Why is .select() showing/parsing values differently to I don't use it?
I have this CSV:
CompanyName, CompanyNumber,RegAddress.CareOf,RegAddress.POBox,RegAddress.AddressLine1, RegAddress.AddressLine2,RegAddress.PostTown,RegAddress.County,RegAddress.Country,RegAddress.PostCode,CompanyCategory,CompanyStatus,CountryOfOrigin,DissolutionDate,IncorporationDate,Accounts.AccountRefDay,Accounts.AccountRefMonth,Accounts.NextDueDate,Accounts.LastMadeUpDate,Accounts.AccountCategory,Returns.NextDueDate,Returns.LastMadeUpDate,Mortgages.NumMortCharges,Mortgages.NumMortOutstanding,Mortgages.NumMortPartSatisfied,Mortgages.NumMortSatisfied,SICCode.SicText_1,SICCode.SicText_2,SICCode.SicText_3,SICCode.SicText_4,LimitedPartnerships.NumGenPartners,LimitedPartnerships.NumLimPartners,URI,PreviousName_1.CONDATE, PreviousName_1.CompanyName, PreviousName_2.CONDATE, PreviousName_2.CompanyName,PreviousName_3.CONDATE, PreviousName_3.CompanyName,PreviousName_4.CONDATE, PreviousName_4.CompanyName,PreviousName_5.CONDATE, PreviousName_5.CompanyName,PreviousName_6.CONDATE, PreviousName_6.CompanyName,PreviousName_7.CONDATE, PreviousName_7.CompanyName,PreviousName_8.CONDATE, PreviousName_8.CompanyName,PreviousName_9.CONDATE, PreviousName_9.CompanyName,PreviousName_10.CONDATE, PreviousName_10.CompanyName,ConfStmtNextDueDate, ConfStmtLastMadeUpDate
"ATS CAR RENTALS LIMITED","10795807","","",", 1ST FLOOR ,WESTHILL HOUSE 2B DEVONSHIRE ROAD","ACCOUNTING FREEDOM","BEXLEYHEATH","","ENGLAND","DA6 8DS","Private Limited Company","Active","United Kingdom","","31/05/2017","31","5","28/02/2023","31/05/2021","TOTAL EXEMPTION FULL","28/06/2018","","0","0","0","0","49390 - Other passenger land transport","","","","0","0","http://business.data.gov.uk/id/company/10795807","","","","","","","","","","","","","","","","","","","","","12/06/2023","29/05/2022"
"ATS CARE LIMITED","10393661","","","UNIT 5 CO-OP BUILDINGS HIGH STREET","ABERSYCHAN","PONTYPOOL","TORFAEN","WALES","NP4 7AE","Private Limited Company","Active","United Kingdom","","26/09/2016","30","9","30/06/2023","30/09/2021","UNAUDITED ABRIDGED","24/10/2017","","0","0","0","0","87900 - Other residential care activities n.e.c.","","","","0","0","http://business.data.gov.uk/id/company/10393661","17/05/2018","ATS SUPPORT LIMITED","22/12/2017","ATS CARE LIMITED","","","","","","","","","","","","","","","","","09/10/2022","25/09/2021"
I'm reading the csv like so:
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
_file = "/path/dir/BasicCompanyDataAsOneFile-2022-08-01.csv"
df = spark.read.csv(_file, header=True, quote='"', escape="\"")
Focusing on the CompanyCategory column, we should see Private Limited Company for both lines. But this is what I get instead when using select():
df.select("CompanyCategory").show(truncate=False)
+-----------------------+
|CompanyCategory |
+-----------------------+
|DA6 8DS |
|Private Limited Company|
+-----------------------+
df.select("CompanyCategory").collect()
[Row(CompanyCategory='DA6 8DS'),
Row(CompanyCategory='Private Limited Company')]
vs when not using select():
from pprint import pprint
for row in df.collect():
pprint(row.asDict())
{' CompanyNumber': '10795807',
...
'CompanyCategory': 'Private Limited Company',
'CompanyName': 'ATS CAR RENTALS LIMITED',
...}
{' CompanyNumber': '10393661',
...
'CompanyCategory': 'Private Limited Company',
'CompanyName': 'ATS CARE LIMITED',
...}
Using asDict() for readability.
