I have a dataframe that has a small number of columns but many rows (about 900K right now, and it's going to get bigger as I collect more data). It looks like this:
Author
Title
Date
Category
Text
url
0
Amira Charfeddine
Wild Fadhila 01
2019-01-01
novel
الكتاب هذا نهديه لكل تونسي حس إلي الكتاب يحكي ...
NaN
1
Amira Charfeddine
Wild Fadhila 02
2019-01-01
novel
في التزغريت، والعياط و الزمامر، ليوم نتيجة الب...
NaN
2
253826
1515368_7636953
2010-12-28
/forums/forums/91/
هذا ما ينص عليه إدوستور التونسي لا رئاسة مدى ا...
https://www.tunisia-sat.com/forums/threads/151...
3
250442
1504416_7580403
2010-12-21
/forums/sports/
\n\n\n\n\n\nاعلنت الجامعة التونسية لكرة اليد ا...
https://www.tunisia-sat.com/forums/threads/150...
4
312628
1504416_7580433
2010-12-21
/forums/sports/
quel est le résultat final\n,,,,????
https://www.tunisia-sat.com/forums/threads/150...
The "Text" Column has a string of text that may be just a few words (in the case of a forum post) or it may a portion of a novel and have tens of thousands of words (as in the two first rows above).
I have code that constructs the dataframe from various corpus files (.txt and .json), then cleans the text and saves the cleaned dataframe as a pickle file.
I'm trying to run the following code to analyze how variable the spelling of different words are in the corpus. The functions seem simple enough: One counts the occurrence of a particular spelling variable in each Text row; the other takes a list of such frequencies and computes a Gini Coefficient for each lemma (which is just a numerical measure of how heterogenous the spelling is). It references a spelling_var dictionary that has a lemma as its key and the various ways of spelling that lemma as values. (like {'color': ['color', 'colour']} except not in English.)
This code works, but it uses a lot of CPU time. I'm not sure how much, but I use PythonAnywhere for my coding and this code sends me into the tarpit (in other words, it makes me exceed my daily allowance of CPU seconds).
Is there a way to do this so that it's less CPU intensive? Preferably without me having to learn another package (I've spent the past several weeks learning Pandas and am liking it, and need to just get on with my analysis). Once I have the code and have finished collecting the corpus, I'll only run it a few times; I won't be running it everyday or anything (in case that matters).
Here's the code:
import pickle
import pandas as pd
import re
with open('1_raw_df.pkl', 'rb') as pickle_file:
df = pickle.load(pickle_file)
spelling_var = {
'illi': ["الي", "اللي"],
'besh': ["باش", "بش"],
...
}
spelling_df = df.copy()
def count_word(df, word):
pattern = r"\b" + re.escape(word) + r"\b"
return df['Text'].str.count(pattern)
def compute_gini(freq_list):
proportions = [f/sum(freq_list) for f in freq_list]
squared = [p**2 for p in proportions]
return 1-sum(squared)
for w, var in spelling_var.items():
count_list = []
for v in var:
count_list.append(count_word(spelling_df, v))
gini = compute_gini(count_list)
spelling_df[w] = gini
I rewrote two lines in the last double loop, see the comments in the code below. does this solve your issue?
gini_lst = []
for w, var in spelling_var.items():
count_list = []
for v in var:
count_list.append(count_word(spelling_df, v))
#gini = compute_gini(count_list) # don't think you need to compute this at every iteration of the inner loop, right?
#spelling_df[w] = gini # having this inside of the loop creates a new column at each iteration, which could crash your CPU
gini_lst.append(compute_gini(count_list))
# this creates a df with a row for each lemma with its associated gini value
df_lemma_gini = pd.DataFrame(data={"lemma_column": list(spelling_var.keys()), "gini_column": gini_lst})
I have two lists: ref_list and inp_list. How can one make use of FuzzyWuzzy to match the input list from the reference list?
inp_list = pd.DataFrame(['ADAMS SEBASTIAN', 'HAIMBILI SEUN', 'MUTESI
JOHN', 'SHEETEKELA MATT', 'MUTESI JOHN KUTALIKA',
'ADAMS SEBASTIAN HAUSIKU', 'PETERS WILSON',
'PETERS MARIO', 'SHEETEKELA MATT NICKY'],
columns =['Names'])
ref_list = pd.DataFrame(['ADAMS SEBASTIAN HAUSIKU', 'HAIMBILI MIKE', 'HAIMBILI SEUN', 'MUTESI JOHN
KUTALIKA', 'PETERS WILSON MARIO', 'SHEETEKELA MATT NICKY MBILI'], columns =
['Names'])
After some research, I modified some codes I found on the internet. Problems with these codes - they work very well on small sample size. In my case the inp_list and ref_list are 29k and 18k respectively in length and it takes more than a day to run.
