Time since first ever occurrence in Pandas - python

I have the following data frame in Pandas:
df = pd.DataFrame({
'ID': [1,2,1,1,2,3,1,3,3,3,2],
'date': ['2021-04-28','2022-05-21','2011-03-01','2021-11-28','1992-12-01','1999-10-28','2022-01-12','2019-02-28','2001-03-28','2022-01-01','2009-05-28']
})
I want to produce a column time since first occur that is the time passed in days since their first occurrence.
Here is what I did:
df['date'] = pd.to_datetime(df['date'], dayfirst=True)
df.sort_values(by=['ID', 'date'], ascending = [True, False], inplace=True)
and I got the sorted data frame
ID date
6 1 2022-01-12
3 1 2021-11-28
0 1 2021-04-28
2 1 2011-03-01
1 2 2022-05-21
10 2 2009-05-28
4 2 1992-12-01
9 3 2022-01-01
7 3 2019-02-28
8 3 2001-03-28
5 3 1999-10-28
so the output should look like
ID date time since first occur
6 1 2022-01-12 3970
3 1 2021-11-28 3925
0 1 2021-04-28 3711
2 1 2011-03-01 0
1 2 2022-05-21 10763
10 2 2009-05-28 6022
4 2 1992-12-01 0
9 3 2022-01-01 8101
7 3 2019-02-28 7063
8 3 2001-03-28 517
5 3 1999-10-28 0
Thanks in advance for helping.

After sorting the dataframe, you can get the difference between date and minimal date in group
df['time since first occur'] = (df['date'] - df.groupby('ID')['date'].transform('min')).dt.days
print(df)
ID date time since first occur
6 1 2022-01-12 3970
3 1 2021-11-28 3925
0 1 2021-04-28 3711
2 1 2011-03-01 0
1 2 2022-05-21 10763
10 2 2009-05-28 6022
4 2 1992-12-01 0
9 3 2022-01-01 8101
7 3 2019-02-28 7063
8 3 2001-03-28 517
5 3 1999-10-28 0