SQL doing the same thing:
df.createOrReplaceTempView("companies")
spark.sql('select CompanyCategory from companies').show()
+--------------------+
| CompanyCategory|
+--------------------+
|Private Limited C...|
| DA6 8DS|
+--------------------+
As you can see when not using select() the CompanyCategory values are showing correctly. Why is this happening? What can I do to avoid this?
Context: I'm trying to creating dimension tables which is why I'm selecting a single column. The next phase is to drop duplicates, filter, sort, etc.
Edit:
Here are two example values in the actual CSV that are throwing things off:
CompanyName of """ BORA "" 2 LTD"
1st line address of ", 1ST FLOOR ,WESTHILL HOUSE 2B DEVONSHIRE ROAD"
Note:
These values from two separate distinct lines in the CSV.
These values are copy and pasted from the CSV opened in text editor like Notepad or VSCode).
Tried and failed:
df = spark.read.csv(_file, header=True) - completely picks up incorrect column.
df = spark.read.csv(_file, header=True, escape='\"') - exact same thing described in original question above. So same results.
df = spark.read.csv(_file, header=True, escape='""') - since the CSV escapes quotes using two double quotes, then I guess using two double quotes as escape param would do the trick? But getting following error:
Py4JJavaError: An error occurred while calling o276.csv.
: java.lang.RuntimeException: escape cannot be more than one character
When reading the csv, the parameters quote and escape are set to the same value ('"'=="\"" returns True in Python).
I would guess that configuring both parameters in this way will somehow disturb the parser that Spark uses to separate the single fields. After removing the escape parameter you can process the remaining " with regexp_replace:
from pyspark.sql import functions as F
df = spark.read.csv(<filename>, header=True, quote='"')
cols = [F.regexp_replace(F.regexp_replace(
F.regexp_replace("`" + col + "`", '^"', ''),
'"$', ''), '""', '"').alias(col) for col in df.columns]
df.select(cols).show(truncate=False)
Probably there is a smart regexp that can combine all three replace operations into one...
This is an issue when reading a single column from CSV file vs. when reading all the columns:
df = spark.read.csv('companies-house.csv', header=True, quote='"', escape="\"")
df.show() # correct output (all columns loaded)
df.toPandas() # same as pd.read_csv()
df.select('CompanyCategory').show() # wrong output (trying to load a single column)
df.cache() # all columns will be loaded and used in any subsequent call
df.select('CompanyCategory').show() # correct output
The first select() performs a different (optimized) read than the second, so one possible workaround would be to cache() the data immediately. This will however load all the columns, not just one (although pandas and COPY do the same).
The problematic part of the CSV is the RegAddress.POBox column where empty value is saved as ", instead of "",. You can check this by incrementally loading more columns:
df.unpersist() # undo cache() operation (for testing purposes only)
df.select(*[f"`{c}`" for c in df.columns[:3]], 'CompanyCategory').show() # wrong
df.select(*[f"`{c}`" for c in df.columns[:4]], 'CompanyCategory').show() # OK
I have a CSV that has been returned and the data is in a god awful state, I need to parse both the header and then the data out from each row.
This is an example of one row:
+--------------+------------+--------------------+--------------+------------+-------------+--------------------+----------+--------------+----------+----------+-----------+-------------+-------------+----------+--------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+--------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+--------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+--------------------+--------------+----------+------------+----------+--------------+---------------+