Below are the codes, first a helper function was defined.
def match_term(term, inp_list, min_score=0):
# -1 score in case I don't get any matches
max_score = -1
# return empty for no match
max_name = ''
# iterate over all names in the other
for term2 in inp_list:
# find the fuzzy match score
score = fuzz.token_sort_ratio(term, term2)
# checking if I am above my threshold and have a better score
if (score > min_score) & (score > max_score):
max_name = term2
max_score = score
return (max_name, max_score)
# list for dicts for easy dataframe creation
dict_list = []
#iterating over the sales file
for name in inp_list:
#use the defined function above to find the best match, also set the threshold to a chosen #
match = match_term(name, ref_list, 94)
#new dict for storing data
dict_ = {}
dict_.update({'passenger_name': name})
dict_.update({'match_name': match[0]})
dict_.update({'score': match[1]})
dict_list.append(dict_)
Where can these codes be improved to run smoothly and perhaps avoid evaluating items that have already been assessed?
You can try to vectorized the operations instead of evaluate the scores in a loop.
Make a df where the firse col ref is ref_list and the second col inp is each name in inp_list. Then call df.apply(lambda row:process.extractOne(row['inp'], row['ref']), axis=1). Finally you'll get the best match name and score in ref_list for each name in inp_list.
The measures you are using are computationally demanding with a number of pairs of strings that high. Alternatively to fuzzywuzzy, you could try to use instead a library called string-grouper which exploits a faster Tf-idf method and the cosine similarity measure to find similar words. As an example:
import random, string, time
import pandas as pd
from string_grouper import match_strings
alphabet = list(string.ascii_lowercase)
from_r, to_r = 0, len(alphabet)-1
random_strings_1 = ["".join(alphabet[random.randint(from_r, to_r)]
for i in range(6)) for j in range(5000)]
random_strings_2 = ["".join(alphabet[random.randint(from_r, to_r)]
for i in range(6)) for j in range(5000)]
series_1 = pd.Series(random_strings_1)
series_2 = pd.Series(random_strings_2)
t_1 = time.time()
matches = match_strings(series_1, series_2,
min_similarity=0.6)
t_2 = time.time()
print(t_2 - t_1)
print(matches)
It takes less than one second to do 25.000.000 comparisons! For a surely more useful test of the library look here: https://bergvca.github.io/2017/10/14/super-fast-string-matching.html where it is claimed that
"Using this approach made it possible to search for near duplicates in
a set of 663,000 company names in 42 minutes using only a dual-core
laptop".
To tune your matching algorithm further look at the **kwargs arguments you can give to the match_strings function above.
I have an approximately 1 million row pandas dataframe containing data parsed from federal appellate court opinions. I need to extract the names of judges hearing the cases. The data has an unknown number of judges per case (one row) which are contained in a string. That string (currently stored in a single column) contains a lot of excess text as well as has inconsistent formatting and capitalization. I use different dictionaries of judge names (with 2,575 regex keys possible to be used) to match judges listed based on multiple criteria described below. I use the dictionary with the most stringent matching criteria first and gradually loosen the criteria. I also remove the matched string from the source column. The current methods that I have tried are simply too slow (taking days, weeks, or even months).
The reason there are multiple possible dictionaries is that many judges share the same (last) names. The strings don't ordinarily include full names. I use data contained in two other columns to get the right match: year the case was decided and the court hearing the case (both integers). I also have higher and lower quality substring search terms. The dictionaries I use can be recreated at will in different formats besides regex if needed.
