = 'Production',
plot_height=900,
plot_width=1200,
tools = [HoverTool(tooltips='#district')]
)
glyphs = p.circle(x='x', y='y', source=source, size=12, alpha=0.7,
color=dict(field='district', transform=color_mapper),
legend='district')
p.legend.location = 'top_right'
def update_plot(attr, old, new):
#Update glyph locations
yr = slider.value
state = select.value
crop_dt_year = crop_dt[crop_dt.index.get_level_values('Crop_Year')==yr]
crop_dt_year_state = crop_dt_year[crop_dt_year.index.get_level_values('State_Name')==state]
new_data = {
'x': crop_dt_year_state.Area.tolist(),
'y': crop_dt_year_state.Production.tolist(),
'state': crop_dt_year_state.index.get_level_values('State_Name').tolist(),
'district': crop_dt_year_state.index.get_level_values('District_Name').tolist()
}
source.data = new_data
#Update colors
district_list = crop_dt.loc[([state]), :].index.get_level_values('District_Name').unique().tolist()
call_colors = viridis(len(district_list))
color_mapper = CategoricalColorMapper(factors=district_list, palette=call_colors)
glyphs.glyph.fill_color = dict(field='district', transform=color_mapper)
glyphs.glyph.line_color = dict(field='district', transform=color_mapper)
#Creating Slider for Year
start_yr = min(crop_dt.index.get_level_values('Crop_Year'))
end_yr = max(crop_dt.index.get_level_values('Crop_Year'))
slider = Slider(start=start_yr, end=end_yr, step=1, value=start_yr, title='Year')
slider.on_change('value',update_plot)
#Creating drop down for state
options = list(set(crop_dt.index.get_level_values('State_Name').tolist()))
options.sort()
select = Select(title="State:", value="Tamil Nadu", options=options)
select.on_change('value', update_plot)
layout = row(widgetbox(slider, select), p)
curdoc().add_root(layout)
#Jasper Thanks a lot. This works, however it doesnt work with .loc[(['Tamil Nadu']), :]. Reason for having this is to filter the data by adding a bokeh dropdown or radio button object and refresh the plot based on the filters. The below code works only if .loc[(['Tamil Nadu']), :] is removed. Is there any other way to fix this please?
def update_plot(attr, old, new):
yr = slider.value
new_data = {
'x' : crop_dt[crop_dt.index.get_level_values('Crop_Year')==yr].loc[(['Tamil Nadu']), :].Area.tolist(),
'y' : crop_dt[crop_dt.index.get_level_values('Crop_Year')==yr].loc[(['Tamil Nadu']), :].Production.tolist(),
'state' : crop_dt[crop_dt.index.get_level_values('Crop_Year')==yr].loc[(['Tamil Nadu']), :].index.get_level_values('State_Name').tolist(),
'district' : crop_dt[crop_dt.index.get_level_values('Crop_Year')==yr].loc[(['Tamil Nadu']), :].index.get_level_values('District_Name').tolist()
}
source.data = new_data
import pandas as pd
import numpy as np
from bokeh.io import show, output_notebook, push_notebook
from bokeh.plotting import figure
from bokeh.models import CategoricalColorMapper, HoverTool, ColumnDataSource, Panel
from bokeh.models.widgets import CheckboxGroup, Slider, RangeSlider, Tabs
from bokeh.layouts import column, row, WidgetBox
from bokeh.palettes import Category20_16
from bokeh.application.handlers import FunctionHandler
from bokeh.application import Application
output_notebook()
def histogram_tab(webs):
def make_dataset(params_list, range_start = 0.0, range_end = 1, bin_width = 0.005):
#check to make sure the start is less than the end
assert range_start < range_end, "Start must be less than end!"