| _c0| _c1| _c2| _c3| _c4| _c5| _c6| _c7| _c8| _c9| _c10| _c11| _c12| _c13| _c14| _c15| _c16| _c17| _c18| _c19| _c20| _c21| _c22| _c23| _c24| _c25| _c26| _c27| _c28| _c29| _c30| _c31| _c32| _c33| _c34| _c35| _c36| _c37| _c38| _c39| _c40| _c41| _c42| _c43| _c44| _c45| _c46| _c47| _c48| _c49| _c50| _c51| _c52| _c53| _c54| _c55| _c56| _c57| _c58| _c59| _c60| _c61| _c62| _c63| _c64| _c65| _c66| _c67| _c68| _c69| _c70| _c71| _c72| _c73| _c74| _c75| _c76| _c77| _c78| _c79| _c80| _c81| _c82| _c83| _c84| _c85| _c86| _c87| _c88| _c89| _c90| _c91| _c92| _c93| _c94| _c95| _c96| _c97| _c98| _c99| _c100| _c101| _c102| _c103| _c104| _c105| _c106| _c107| _c108| _c109| _c110| _c111| _c112| _c113| _c114| _c115| _c116| _c117| _c118| _c119| _c120| _c121| _c122| _c123| _c124| _c125| _c126| _c127| _c128| _c129| _c130| _c131| _c132| _c133| _c134| _c135| _c136| _c137| _c138| _c139| _c140| _c141| _c142| _c143| _c144| _c145| _c146| _c147| _c148| _c149| _c150|
+--------------+------------+--------------------+--------------+------------+-------------+--------------------+----------+--------------+----------+----------+-----------+-------------+-------------+----------+--------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+--------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+--------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+--------------------+--------------+----------+------------+----------+--------------+---------------+
|{"MANDT":"400"|"LEDNR":"00"|"OBJNR":"KS660000...|"GJAHR":"2022"|"WRTTP":"04"|"VERSN":"000"|"KSTAR":"0051040100"|"HRKFT":""|"VRGNG":"COIN"|"VBUND":""|"PARGB":""|"BEKNZ":"H"|"TWAER":"THB"|"PERBL":"016"|"MEINH":""|"WTG001":-1854554.89|"WTG002":0.00|"WTG003":0.00|"WTG004":0.00|"WTG005":0.00|"WTG006":0.00|"WTG007":0.00|"WTG008":0.00|"WTG009":0.00|"WTG010":0.00|"WTG011":0.00|"WTG012":0.00|"WTG013":0.00|"WTG014":0.00|"WTG015":0.00|"WTG016":0.00|"WOG001":-1854554.89|"WOG002":0.00|"WOG003":0.00|"WOG004":0.00|"WOG005":0.00|"WOG006":0.00|"WOG007":0.00|"WOG008":0.00|"WOG009":0.00|"WOG010":0.00|"WOG011":0.00|"WOG012":0.00|"WOG013":0.00|"WOG014":0.00|"WOG015":0.00|"WOG016":0.00|"WKG001":-1854554.89|"WKG002":0.00|"WKG003":0.00|"WKG004":0.00|"WKG005":0.00|"WKG006":0.00|"WKG007":0.00|"WKG008":0.00|"WKG009":0.00|"WKG010":0.00|"WKG011":0.00|"WKG012":0.00|"WKG013":0.00|"WKG014":0.00|"WKG015":0.00|"WKG016":0.00|"WKF001":0.00|"WKF002":0.00|"WKF003":0.00|"WKF004":0.00|"WKF005":0.00|"WKF006":0.00|"WKF007":0.00|"WKF008":0.00|"WKF009":0.00|"WKF010":0.00|"WKF011":0.00|"WKF012":0.00|"WKF013":0.00|"WKF014":0.00|"WKF015":0.00|"WKF016":0.00|"PAG001":0.00|"PAG002":0.00|"PAG003":0.00|"PAG004":0.00|"PAG005":0.00|"PAG006":0.00|"PAG007":0.00|"PAG008":0.00|"PAG009":0.00|"PAG010":0.00|"PAG011":0.00|"PAG012":0.00|"PAG013":0.00|"PAG014":0.00|"PAG015":0.00|"PAG016":0.00|"MEG001":0.000|"MEG002":0.000|"MEG003":0.000|"MEG004":0.000|"MEG005":0.000|"MEG006":0.000|"MEG007":0.000|"MEG008":0.000|"MEG009":0.000|"MEG010":0.000|"MEG011":0.000|"MEG012":0.000|"MEG013":0.000|"MEG014":0.000|"MEG015":0.000|"MEG016":0.000|"MEF001":0.000|"MEF002":0.000|"MEF003":0.000|"MEF004":0.000|"MEF005":0.000|"MEF006":0.000|"MEF007":0.000|"MEF008":0.000|"MEF009":0.000|"MEF010":0.000|"MEF011":0.000|"MEF012":0.000|"MEF013":0.000|"MEF014":0.000|"MEF015":0.000|"MEF016":0.000|"MUV001":""|"MUV002":""|"MUV003":""|"MUV004":""|"MUV005":""|"MUV006":""|"MUV007":""|"MUV008":""|"MUV009":""|"MUV010":""|"MUV011":""|"MUV012":""|"MUV013":""|"MUV014":""|"MUV015":""|"MUV016":""|"BELTP":"1"|"TIMESTMP":101246...|"BUKRS":"6611"|"FKBER":""|"SEGMENT":""|"GEBER":""|"GRANT_NBR":""|"BUDGET_PD":""}|
+--------------+------------+--------------------+--------------+------------+-------------+--------------------+----------+--------------+----------+----------+-----------+-------------+-------------+----------+--------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+--------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+--------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+--------------------+--------------+----------+------------+----------+--------------+---------------+
The first part for example MANDT is the column header and the bit after the : is the value. I basically need to
A) Loop all the columns and change the headers so they relate to the bit prior to the :
B) then populate the rows with the second part after.