The fastest solution I have tried was crude and unpythonic. In the initial parsing of the data (extraction of sections and keywords from raw text files), which occurs on a case-by-case basis, I did the following: 1) removed excess text to the degree possible, 2) sorted the remaining text into a list stored within a pandas column, 3) concatenated as strings the year and court to each item in that list, and 4) matched that concatenated string to a dictionary that I had similarly prepared. That dictionary didn't use regular expressions and had approximately 800,000 keys. That process took about a day (with all of the other parsing involved as well) and was not as accurate as I would have liked (because it omitted certain name format permutations).
The code below contains my most recent attempt (which is currently running and looks to be among the slowest options yet). It creates subset dictionaries on the fly and still ends up iterating through those smaller dictionaries with regex keys. I've read through and tried to apply solutions from many stackoverflow questions, but couldn't find a workable solution. I'm open to any python-based idea. The data is real data that I've cleaned with a prior function.
import numpy as np
import pandas as pd
test_data = {'panel_judges' : ['CHAGARES, VANASKIE, SCHWARTZ',
'Sidney R. Thomas, Barry G. Silverman, Raymond C. Fisher, Opinion by Thomas'],
'court_num' : [3, 9],
'date_year' : [2014, 2014]}
test_df = pd.DataFrame(data = test_data)
name_dict = {'full_name' : ['Chagares, Michael A.',
'Vanaskie, Thomas Ignatius',
'Schwartz, Charles, Jr.',
'Schwartz, Edward Joseph',
'Schwartz, Milton Lewis',
'Schwartz, Murray Merle'],
'court_num' : [3, 3, 1061, 1097, 1058, 1013],
'circuit_num' : [3, 3, 5, 9, 9, 3],
'start_year' : [2006, 2010, 1976, 1968, 1979, 1974],
'end_year' : [2016, 2019, 2012, 2000, 2005, 2013],
'hq_match' : ['M(?=ICHAEL)? ?A?(?=\.)? ?CHAGARES',
'T(?=HOMAS)? ?I?(?=GNATIUS)? ?VANASKIE',
'C(?=HARLES)? SCHWARTZ',
'E(?=DWARD)? ?J?(?=OSEPH)? ?SCHWARTZ',
'M(?=ILTON)? ?L?(?=EWIS)? ?SCHWARTZ',
'M(?=URRAY)? ?M?(?=ERLE)? ?SCHWARTZ'],
'lq_match' : ['CHAGARES',
'VANASKIE',
'SCHWARTZ',
'SCHWARTZ',
'SCHWARTZ',
'SCHWARTZ']}
names = pd.DataFrame(data = name_dict)
in_col = 'panel_judges'
year_col = 'date_year'
out_col = 'fixed_panel'
court_num_col = 'court_num'
test_df[out_col] = ''
test_df[out_col].astype(list, inplace = True)
def judge_matcher(df, in_col, out_col, year_col, court_num_col,
size_column = None):
general_cols = ['start_year', 'end_year', 'full_name']
court_cols = ['court_num', 'circuit_num']
match_cols = ['hq_match', 'lq_match']
for match_col in match_cols:
for court_col in court_cols:
lookup_cols = general_cols + [court_col] + [match_col]
judge_df = names[lookup_cols]
for year in range(df[year_col].min(),
df[year_col].max() + 1):
for court in range(df[court_num_col].min(),
df[court_num_col].max() + 1):
lookup_subset = ((judge_df['start_year'] <= year)
& (year < (judge_df['end_year'] + 2))
& (judge_df[court_col] == court))
new_names = names.loc[lookup_subset]
df_subset = ((df[year_col] == year)
& (df[court_num_col] == court))
df.loc[df_subset] = matcher(df.loc[df_subset],
in_col, out_col, new_names, match_col)
return df
def matcher(df, in_col, out_col, lookup, keys):
patterns = dict(zip(lookup[keys], lookup['full_name']))
for key, value in patterns.items():
df[out_col] = (
np.where(df[in_col].astype(str).str.upper().str.contains(key),
df[out_col] + value + ', ', df[out_col]))
df[in_col] = df[in_col].astype(str).str.upper().str.replace(key, '')
return df
df = judge_matcher(test_df, in_col, out_col, year_col, court_num_col)
The output I currently get is essentially right (although the names should be sorted and in a list). The proper "Schwartz" is picked and the matches are all correct. The problem is speed.