Related

Pandas DataFrame Change Values Based on Values in Different Rows

I have a DataFrame of store sales for 1115 stores with dates over about 2.5 years. The StateHoliday column is a categorical variable indicating the type of holiday it is. See the piece of the df below. As can be seen, b is the code for Easter. There are other codes for other holidays.
Piece of DF
My objective is to analyze sales before and during a holiday. The way I seek to do this is to change the value of the StateHoliday column to something unique for the few days before a particular holiday. For example, b is the code for Easter, so I could change the value to b- indicating that the day is shortly before Easter. The only way I can think to do this is to go through and manually change these values for certain dates. There aren't THAT many holidays, so it wouldn't be that hard to do. But still very annoying!
Tom, see if this works for you, if not please provide additional information:
In the file I have the following data:
Store,Sales,Date,StateHoliday
1,6729,2013-03-25,0
1,6686,2013-03-26,0
1,6660,2013-03-27,0
1,7285,2013-03-28,0
1,6729,2013-03-29,b
1115,10712,2015-07-01,0
1115,11110,2015-07-02,0
1115,10500,2015-07-03,0
1115,12000,2015-07-04,c
import pandas as pd
fname = r"D:\workspace\projects\misc\data\holiday_sales.csv"
df = pd.read_csv(fname)
df["Date"] = pd.to_datetime(df["Date"])
holidays = df[df["StateHoliday"]!="0"].copy(deep=True) # taking only holidays
dictDate2Holiday = dict(zip(holidays["Date"].tolist(), holidays["StateHoliday"].tolist()))
look_back = 2 # how many days back you want to go
holiday_look_back = []
# building a list of pairs (prev days, holiday code)
for dt, h in dictDate2Holiday.items():
prev = dt
holiday_look_back.append((prev, h))
for i in range(1, look_back+1):
prev = prev - pd.Timedelta(days=1)
holiday_look_back.append((prev, h))
dfHolidayLookBack = pd.DataFrame(holiday_look_back, columns=["Date", "StateHolidayNew"])
df = df.merge(dfHolidayLookBack, how="left", on="Date")
df["StateHolidayNew"].fillna("0", inplace=True)
print(df)
columns StateHolidayNew should have the info you need to start analyzing your data
Assuming you have a dataframe like this:
Store Sales Date StateHoliday
0 2 4205 2016-11-15 0
1 1 684 2016-07-13 0
2 2 8946 2017-04-15 0
3 1 6929 2017-02-02 0
4 2 8296 2017-10-30 b
5 1 8261 2015-10-05 0
6 2 3904 2016-08-22 0
7 1 2613 2017-12-30 0
8 2 1324 2016-08-23 0
9 1 6961 2015-11-11 0
10 2 15 2016-12-06 a
11 1 9107 2016-07-05 0
12 2 1138 2015-03-29 0
13 1 7590 2015-06-24 0
14 2 5172 2017-04-29 0
15 1 660 2016-06-21 0
16 2 2539 2017-04-25 0
What you can do is group the values between the different alphabets which represent the holidays and then groupby to find out the sales according to each group. An improvement to this would be to backfill the numbers before the groups, exp., groups=0.0 would become b_0 which would make it easier to understand the groups and what holiday they represent, but I am not sure how to do that.
df['StateHolidayBool'] = df['StateHoliday'].str.isalpha().fillna(False).replace({False: 0, True: 1})
df = df.assign(group = (df[~df['StateHolidayBool'].between(1,1)].index.to_series().diff() > 1).cumsum())
df = df.assign(groups = np.where(df.group.notna(), df.group, df.StateHoliday)).drop(['StateHolidayBool', 'group'], axis=1)
df[~df['groups'].str.isalpha().fillna(False)].groupby('groups').sum()
Output:
Store Sales
groups
0.0 6 20764
1.0 7 23063
2.0 9 26206
Final DataFrame:
Store Sales Date StateHoliday groups
0 2 4205 2016-11-15 0 0.0
1 1 684 2016-07-13 0 0.0
2 2 8946 2017-04-15 0 0.0
3 1 6929 2017-02-02 0 0.0
4 2 8296 2017-10-30 b b
5 1 8261 2015-10-05 0 1.0
6 2 3904 2016-08-22 0 1.0
7 1 2613 2017-12-30 0 1.0
8 2 1324 2016-08-23 0 1.0
9 1 6961 2015-11-11 0 1.0
10 2 15 2016-12-06 a a
11 1 9107 2016-07-05 0 2.0
12 2 1138 2015-03-29 0 2.0
13 1 7590 2015-06-24 0 2.0
14 2 5172 2017-04-29 0 2.0
15 1 660 2016-06-21 0 2.0
16 2 2539 2017-04-25 0 2.0