I've attempted a small piece of code just to edit all the columns like below
from pyspark.sql.functions import split
for colname in COSPDF.columns:
print(colname)
COSPDF = COSPDF.withColumn(col(colname), lower(colname))
and I receive an error TypeError: 'str' object is not callable
I've then done the "lazy" thing and found some code like below
from pyspark.sql.functions import split
split_df = COSPDF.select(split(COSPDF._c0, ':').alias('split_text'))
split_df.selectExpr("split_text[0] as left").show() # left of delim
split_df.selectExpr("split_text[1] as right").show() # right of delim
However this code only works one column that I have to "specify" which doesn't work when the CSV has 123 columns, I'm not doing it 123 times. Any assistance would really help with this please, it's had me stuck for hours.
UPDATED
Some rows from the original file:
"{""MANDT"":""400""","""LEDNR"":""00""","""OBJNR"":""KS66000011001070""","""GJAHR"":""2022""","""WRTTP"":""04""","""VERSN"":""000""","""KSTAR"":""0051040100""","""HRKFT"":""""","""VRGNG"":""COIN""","""VBUND"":""""","""PARGB"":""""","""BEKNZ"":""H""","""TWAER"":""THB""","""PERBL"":""016""","""MEINH"":""""","""WTG001"":-1854554.89","""WTG002"":0.00","""WTG003"":0.00","""WTG004"":0.00","""WTG005"":0.00","""WTG006"":0.00","""WTG007"":0.00","""WTG008"":0.00","""WTG009"":0.00","""WTG010"":0.00","""WTG011"":0.00","""WTG012"":0.00","""WTG013"":0.00","""WTG014"":0.00","""WTG015"":0.00","""WTG016"":0.00","""WOG001"":-1854554.89","""WOG002"":0.00","""WOG003"":0.00","""WOG004"":0.00","""WOG005"":0.00","""WOG006"":0.00","""WOG007"":0.00","""WOG008"":0.00","""WOG009"":0.00","""WOG010"":0.00","""WOG011"":0.00","""WOG012"":0.00","""WOG013"":0.00","""WOG014"":0.00","""WOG015"":0.00","""WOG016"":0.00","""WKG001"":-1854554.89","""WKG002"":0.00","""WKG003"":0.00","""WKG004"":0.00","""WKG005"":0.00","""WKG006"":0.00","""WKG007"":0.00","""WKG008"":0.00","""WKG009"":0.00","""WKG010"":0.00","""WKG011"":0.00","""WKG012"":0.00","""WKG013"":0.00","""WKG014"":0.00","""WKG015"":0.00","""WKG016"":0.00","""WKF001"":0.00","""WKF002"":0.00","""WKF003"":0.00","""WKF004"":0.00","""WKF005"":0.00","""WKF006"":0.00","""WKF007"":0.00","""WKF008"":0.00","""WKF009"":0.00","""WKF010"":0.00","""WKF011"":0.00","""WKF012"":0.00","""WKF013"":0.00","""WKF014"":0.00","""WKF015"":0.00","""WKF016"":0.00","""PAG001"":0.00","""PAG002"":0.00","""PAG003"":0.00","""PAG004"":0.00","""PAG005"":0.00","""PAG006"":0.00","""PAG007"":0.00","""PAG008"":0.00","""PAG009"":0.00","""PAG010"":0.00","""PAG011"":0.00","""PAG012"":0.00","""PAG013"":0.00","""PAG014"":0.00","""PAG015"":0.00","""PAG016"":0.00","""MEG001"":0.000","""MEG002"":0.000","""MEG003"":0.000","""MEG004"":0.000","""MEG005"":0.000","""MEG006"":0.000","""MEG007"":0.000","""MEG008"":0.000","""MEG009"":0.000","""MEG010"":0.000","""MEG011"":0.000","""MEG012"":0.000","""MEG013"":0.000","""MEG014"":0.000","""MEG015"":0.000","""MEG016"":0.000","""MEF001"":0.000","""MEF002"":0.000","""MEF003"":0.000","""MEF004"":0.000","""MEF005"":0.000","""MEF006"":0.000","""MEF007"":0.000","""MEF008"":0.000","""MEF009"":0.000","""MEF010"":0.000","""MEF011"":0.000