My goal is to have a de-deduplicated, sorted (alphabetically) list of judges on each panel either stored in a single column or exploded into up to 15 separate columns (I presently do that in a separate vectorized function). I then will do other lookups on those judges based upon other demographic and biographical information. The produced data will be openly available to researchers in the area and the code will be part of a free, publicly available platform usable for studying other courts as well. So accuracy and speed are both important considerations for users on many different machines.
For anyone who stumbles across this question and has a similar complex string matching issue in pandas, this is the solution I found to be the fastest.
It isn't fully vectorized like I wanted, but I used df.apply with this method within a class:
def judge_matcher(self, row, in_col, out_col, year_col, court_num_col,
size_col = None):
final_list = []
raw_list = row[in_col]
cleaned_list = [x for x in raw_list if x]
cleaned_list = [x.strip() for x in cleaned_list]
for name in cleaned_list:
name1 = self.convert_judge_name(row[year_col],
row[court_num_col], name, 1)
name2 = self.convert_judge_name(row[year_col],
row[court_num_col], name, 2)
if name1 in self.names_dict_list[0]:
final_list.append(self.names_dict_list[0].get(name1))
elif name1 in self.names_dict_list[1]:
final_list.append(self.names_dict_list[1].get(name1))
elif name2 in self.names_dict_list[2]:
final_list.append(self.names_dict_list[2].get(name2))
elif name2 in self.names_dict_list[3]:
final_list.append(self.names_dict_list[3].get(name2))
elif name in self.names_dict_list[4]:
final_list.append(self.names_dict_list[4].get(name))
final_list = list(unique_everseen(final_list))
final_list.sort()
row[out_col] = final_list
if size_col and final_list:
row[size_col] = len(final_list)
return row
#staticmethod
def convert_judge_name(year, court, name, dict_type):
if dict_type == 1:
return str(int(court) * 10000 + int(year)) + name
elif dict_type == 2:
return str(int(year)) + name
else:
return name
Basically, it concatenates three columns together and performs hashed dictionary lookups (instead of regexes) with the concatenated strings. Multiplication is used to efficiently concatenate the two numbers to be side-by-side as strings. The dictionaries had similarly prepared keys (and the values are the desired strings). By using lists and then deduplicating, I didn't have to remove the matched strings. I didn't time this specific function, but the overall module took just over 10 hours to process ~ 1 million rows. When I run it again, I will try to remember to time this applied function specifically and post the results here. The method is ugly, but fairly effective.
Thanks for the answers, I have not used StackOverflow before so I was suprised by the number of answers and the speed of them - its fantastic.
I have not been through the answers properly yet, but thought I should add some information to the problem specification. See the image below.
I can't post an image in this because i don't have enough points but you can see an image
at http://journal.acquitane.com/2010-01-20/image003.jpg
This image may describe more closely what I'm trying to achieve. So you can see on the horizontal lines across the page are price points on the chart. Now where you get a clustering of lines within 0.5% of each, this is considered to be a good thing and why I want to identify those clusters automatically. You can see on the chart that there is a cluster at S2 & MR1, R2 & WPP1.
So everyday I produce these price points and then I can identify manually those that are within 0.5%. - but the purpose of this question is how to do it with a python routine.
I have reproduced the list again (see below) with labels. Just be aware that the list price points don't match the price points in the image because they are from two different days.
[YR3,175.24,8]
[SR3,147.85,6]
[YR2,144.13,8]
[SR2,130.44,6]
[YR1,127.79,8]
[QR3,127.42,5]
[SR1,120.94,6]
[QR2,120.22,5]
[MR3,118.10,3]
[WR3,116.73,2]
[DR3,116.23,1]
[WR2,115.93,2]
[QR1,115.83,5]
[MR2,115.56,3]
[DR2,115.53,1]
[WR1,114.79,2]
[DR1,114.59,1]
[WPP,113.99,2]
[DPP,113.89,1]
[MR1,113.50,3]
[DS1,112.95,1]
[WS1,112.85,2]
[DS2,112.25,1]
[WS2,112.05,2]
[DS3,111.31,1]
[MPP,110.97,3]
[WS3,110.91,2]
[50MA,110.87,4]
[MS1,108.91,3]
[QPP,108.64,5]
[MS2,106.37,3]
[MS3,104.31,3]
[QS1,104.25,5]
[SPP,103.53,6]
[200MA,99.42,7]
[QS2,97.05,5]
[YPP,96.68,8]
[SS1,94.03,6]
[QS3,92.66,5]
[YS1,80.34,8]
[SS2,76.62,6]
[SS3,67.12,6]
[YS2,49.23,8]
[YS3,32.89,8]
I did make a mistake with the original list in that Group C is wrong and should not be included. Thanks for pointing that out.