Number of active IDs in each period

I have a dataframe that looks like this
ID | START | END
1 |2016-12-31|2017-02-30
2 |2017-01-30|2017-10-30
3 |2016-12-21|2018-12-30
I want to know the number of active IDs in each possible day. So basically count the number of overlapping time periods.
What I did to calculate this was creating a new data frame c_df with the columns date and count. The first column was populated using a range:
all_dates = pd.date_range(start=min(df['START']), end=max(df['END']))
Then for every line in my original data frame I calculated a different range for the start and end dates:
id_dates = pd.date_range(start=min(user['START']), end=max(user['END']))
I then used this range of dates to increment by one the corresponding count cell in c_df.
All these loops though are not very efficient for big data sets and look ugly. Is there a more efficient way of doing this?
If your dataframe is small enough so that performance is not a concern, create a date range for each row, then explode them and count how many times each date exists in the exploded series.
Requires pandas >= 0.25:
df.apply(lambda row: pd.date_range(row['START'], row['END']), axis=1) \
.explode() \
.value_counts() \
.sort_index()
If your dataframe is large, take advantage of numpy broadcasting to improve performance.
Work with any version of pandas:
dates = pd.date_range(df['START'].min(), df['END'].max()).values
start = df['START'].values[:, None]
end = df['END'].values[:, None]
mask = (start <= dates) & (dates <= end)
result = pd.DataFrame({
'Date': dates,
'Count': mask.sum(axis=0)
})
Create IntervalIndex and use genex or list comprehension with contains to check each date again each interval (Note: I made a smaller sample to test on this solution)
Sample `df`
Out[56]:
ID START END
0 1 2016-12-31 2017-01-20
1 2 2017-01-20 2017-01-30
2 3 2016-12-28 2017-02-03
3 4 2017-01-20 2017-01-25
iix = pd.IntervalIndex.from_arrays(df.START, df.END, closed='both')
all_dates = pd.date_range(start=min(df['START']), end=max(df['END']))
df_final = pd.DataFrame({'dates': all_dates,
'date_counts': (iix.contains(dt).sum() for dt in all_dates)})
In [58]: df_final
Out[58]:
dates date_counts
0 2016-12-28 1
1 2016-12-29 1
2 2016-12-30 1
3 2016-12-31 2
4 2017-01-01 2
5 2017-01-02 2
6 2017-01-03 2
7 2017-01-04 2
8 2017-01-05 2
9 2017-01-06 2
10 2017-01-07 2
11 2017-01-08 2
12 2017-01-09 2
13 2017-01-10 2
14 2017-01-11 2
15 2017-01-12 2
16 2017-01-13 2
17 2017-01-14 2
18 2017-01-15 2
19 2017-01-16 2
20 2017-01-17 2
21 2017-01-18 2
22 2017-01-19 2
23 2017-01-20 4
24 2017-01-21 3
25 2017-01-22 3
26 2017-01-23 3
27 2017-01-24 3
28 2017-01-25 3
29 2017-01-26 2
30 2017-01-27 2
31 2017-01-28 2
32 2017-01-29 2
33 2017-01-30 2
34 2017-01-31 1
35 2017-02-01 1
36 2017-02-02 1
37 2017-02-03 1