","""MEF012"":0.000","""MEF013"":0.000","""MEF014"":0.000","""MEF015"":0.000","""MEF016"":0.000","""MUV001"":""""","""MUV002"":""""","""MUV003"":""""","""MUV004"":""""","""MUV005"":""""","""MUV006"":""""","""MUV007"":""""","""MUV008"":""""","""MUV009"":""""","""MUV010"":""""","""MUV011"":""""","""MUV012"":""""","""MUV013"":""""","""MUV014"":""""","""MUV015"":""""","""MUV016"":""""","""BELTP"":""1""","""TIMESTMP"":10124662650000.0","""BUKRS"":""6611""","""FKBER"":""""","""SEGMENT"":""""","""GEBER"":""""","""GRANT_NBR"":""""","""BUDGET_PD"":""""}"
"{""MANDT"":""400""","""LEDNR"":""00""","""OBJNR"":""KS66000011001070""","""GJAHR"":""2022""","""WRTTP"":""04""","""VERSN"":""000""","""KSTAR"":""0051040100""","""HRKFT"":""""","""VRGNG"":""COIN""","""VBUND"":""""","""PARGB"":""""","""BEKNZ"":""S""","""TWAER"":""THB""","""PERBL"":""016""","""MEINH"":""""","""WTG001"":7424891.07","""WTG002"":0.00","""WTG003"":0.00","""WTG004"":0.00","""WTG005"":0.00","""WTG006"":0.00","""WTG007"":0.00","""WTG008"":0.00","""WTG009"":0.00","""WTG010"":0.00","""WTG011"":0.00","""WTG012"":0.00","""WTG013"":0.00","""WTG014"":0.00","""WTG015"":0.00","""WTG016"":0.00","""WOG001"":7424891.07","""WOG002"":0.00","""WOG003"":0.00","""WOG004"":0.00","""WOG005"":0.00","""WOG006"":0.00","""WOG007"":0.00","""WOG008"":0.00","""WOG009"":0.00","""WOG010"":0.00","""WOG011"":0.00","""WOG012"":0.00","""WOG013"":0.00","""WOG014"":0.00","""WOG015"":0.00","""WOG016"":0.00","""WKG001"":7424891.07","""WKG002"":0.00","""WKG003"":0.00","""WKG004"":0.00","""WKG005"":0.00","""WKG006"":0.00","""WKG007"":0.00","""WKG008"":0.00","""WKG009"":0.00","""WKG010"":0.00","""WKG011"":0.00","""WKG012"":0.00","""WKG013"":0.00","""WKG014"":0.00","""WKG015"":0.00","""WKG016"":0.00","""WKF001"":0.00","""WKF002"":0.00","""WKF003"":0.00","""WKF004"":0.00","""WKF005"":0.00","""WKF006"":0.00","""WKF007"":0.00","""WKF008"":0.00","""WKF009"":0.00","""WKF010"":0.00","""WKF011"":0.00","""WKF012"":0.00","""WKF013"":0.00","""WKF014"":0.00","""WKF015"":0.00","""WKF016"":0.00","""PAG001"":0.00","""PAG002"":0.00","""PAG003"":0.00","""PAG004"":0.00","""PAG005"":0.00","""PAG006"":0.00","""PAG007"":0.00","""PAG008"":0.00","""PAG009"":0.00","""PAG010"":0.00","""PAG011"":0.00","""PAG012"":0.00","""PAG013"":0.00","""PAG014"":0.00","""PAG015"":0.00","""PAG016"":0.00","""MEG001"":0.000","""MEG002"":0.000","""MEG003"":0.000","""MEG004"":0.000","""MEG005"":0.000","""MEG006"":0.000","""MEG007"":0.000","""MEG008"":0.000","""MEG009"":0.000","""MEG010"":0.000","""MEG011"":0.000","""MEG012"":0.000","""MEG013"":0.000","""MEG014"":0.000","""MEG015"":0.000","""MEG016"":0.000","""MEF001"":0.000","""MEF002"":0.000","""MEF003"":0.000","""MEF004"":0.000","""MEF005"":0.000","""MEF006"":0.000","""MEF007"":0.000","""MEF008"":0.000","""MEF009"":0.000","""MEF010"":0.000","""MEF011"":0.000","""MEF012"":0.000","""MEF013"":0.000","""MEF014"":0.000","""MEF015"":0.000","""MEF016"":0.000","""MUV001"":""""","""MUV002"":""""","""MUV003"":""""","""MUV004"":""""","""MUV005"":""""","""MUV006"":""""","""MUV007"":""""","""MUV008"":""""","""MUV009"":""""","""MUV010"":""""","""MUV011"":""""","""MUV012"":""""","""MUV013"":""""","""MUV014"":""""","""MUV015"":""""","""MUV016"":""""","""BELTP"":""1""","""TIMESTMP"":10160936750000.0","""BUKRS"":""6611""","""FKBER"":""""","""SEGMENT"":""""","""GEBER"":""""","""GRANT_NBR"":""""","""BUDGET_PD"":""""}"