Also the 0.5% is not fixed this value will change from day to day, but I have just used 0.5% as an example for spec'ing the problem.
Thanks Again.
Mark
PS. I will get cracking on checking the answers now now.
Hi:
I need to do some manipulation of stock prices. I have just started using Python, (but I think I would have trouble implementing this in any language). I'm looking for some ideas on how to implement this nicely in python.
Thanks
Mark
Problem:
I have a list of lists (FloorLevels (see below)) where the sublist has two items (stockprice, weight). I want to put the stockprices into groups when they are within 0.5% of each other. A groups strength will be determined by its total weight. For example:
Group-A
115.93,2
115.83,5
115.56,3
115.53,1
-------------
TotalWeight:12
-------------
Group-B
113.50,3
112.95,1
112.85,2
-------------
TotalWeight:6
-------------
FloorLevels[
[175.24,8]
[147.85,6]
[144.13,8]
[130.44,6]
[127.79,8]
[127.42,5]
[120.94,6]
[120.22,5]
[118.10,3]
[116.73,2]
[116.23,1]
[115.93,2]
[115.83,5]
[115.56,3]
[115.53,1]
[114.79,2]
[114.59,1]
[113.99,2]
[113.89,1]
[113.50,3]
[112.95,1]
[112.85,2]
[112.25,1]
[112.05,2]
[111.31,1]
[110.97,3]
[110.91,2]
[110.87,4]
[108.91,3]
[108.64,5]
[106.37,3]
[104.31,3]
[104.25,5]
[103.53,6]
[99.42,7]
[97.05,5]
[96.68,8]
[94.03,6]
[92.66,5]
[80.34,8]
[76.62,6]
[67.12,6]
[49.23,8]
[32.89,8]
]
I suggest a repeated use of k-means clustering -- let's call it KMC for short. KMC is a simple and powerful clustering algorithm... but it needs to "be told" how many clusters, k, you're aiming for. You don't know that in advance (if I understand you correctly) -- you just want the smallest k such that no two items "clustered together" are more than X% apart from each other. So, start with k equal 1 -- everything bunched together, no clustering pass needed;-) -- and check the diameter of the cluster (a cluster's "diameter", from the use of the term in geometry, is the largest distance between any two members of a cluster).
If the diameter is > X%, set k += 1, perform KMC with k as the number of clusters, and repeat the check, iteratively.
In pseudo-code:
def markCluster(items, threshold):
k = 1
clusters = [items]
maxdist = diameter(items)
while maxdist > threshold:
k += 1
clusters = Kmc(items, k)
maxdist = max(diameter(c) for c in clusters)
return clusters
assuming of course we have suitable diameter and Kmc Python functions.
Does this sound like the kind of thing you want? If so, then we can move on to show you how to write diameter and Kmc (in pure Python if you have a relatively limited number of items to deal with, otherwise maybe by exploiting powerful third-party add-on frameworks such as numpy) -- but it's not worthwhile to go to such trouble if you actually want something pretty different, whence this check!-)
A stock s belong in a group G if for each stock t in G, s * 1.05 >= t and s / 1.05 <= t, right?
How do we add the stocks to each group? If we have the stocks 95, 100, 101, and 105, and we start a group with 100, then add 101, we will end up with {100, 101, 105}. If we did 95 after 100, we'd end up with {100, 95}.
Do we just need to consider all possible permutations? If so, your algorithm is going to be inefficient.
You need to specify your problem in more detail. Just what does "put the stockprices into groups when they are within 0.5% of each other" mean?