Pandas - Times series multiple slices of a dataframe groupby Id

What I have:
A dataframe, df consists of 3 columns (Id, Item and Timestamp). Each subject has unique Id with recorded Item on a particular date and time (Timestamp). The second dataframe, df_ref consists of date time range reference for slicing the df, the Start and the End for each subject, Id.
df:
Id Item Timestamp
0 1 aaa 2011-03-15 14:21:00
1 1 raa 2012-05-03 04:34:01
2 1 baa 2013-05-08 22:21:29
3 1 boo 2015-12-24 21:53:41
4 1 afr 2016-04-14 12:28:26
5 1 aud 2017-05-10 11:58:02
6 2 boo 2004-06-22 22:20:58
7 2 aaa 2005-11-16 07:00:00
8 2 ige 2006-06-28 17:09:18
9 2 baa 2008-05-22 21:28:00
10 2 boo 2017-06-08 23:31:06
11 3 ige 2011-06-30 13:14:21
12 3 afr 2013-06-11 01:38:48
13 3 gui 2013-06-21 23:14:26
14 3 loo 2014-06-10 15:15:42
15 3 boo 2015-01-23 02:08:35
16 3 afr 2015-04-15 00:15:23
17 3 aaa 2016-02-16 10:26:03
18 3 aaa 2016-06-10 01:11:15
19 3 ige 2016-07-18 11:41:18
20 3 boo 2016-12-06 19:14:00
21 4 gui 2016-01-05 09:19:50
22 4 aaa 2016-12-09 14:49:50
23 4 ige 2016-11-01 08:23:18
df_ref:
Id Start End
0 1 2013-03-12 00:00:00 2016-05-30 15:20:36
1 2 2005-06-05 08:51:22 2007-02-24 00:00:00
2 3 2011-05-14 10:11:28 2013-12-31 17:04:55
3 3 2015-03-29 12:18:31 2016-07-26 00:00:00
What I want:
Slice the df dataframe based on the data time range given for each Id (groupby Id) in df_ref and concatenate the sliced data into new dataframe. However, a subject could have more than one date time range (in this example Id=3 has 2 date time range).
df_expected:
Id Item Timestamp
0 1 baa 2013-05-08 22:21:29
1 1 boo 2015-12-24 21:53:41
2 1 afr 2016-04-14 12:28:26
3 2 aaa 2005-11-16 07:00:00
4 2 ige 2006-06-28 17:09:18
5 3 ige 2011-06-30 13:14:21
6 3 afr 2013-06-11 01:38:48
7 3 gui 2013-06-21 23:14:26
8 3 afr 2015-04-15 00:15:23
9 3 aaa 2016-02-16 10:26:03
10 3 aaa 2016-06-10 01:11:15
11 3 ige 2016-07-18 11:41:18
What I have done so far:
I referred to this post (Time series multiple slice) while doing my code. I modify the code since it does not have the groupby element which I need.
My code:
from datetime import datetime
df['Timestamp'] = pd.to_datetime(df.Timestamp, format='%Y-%m-%d %H:%M')
x = pd.DataFrame()
for pid in def_ref.Id.unique():
selection = df[(df['Id']== pid) & (df['Timestamp']>= def_ref['Start']) & (df['Timestamp']<= def_ref['End'])]
x = x.append(selection)
Above code give error:
ValueError: Can only compare identically-labeled Series objects
First use merge with default inner join, also it create all combinations for duplicated Id. Then filter by between and DataFrame.loc for filtering by conditions and by df1.columns in one step:
df1 = df.merge(df_ref, on='Id')
df2 = df1.loc[df1['Timestamp'].between(df1['Start'], df1['End']), df.columns]
print (df2)
Id Item Timestamp
2 1 baa 2013-05-08 22:21:29
3 1 boo 2015-12-24 21:53:41
4 1 afr 2016-04-14 12:28:26
7 2 aaa 2005-11-16 07:00:00
8 2 ige 2006-06-28 17:09:18
11 3 ige 2011-06-30 13:14:21
13 3 afr 2013-06-11 01:38:48
15 3 gui 2013-06-21 23:14:26
22 3 afr 2015-04-15 00:15:23
24 3 aaa 2016-02-16 10:26:03
26 3 aaa 2016-06-10 01:11:15
28 3 ige 2016-07-18 11:41:18

Calculate average of every 7 instances in a dataframe column

I have this pandas dataframe with daily asset prices:
Picture of head of Dataframe
I would like to create a pandas series (It could also be an additional column in the dataframe or some other datastructure) with the weakly average asset prices. This means I need to calculate the average on every 7 consecutive instances in the column and save it into a series.
Picture of how result should look like
As I am a complete newbie to python (and programming in general, for that matter), I really have no idea how to start.
I am very grateful for every tipp!
I believe need GroupBy.transform by modulo of numpy array create by numpy.arange for general solution also working with all indexes (e.g. with DatetimeIndex):
np.random.seed(2018)
rng = pd.date_range('2018-04-19', periods=20)
df = pd.DataFrame({'Date': rng[::-1],
'ClosingPrice': np.random.randint(4, size=20)})
#print (df)
df['weekly'] = df['ClosingPrice'].groupby(np.arange(len(df)) // 7).transform('mean')
print (df)
ClosingPrice Date weekly
0 2 2018-05-08 1.142857
1 2 2018-05-07 1.142857
2 2 2018-05-06 1.142857
3 1 2018-05-05 1.142857
4 1 2018-05-04 1.142857
5 0 2018-05-03 1.142857
6 0 2018-05-02 1.142857
7 2 2018-05-01 2.285714
8 1 2018-04-30 2.285714
9 1 2018-04-29 2.285714
10 3 2018-04-28 2.285714
11 3 2018-04-27 2.285714
12 3 2018-04-26 2.285714
13 3 2018-04-25 2.285714
14 1 2018-04-24 1.666667
15 0 2018-04-23 1.666667
16 3 2018-04-22 1.666667
17 2 2018-04-21 1.666667
18 2 2018-04-20 1.666667
19 2 2018-04-19 1.666667
Detail:
print (np.arange(len(df)) // 7)
[0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2]