#by_params = pd.DataFrame(columns=[ ,'Max', 'Avarage', 'Min','color'])
by_params = pd.DataFrame(columns=[ 'left','right', 'proportion', 'p_proportion','p_interval', 'name', 'w_name','color'])
#
range_extent = range_end - range_start
values = ['Min', "Avarage", 'Max']
# Iterate through all the parameters
for i, para_name in enumerate(params_list):
#print para_name
# Subset to the parameter
subset = webs[para_name]
# note: subset have to be a list of values
# [webs.columns[i%6]]
# Create a histogram with specified bins and range
arr_hist, edges = np.histogram(subset,
bins = int(range_extent / bin_width),
range = [range_start, range_end])
# Divide the counts by the total to get a proportion and create df
arr_df= pd.DataFrame({'proportion': arr_hist ,
'left': edges[:-1], 'right': edges[1:]}) #/ np.sum(arr_hist)
# Format the proportion
arr_df['p_proportion'] = ['%0.00005f' % proportion for proportion in arr_df['proportion']]
# Format the interval
arr_df['p_interval'] = ['%d to %d scale' % (left, right) for left,
right in zip(arr_df['left'], arr_df['right'])]
# Assign the parameter for labels
arr_df['name'] = para_name
arr_df['w_name'] = webs['Site name']
# Color each parametr differently
arr_df['color'] = Category20_16[i]
# Add to the overall dataframe
by_params = by_params.append(arr_df)
# Overall dataframe
by_params = by_params.sort_values(['name','left'])
return ColumnDataSource(by_params)
def style(p):
# Title
p.title.align = 'center'
p.title.text_font_size ='20pt'
p.title.text_font = 'serif'
# Axis titles
p.xaxis.axis_label_text_font_size = '14pt'
p.xaxis.axis_label_text_font_style = 'bold'
p.yaxis.axis_label_text_font_size = '14pt'
p.yaxis.axis_label_text_font_style = 'bold'
# Tick labels
p.xaxis.major_label_text_font_size = '12pt'
p.yaxis.major_label_text_font_size = '12pt'
return p
def make_plot(src):
# Blank plot with correct labels
p = figure(plot_width = 700, plot_height = 700,
title = "Histogram of Parametes for the websites",
x_axis_label = 'parameters', y_axis_label = "values")
# Quad glyphs to create a histogram
p.quad(source=src, bottom =0,left = 'left', right = 'right', color ='color', top= 'proportion',fill_alpha = 0.7, hover_fill_color = 'color', legend = 'name',
hover_fill_alpha = 1.0, line_color = 'white') #top='proportion',
# Hover tool with vline mode
hover = HoverTool(tooltips=[('Parameter','#name'),
('Website','#w_name'),
('Proportion','p_proportion')
],
mode='vline')
p.add_tools(hover)
# Stypling
p = style(p)
return p
# Update function takes three default parameters
def update(attr, old, new):
# Get the list of parameter for the graph
parameter_to_plot = [para_selection.labels[i] for i in para_selection.active]
# Make a new dataset based on the selected parameter and the
# make_dataset function defined earlier
new_src = make_dataset(parameter_to_plot, range_start = 0, range_end = 1, bin_width = 0.005) # note range are not specified
# Convert dataframe to column data source
new_src = ColumnDataSource(new_src)
# Update the source used the quad glpyhs
src.data.update(new_src.data)
list_of_params = list(webs.columns[1:].unique())
list_of_params.sort()
para_selection = CheckboxGroup(labels=list_of_params, active = [0,1])
para_selection.on_change('active',update)
binwidth_select = Slider(start =0, end = 1,
step = 0.00025, value = 0.0005,
title = 'Change in parameter')
binwidth_select.on_change('value', update)
range_select = RangeSlider(start=0, end=1, value =(0,1),
step=0.00025, title = 'Change in range')
range_select.on_change('value', update)
initial_params = [para_selection.labels[i] for i in para_selection.active]
src = make_dataset(initial_params,
range_start = range_select.value[0],
range_end = range_select.value[1],
bin_width = binwidth_select.value)
p = make_plot(src)
#show(p)
# Put controls in a single element
controls = WidgetBox(para_selection, binwidth_select, range_select)
# Create a row layout
layout = row(controls, p)
# Make a tab with the layout
tab = Panel(child = layout, title = 'Histogram')
#return tab
tabs = Tabs(tabs=[tab])
webs.add_root(tabs)
# Set up an application
handler = FunctionHandler(histogram_tab(webs))
app = Application(handler)
add_root is a method on Document, you are trying to call it on a DataFrame called webs, apparently, which is why you get that message. The structure of a Bokeh app in a notebook should look like this:
# create a function to define the app, must accept "doc" as the parameter
def myfunc(doc):
# make Bokeh objects
# add stuff to doc
doc.add_root(stuff)
# pass the function, but *don't* execute it
handler = FunctionHandler(myfunc)
app = Application(handler)
Note that the last two lines are not necessary in recent version of Bokeh, you can just call:
show(myfunc)
directly. There is a full example in the repo:
https://github.com/bokeh/bokeh/blob/master/examples/howto/server_embed/notebook_embed.ipynb
Your code should be structured very similarly to that.