"{""MANDT"":""400""","""LEDNR"":""00""","""OBJNR"":""KS66000011001070""","""GJAHR"":""2022""","""WRTTP"":""04""","""VERSN"":""000""","""KSTAR"":""0051040105""","""HRKFT"":""""","""VRGNG"":""COIN""","""VBUND"":""""","""PARGB"":""""","""BEKNZ"":""H""","""TWAER"":""THB""","""PERBL"":""016""","""MEINH"":""""","""WTG001"":-509518.63","""WTG002"":0.00","""WTG003"":0.00","""WTG004"":0.00","""WTG005"":0.00","""WTG006"":0.00","""WTG007"":0.00","""WTG008"":0.00","""WTG009"":0.00","""WTG010"":0.00","""WTG011"":0.00","""WTG012"":0.00","""WTG013"":0.00","""WTG014"":0.00","""WTG015"":0.00","""WTG016"":0.00","""WOG001"":-509518.63","""WOG002"":0.00","""WOG003"":0.00","""WOG004"":0.00","""WOG005"":0.00","""WOG006"":0.00","""WOG007"":0.00","""WOG008"":0.00","""WOG009"":0.00","""WOG010"":0.00","""WOG011"":0.00","""WOG012"":0.00","""WOG013"":0.00","""WOG014"":0.00","""WOG015"":0.00","""WOG016"":0.00","""WKG001"":-509518.63","""WKG002"":0.00","""WKG003"":0.00","""WKG004"":0.00","""WKG005"":0.00","""WKG006"":0.00","""WKG007"":0.00","""WKG008"":0.00","""WKG009"":0.00","""WKG010"":0.00","""WKG011"":0.00","""WKG012"":0.00","""WKG013"":0.00","""WKG014"":0.00","""WKG015"":0.00","""WKG016"":0.00","""WKF001"":0.00","""WKF002"":0.00","""WKF003"":0.00","""WKF004"":0.00","""WKF005"":0.00","""WKF006"":0.00","""WKF007"":0.00","""WKF008"":0.00","""WKF009"":0.00","""WKF010"":0.00","""WKF011"":0.00","""WKF012"":0.00","""WKF013"":0.00","""WKF014"":0.00","""WKF015"":0.00","""WKF016"":0.00","""PAG001"":0.00","""PAG002"":0.00","""PAG003"":0.00","""PAG004"":0.00","""PAG005"":0.00","""PAG006"":0.00","""PAG007"":0.00","""PAG008"":0.00","""PAG009"":0.00","""PAG010"":0.00","""PAG011"":0.00","""PAG012"":0.00","""PAG013"":0.00","""PAG014"":0.00","""PAG015"":0.00","""PAG016"":0.00","""MEG001"":0.000","""MEG002"":0.000","""MEG003"":0.000","""MEG004"":0.000","""MEG005"":0.000","""MEG006"":0.000","""MEG007"":0.000","""MEG008"":0.000","""MEG009"":0.000","""MEG010"":0.000","""MEG011"":0.000","""MEG012"":0.000","""MEG013"":0.000","""MEG014"":0.000","""MEG015"":0.000","""MEG016"":0.000","""MEF001"":0.000","""MEF002"":0.000","""MEF003"":0.000","""MEF004"":0.000","""MEF005"":0.000","""MEF006"":0.000","""MEF007"":0.000","""MEF008"":0.000","""MEF009"":0.000","""MEF010"":0.000","""MEF011"":0.000","""MEF012"":0.000","""MEF013"":0.000","""MEF014"":0.000","""MEF015"":0.000","""MEF016"":0.000","""MUV001"":""""","""MUV002"":""""","""MUV003"":""""","""MUV004"":""""","""MUV005"":""""","""MUV006"":""""","""MUV007"":""""","""MUV008"":""""","""MUV009"":""""","""MUV010"":""""","""MUV011"":""""","""MUV012"":""""","""MUV013"":""""","""MUV014"":""""","""MUV015"":""""","""MUV016"":""""","""BELTP"":""1""","""TIMESTMP"":10124662700000.0","""BUKRS"":""6611""","""FKBER"":""""","""SEGMENT"":""""","""GEBER"":""""","""GRANT_NBR"":""""","""BUDGET_PD"":""""}"
Simply, You need to put Header name in Pandas Dataframe like...