Pandas groupby date

I have a DataFrame with events. One or more events can occur at a date (so the date can't be an index). The date range is several years. I want to groupby years and months and have a count of the Category values. Thnx
in [12]: df = pd.read_excel('Pandas_Test.xls', 'sheet1')
In [13]: df
Out[13]:
EventRefNr DateOccurence Type Category
0 86596 2010-01-02 00:00:00 3 Small
1 86779 2010-01-09 00:00:00 13 Medium
2 86780 2010-02-10 00:00:00 6 Small
3 86781 2010-02-09 00:00:00 17 Small
4 86898 2010-02-10 00:00:00 6 Small
5 86898 2010-02-11 00:00:00 6 Small
6 86902 2010-02-17 00:00:00 9 Small
7 86908 2010-02-19 00:00:00 3 Medium
8 86908 2010-03-05 00:00:00 3 Medium
9 86909 2010-03-06 00:00:00 8 Small
10 86930 2010-03-12 00:00:00 29 Small
11 86934 2010-03-16 00:00:00 9 Small
12 86940 2010-04-08 00:00:00 9 High
13 86941 2010-04-09 00:00:00 17 Small
14 86946 2010-04-14 00:00:00 10 Small
15 86950 2011-01-19 00:00:00 12 Small
16 86956 2011-01-24 00:00:00 13 Small
17 86959 2011-01-27 00:00:00 17 Small
I tried:
df.groupby(df['DateOccurence'])
For the month and year break out I often add additional columns to the data frame that break out the dates into each piece:
df['year'] = [t.year for t in df.DateOccurence]
df['month'] = [t.month for t in df.DateOccurence]
df['day'] = [t.day for t in df.DateOccurence]
It adds space complexity (adding columns to the df) but is less time complex (less processing on groupby) than a datetime index but it's really up to you. datetime index is the more pandas way to do things.
After breaking out by year, month, day you can do any groupby you need.
df.groupby['year','month'].Category.apply(pd.value_counts)
To get months across multiple years:
df.groupby['month'].Category.apply(pd.value_counts)
Or in Andy Hayden's datetime index
df.groupby[di.month].Category.apply(pd.value_counts)
You can simply pick which method fits your needs better.
You can apply value_counts to the SeriesGroupby (for the column):
In [11]: g = df.groupby('DateOccurence')
In [12]: g.Category.apply(pd.value_counts)
Out[12]:
DateOccurence
2010-01-02 Small 1
2010-01-09 Medium 1
2010-02-09 Small 1
2010-02-10 Small 2
2010-02-11 Small 1
2010-02-17 Small 1
2010-02-19 Medium 1
2010-03-05 Medium 1
2010-03-06 Small 1
2010-03-12 Small 1
2010-03-16 Small 1
2010-04-08 High 1
2010-04-09 Small 1
2010-04-14 Small 1
2011-01-19 Small 1
2011-01-24 Small 1
2011-01-27 Small 1
dtype: int64
I actually hoped this to return the following DataFrame, but you need to unstack it:
In [13]: g.Category.apply(pd.value_counts).unstack(-1).fillna(0)
Out[13]:
High Medium Small
DateOccurence
2010-01-02 0 0 1
2010-01-09 0 1 0
2010-02-09 0 0 1
2010-02-10 0 0 2
2010-02-11 0 0 1
2010-02-17 0 0 1
2010-02-19 0 1 0
2010-03-05 0 1 0
2010-03-06 0 0 1
2010-03-12 0 0 1
2010-03-16 0 0 1
2010-04-08 1 0 0
2010-04-09 0 0 1
2010-04-14 0 0 1
2011-01-19 0 0 1
2011-01-24 0 0 1
2011-01-27 0 0 1
If there were multiple different Categories with the same Date they would be on the same row...

Categories

Resources