Possibilities:
(1) each member of the group is within 0.5% of every other member of the group
(2) sort the list and split it where the gap is more than 0.5%
Note that 116.23 is within 0.5% of 115.93 -- abs((116.23 / 115.93 - 1) * 100) < 0.5 -- but you have put one number in Group A and one in Group C.
Simple example: a, b, c = (0.996, 1, 1.004) ... Note that a and b fit, b and c fit, but a and c don't fit. How do you want them grouped, and why? Is the order in the input list relevant?
Possibility (1) produces ab,c or a,bc ... tie-breaking rule, please
Possibility (2) produces abc (no big gaps, so only one group)
You won't be able to classify them into hard "groups". If you have prices (1.0,1.05, 1.1) then the first and second should be in the same group, and the second and third should be in the same group, but not the first and third.
A quick, dirty way to do something that you might find useful:
def make_group_function(tolerance = 0.05):
from math import log10, floor
# I forget why this works.
tolerance_factor = -1.0/(-log10(1.0 + tolerance))
# well ... since you might ask
# we want: log(x)*tf - log(x*(1+t))*tf = -1,
# so every 5% change has a different group. The minus is just so groups
# are ascending .. it looks a bit nicer.
#
# tf = -1/(log(x)-log(x*(1+t)))
# tf = -1/(log(x/(x*(1+t))))
# tf = -1/(log(1/(1*(1+t)))) # solved .. but let's just be more clever
# tf = -1/(0-log(1*(1+t)))
# tf = -1/(-log((1+t))
def group_function(value):
# don't just use int - it rounds up below zero, and down above zero
return int(floor(log10(value)*tolerance_factor))
return group_function
Usage:
group_function = make_group_function()
import random
groups = {}
for i in range(50):
v = random.random()*500+1000
group = group_function(v)
if group in groups:
groups[group].append(v)
else:
groups[group] = [v]
for group in sorted(groups):
print 'Group',group
for v in sorted(groups[group]):
print v
print
For a given set of stock prices, there is probably more than one way to group stocks that are within 0.5% of each other. Without some additional rules for grouping the prices, there's no way to be sure an answer will do what you really want.
apart from the proper way to pick which values fit together, this is a problem where a little Object Orientation dropped in can make it a lot easier to deal with.
I made two classes here, with a minimum of desirable behaviors, but which can make the classification a lot easier -- you get a single point to play with it on the Group class.
I can see the code bellow is incorrect, in the sense the limtis for group inclusion varies as new members are added -- even it the separation crieteria remaisn teh same, you heva e torewrite the get_groups method to use a multi-pass approach. It should nto be hard -- but the code would be too long to be helpfull here, and i think this snipped is enoguh to get you going:
from copy import copy
class Group(object):
def __init__(self,data=None, name=""):
if data:
self.data = data
else:
self.data = []
self.name = name
def get_mean_stock(self):
return sum(item[0] for item in self.data) / len(self.data)
def fits(self, item):
if 0.995 < abs(item[0]) / self.get_mean_stock() < 1.005:
return True
return False
def get_weight(self):
return sum(item[1] for item in self.data)
def __repr__(self):
return "Group-%s\n%s\n---\nTotalWeight: %d\n\n" % (
self.name,
"\n".join("%.02f, %d" % tuple(item) for item in self.data ),
self.get_weight())
class StockGrouper(object):
def __init__(self, data=None):
if data:
self.floor_levels = data
else:
self.floor_levels = []
def get_groups(self):
groups = []
floor_levels = copy(self.floor_levels)
name_ord = ord("A") - 1
while floor_levels:
seed = floor_levels.pop(0)
name_ord += 1
group = Group([seed], chr(name_ord))
groups.append(group)
to_remove = []
for i, item in enumerate(floor_levels):
if group.fits(item):
group.data.append(item)
to_remove.append(i)
for i in reversed(to_remove):
floor_levels.pop(i)
return groups
testing:
floor_levels = [ [stock. weight] ,... <paste the data above> ]
s = StockGrouper(floor_levels)
s.get_groups()
For the grouping element, could you use itertools.groupby()? As the data is sorted, a lot of the work of grouping it is already done, and then you could test if the current value in the iteration was different to the last by <0.5%, and have itertools.groupby() break into a new group every time your function returned false.