df.columns = ["Column_Name1", "Column_Name2", "Column_Name3", "Column_Name4" and so on..]
And, If you want to use loop to append name for each col then you need iterate over the list and append based on the index and length of the list
First read csv and get each key value pair by iterating over the columns
import pandas as pd
read_df = pd.read_csv(<your csv file path>)
dict_of_pairs = {pairs: read_df[pairs] for pairs in read_df}
Write it in another file
write_df = pd.DataFrame({k: pd.Series(v) for k, v in dict_of_pairs.items()}) // this will allow you to write even if some column has no values in it
writer = pd.ExcelWriter(write_path, engine='xlsxwriter')
df.to_excel(writer, sheet_name='Somename for your sheet', index=False)
Hope this answers your question.....
I have the following code,
df = pd.read_csv(CsvFileName)
p = df.pivot_table(index=['Hour'], columns='DOW', values='Changes', aggfunc=np.mean).round(0)
p.fillna(0, inplace=True)
p[["1Sun", "2Mon", "3Tue", "4Wed", "5Thu", "6Fri", "7Sat"]] = p[["1Sun", "2Mon", "3Tue", "4Wed", "5Thu", "6Fri", "7Sat"]].astype(int)
It has always been working until the csv file doesn't have enough coverage (of all week days). For e.g., with the following .csv file,
DOW,Hour,Changes
4Wed,01,237
3Tue,07,2533
1Sun,01,240
3Tue,12,4407
1Sun,09,2204
1Sun,01,240
1Sun,01,241
1Sun,01,241
3Tue,11,662
4Wed,01,4
2Mon,18,4737
1Sun,15,240
2Mon,02,4
6Fri,01,1
1Sun,01,240
2Mon,19,2300
2Mon,19,2532
I'll get the following error:
KeyError: "['5Thu' '7Sat'] not in index"
It seems to have a very easy fix, but I'm just too new to Python to know how to fix it.
Use reindex to get all columns you need. It'll preserve the ones that are already there and put in empty columns otherwise.
p = p.reindex(columns=['1Sun', '2Mon', '3Tue', '4Wed', '5Thu', '6Fri', '7Sat'])
So, your entire code example should look like this:
df = pd.read_csv(CsvFileName)
p = df.pivot_table(index=['Hour'], columns='DOW', values='Changes', aggfunc=np.mean).round(0)
p.fillna(0, inplace=True)
columns = ["1Sun", "2Mon", "3Tue", "4Wed", "5Thu", "6Fri", "7Sat"]
p = p.reindex(columns=columns)
p[columns] = p[columns].astype(int)
I had a very similar issue. I got the same error because the csv contained spaces in the header. My csv contained a header "Gender " and I had it listed as:
[['Gender']]
If it's easy enough for you to access your csv, you can use the excel formula trim() to clip any spaces of the cells.
or remove it like this
df.columns = df.columns.to_series().apply(lambda x: x.strip())
please try this to clean and format your column names:
df.columns = (df.columns.str.strip().str.upper()
.str.replace(' ', '_')
.str.replace('(', '')
.str.replace(')', ''))
I had the same issue.
During the 1st development I used a .csv file (comma as separator) that I've modified a bit before saving it.
After saving the commas became semicolon.
On Windows it is dependent on the "Regional and Language Options" customize screen where you find a List separator. This is the char Windows applications expect to be the CSV separator.
When testing from a brand new file I encountered that issue.
I've removed the 'sep' argument in read_csv method
before:
df1 = pd.read_csv('myfile.csv', sep=',');
after:
df1 = pd.read_csv('myfile.csv');
That way, the issue disappeared.